Nutritional Strategies to Alleviate Stress and Improve Welfare in Dairy Ruminants
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. Relation of Stress and Animal Welfare
1.2. Stress Factors in Ruminants
1.2.1. Transition Period in Dairy Cows
1.2.2. Heat Stress
2. Nutritional Strategies to Alleviate Stress
2.1. Functional Amino Acids
2.1.1. Amino Acid Supplementation during Transition Period in Ruminants
2.1.2. Amino Acid Supplementation to Alleviate Heat Stress in Ruminants
2.2. Fatty Acid Supplementation
2.2.1. Fatty Acid Supplementation during Transition Period Inruminants
2.2.2. Fatty Acid Supplementation to Ameliorate the Effects of Heat Stress in Ruminants
2.3. Feed Additive Supplementation
2.3.1. Feed Additive Supplementation during Transition Period in Ruminants
Minerals
Probiotics
Prebiotics
Essential Oils/Herbs
Phytobiotics
Enzymes
2.3.2. Feed Additives Supplementation during Heat Stress in Ruminants
Minerals
Probiotics
Prebiotics
Essential Oils/Herbs
Phytobiotics
Enzymes
Feed Additives | Observed Effects | Refs. |
---|---|---|
During transition period | ||
Minerals | ||
Na, P, Cu, Co, Zn, Se, I, Mn, Cr, Ca | Improvement of liver function, decrease in inflammation, and oxidative stress. Alleviation of the pathophysiology and incidence of hypocalcemia in transition cows. Improvement of dry matter intake, nutrient digestibility, and reproductive performance indices. | [147,148,149,150,151,152] |
Probiotics | ||
E. faecium, B. bifidum, L. acidophilus, S. thermophilus, L. rhamnosus, L. bulgaricus, L. plantarum, Yeast | Promotion of effective nutrient utilization, increase in dry matter intake, milk yield, milk fat content, alleviation of metabolic stress in transitional dairy cattle. Normal rumination frequency and feces consistency. | [153,154,155,156] |
Prebiotics | ||
Berberine, mannan, B glucan | Enhancement of antioxidant status, reduction of inflammation, improvement of ruminal microflora digestion, alleviation of morbidity, and production losses due to Haemorrhagic Enteritis in transition dairy goats. | [158,159,160] |
Various mixes | Imrovement of the immune response and metabolism in transitional dairy cows. | [22] |
Beta-1, 3-glucan | Improvement of productivity, immunity, antioxidant status, and colostrum quality in periparturient dairy cows. | [157] |
Essential oils/Herbs | ||
EOs (eugenol, menthol, anethol) EOs (oregano, thyme, eucalyptus and garlic) EOs (thymol, eugenol, vanillin, limonene) | Enhancement of milk yield, fat and protein content, and feed efficiency in dairy cows. | [163] |
Modulation of rumen fermentation and improvement of animal health and welfare. | [164] | |
Reduction of dry matter intake; no effects on milk yield in early lactation dairy cows. | [165] | |
Improvement of antioxidant status, rumen parameters, serum metabolites, and weight gain, milk yield, meat and milk quality in small ruminants. | [22,166] | |
Phytobiotics | ||
Poly-herbal formulations (Boswellia and Berginia ciliata) | Reduction of stress, boost of immunity improvement of udder health status of dairy cows during the transition period. | [168] |
Herbal mixture of rosemary, cinnamon bark, turmeric, clove | Improvement of metabolic status, udder health, and performance in dairy cows. | [169] |
Rutin | Positive effects against inflammation, oxidative stress status, and anti-apoptotic activity in the mammary gland of transition sheep | [170] |
Enzymes | ||
Amylolytic, proteolytic β-glucanase, xylanase, and β-mannanase, exogenous enzymes | Improvement of feed intake, nutrient digestibility, and growth performance in sheep. | [171,172] |
fibrolytic and amylolytic enzymes | Improvement of nutrient intake and digestibility, nitrogen balance, and ingestive behavior; enhancement of rumen function in sheep. | [173] |
During heat stress | ||
Minerals | ||
Se, Cu, zinc | Reduction of oxidative stress, increase in serum superoxide dismutase, decrease in heat shock protein, metabolic alterations associated with heat stress steers. | [174] |
Se | Increase in glutathione peroxidase, decrease in free radicals, decrease in lipid peroxidation, improvement of mammary gland and immunity, improvement of thermoregulation, and milk yeild. | [50,52] |
NaHCO3, K2Co3, KHCO3 | Improvement of feed intake, milk yield, and insulin sensitivity. | [50] |
Zn, Co, Cr, Se | Improvement of antioxidant status and maintenance of body condition score of heat-stressed ewes. | [176] |
Probiotics | ||
B. subtilis, propionic bacteria | Enhancement of blood metabolites, physiological responses, productive performance, and digestibility in beef bulls. | [180] |
S. cerevisiae and C. butyricum | Improvement of rumen fermentation, increase in rumen pH and total volatile fatty acids, cellulolytic enzyme activity, and growth performance in heat-stressed goats. | [181,182,183] |
Live yeast and yeast cell wall product | Decrease in cortisol concentration and vaginal temperature, increase in drinking water volume in feedlot heifers. | [184] |
Various probiotics | Mitigation of heat stress effects in goats. | [154,179,185,186] |
Prebiotics | ||
Mannan oligosaccharides, fructooligosaccharides, galactooligosaccharides | Positive effects on the intestinal microbiota, gut morphology, and oxidative status, improvement in growth performance, nutrient digestibility, and physiological responses. Stimulation of the growth of beneficial bacteria and inhibition of pathogenic microbiota in the gastrointestinal tract, improvement of performance. | [187] |
Essential oils/Herbs | ||
Thyme, fennel, ginger, black seed, Eucalyptus oil | Modification of microbial populations of the intestinal tract, enhancement of barrier integrity, optimization of rumen fermentation, gut health and productivity, weight gain, milk production, and meat quality in both cows and small ruminants | [164,165] |
Cinnamaldehyde, eugenol, peppermint, coriander, cumin, lemongrass | Mitigation of the negative effects of heat stress on feed consumption and milk production in dairy cows. Modification of the proportions of volatile fatty acids in the rumen and improvement of growth performance in small ruminants. | [189,190] |
Phytobiotics | ||
Mixture (garlic oil, anise oil, cinnamaldehyde, rosemary, and thyme blend) | Alleviation of the inflammation and oxidation of heat-stressed animals, prevention of irritation and diarrhea, improvement of animal health and production efficiency. | [192,193] |
Cinnamon, turmeric, rosemary, and clove buds | Improvement of growth performance and antioxidant status in heat-stressed lambs. | [194] |
Phytobiotics which exhibit probiotic activity | Improvement of growth performance, nutrient digestibility, and physiological responses in beef bulls under heat stress conditions. | [180] |
Enzymes | ||
Exogenous enzymes from anaerobic bacteria | Increase in plasma parameters, boosting glucose and milk production, enhancing protein and lactose concentration in heat-stressed dairy ewes. | [196] |
Exogenous enzymes | Improvement of feed intake, nutrient digestibility, and growth performance in ruminants due to their interaction with rumen microbiota in heat-stressed ruminants. | [171,197] |
Fibrolytic, proteolytic, and amylolytic enzymes | Modification of the ratio of propionate to acetate volatile fatty acids in the rumen, increase in milk fat concentration, and production of heat stressed dairy cows. | [198] |
3. Breeding Strategies as a Tool to Maximize Effects of Dietary Interventions
Utilization of Local Breeds
4. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. Available online: https://www.fao.org/in-action/enteric-methane/background/ruminants-in-agrifood-systems/en (accessed on 24 February 2024).
- FAOSTAT. Available online: https://www.fao.org/faostat/en/#compare (accessed on 24 February 2024).
- Gross, J.J. Limiting factors for milk production in dairy cows: Perspectives from physiology and nutrition. J. Anim. Sci. 2022, 100, skac044. [Google Scholar] [CrossRef] [PubMed]
- Carta, A.; Casu, S.; Salaris, S. Invited review: Current state of genetic improvement in dairy sheep. J. Dairy Sci. 2009, 92, 5814–5833. [Google Scholar] [CrossRef]
- Oltenacu, P.; Broom, D. The impact of genetic selection for increased milk yield on the welfare of dairy cows. Anim. Welf. 2010, 19, 39–49. [Google Scholar] [CrossRef]
- Abuelo, A.; Hernández, J.; Benedito, J.L.; Castillo, C. The importance of the oxidative status of dairy cattle in the periparturient period: Revisiting antioxidant supplementation. J. Anim. Nutr. Anim. Phyiol. 2015, 99, 1003–1016. [Google Scholar] [CrossRef]
- Trevisi, E.; Amadori, M.; Cogrossi, S.; Razzuoli, E.; Bertoni, G. Metabolic stress and inflammatory response in high-yielding, periparturient dairy cows. Res. Vet. Sci. 2012, 93, 695–704. [Google Scholar] [CrossRef]
- Kupczyński, R.; Bednarski, M.; Sokołowski, M.; Kowalkowski, W.; Pacyga, K. Comparison of antibiotic use and the frequency of diseases depending on the sze of herd and the type of cattle breeding. Animals 2024, 14, 1889. [Google Scholar] [CrossRef]
- Mathew, A.G.; Cissell, R.; Liamthong, S. Antibiotic resistance in bacteria associated with food animals: A United States perspective of livestock production. Foodborne Pathog. Dis. 2007, 4, 115–133. [Google Scholar] [CrossRef] [PubMed]
- Casewell, M.; Friis, C.; Marco, E.; McMullin, P.; Phillips, I. The European ban on growth-promoting antibiotics and emerging consequences for human and animal health. J. Antimicrob. Chemother. 2003, 52, 159–161. [Google Scholar] [CrossRef]
- Magnusson, U. Prudent and effective antimicrobial use in a diverse livestock and consumer’s world. J. Anim. Sci. 2020, 18 (Suppl. S1), S4–S8. [Google Scholar] [CrossRef]
- Bengtsson, B.; Greko, C. Antibiotic resistance–consequences for animal health, welfare, and food production. Upsala J. Med. Sci. 2014, 119, 96–102. [Google Scholar] [CrossRef]
- Wang, J.; Deng, L.; Chen, M.; Che, Y.; Li, L.; Zhu, L.; Chen, G.; Feng, T. Phytogenic feed additives as natural antibiotic alternatives in animal health and production: A review of the literature of the last decade. Anim. Nut. 2024, 17, 244–264. [Google Scholar] [CrossRef] [PubMed]
- FAO. Environmental Performance of Feed Additives in Livestock Supply Chains—Guidelines for Assessment—Version 1; Livestock Environmental Assessment and Performance Partnership (FAO LEAP); FAO: Rome, Italy, 2020. [Google Scholar]
- Savvidou, S.; Karatzia, M.A.; Kotsampasi, B. Feed Additives as Dietary Tools to Improve Welfare Status in Ruminants. In Sustainable Use of Feed Additives in Livestock: Novel Ways for Animal Production; Arsenos, G., Giannenas, I., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 665–701. [Google Scholar]
- Silanikove, N. Effects of heat stress on the welfare of extensively managed domestic ruminants. Livest. Prod. Sci. 2000, 67, 1–18. [Google Scholar] [CrossRef]
- Llonch, P.; Haskell, M.J.; Dewhurst, R.J.; Turner, S.P. Current available strategies to mitigate greenhouse gas emissions in livestock systems: An animal welfare perspective. Animal 2017, 11, 274–284. [Google Scholar] [CrossRef] [PubMed]
- Rostagno, M.H. Can stress in farm animals increase food safety risk? Foodborne Pathog. Dis. 2009, 6, 767–776. [Google Scholar] [CrossRef] [PubMed]
- Hristov, S.; Maksimović, N.; Stanković, B.; Žujović, M.; Pantelić, V.; Stanišić, N.; Zlatanović, Z. The most significant stressors in intensive sheep production. Biotechnol. Anim. Husb. 2012, 28, 649–658. [Google Scholar] [CrossRef]
- Ponnampalam, E.N.; Kiani, A.; Santhiravel, S.; Holman, B.W.B.; Lauridsen, C.; Dunshea, F.R. The Importance of dietary antioxidants on oxidative stress, meat and milk production, and their preservative aspects in farm animals: Antioxidant action, animal health, and poduct quality—Invited Review. Animals 2022, 12, 3279. [Google Scholar] [CrossRef]
- Overton, T.R.; Waldron, M.R. Nutritional management of transition dairy cows: Strategies to optimize metabolic health. J. Dairy Sci. 2004, 87, E105–E119. [Google Scholar] [CrossRef]
- Lopreiato, V.; Mezzetti, M.; Cattaneo, L.; Ferronato, G.; Minuti, A.; Trevisi, E. Role of nutraceuticals during the transition period of dairy cows: A review. J. Anim. Sci. Biotech. 2020, 11, 96. [Google Scholar] [CrossRef]
- Tessari, R.; Berlanda, M.; Morgante, M.; Badon, T.; Gianesella, M.; Mazzotta, E.; Contiero, B.; Fiore, E. Changes of plasma fatty acids in four lipid classes to understand energy metabolism at different levels of non-esterified fatty acid (NEFA) in dairy cows. Animals 2020, 10, 1410. [Google Scholar] [CrossRef]
- Pascottini, O.B.; Leroy, J.L.M.R.; Opsomer, G. Metabolic stress in the transition period of dairy cows: Focusing on the prepartum period. Animals 2020, 10, 1419. [Google Scholar] [CrossRef] [PubMed]
- Bradford, B.J.; Swartz, T.H. Review: Following the smoke signals: Inflammatory signaling in metabolic homeostasis and homeorhesis in dairy cattle. Animal 2020, 14, s144–s154. [Google Scholar] [CrossRef]
- Van Saun, R.J.; Sniffen, C.J. Transition cow nutrition and feeding management for disease prevention. Vet. Clin. N. Am. Food Anim. Pract. 2014, 30, 689–719. [Google Scholar] [CrossRef] [PubMed]
- Mavangira, V.; Sordillo, L.M. Role of lipid mediators in the regulation of oxidative stress and inflammatory responses in dairy cattle. Res. Vet. Sci. 2018, 11, 4–14. [Google Scholar] [CrossRef] [PubMed]
- Mavangira, V.M.J.; Mangual, J.C.; Gandy, L.; Sordillo, M. 15-F2t-Isoprostane concentrations and oxidant status in lactating dairy cattle with acute coliform mastitis. J. Vet. Intern. Med. 2016, 30, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Jorritsma, R.; Wensing, T.; Kruip, T.A.; Vos, P.L.; Noordhuizen, J.P. Metabolic changes in early lactation and impaired reproductive performance in dairy cows. Vet. Res. Commun. 2003, 34, 11–26. [Google Scholar] [CrossRef]
- Koeck, A.; Miglior, F.; Jamrozik, J.; Kelton, D.F.; Schenkel, F.S. Genetic associations of ketosis and displaced abomasum with milk production traits in early first lactation of Canadian Holsteins. J. Dairy Sci. 2013, 96, 4688–4696. [Google Scholar] [CrossRef]
- Ingvartsen, K.L.; Moyes, K.M. Factors contributing to immunosuppression in the dairy cow during the periparturient period. Jpn. J. Vet. Res. 2015, 63 (Suppl. S1), S15–S24. [Google Scholar]
- Khan, M.Z.; Huang, B.; Kou, X.; Chen, Y.; Liang, H.; Ullah, Q.; Khan, I.M.; Khan, A.; Chai, W.; Wang, C. Enhancing bovine immune, antioxidant and anti-inflammatory responses with vita-mins, rumen-protected amino acids, and trace minerals to prevent periparturient mastitis. Front. Immunol. 2024, 14, 1290044. [Google Scholar] [CrossRef]
- Castillo, C.; Hernandez, J.; Valverde, I.; Pereira, V.; Sotillo, J.; Alonso, M.L.; Benedito, J. Plasma malonaldehyde (MDA) and total antioxidant status (TAS) during lactation in dairy cows. Res. Vet. Sci. 2006, 80, 133–139. [Google Scholar] [CrossRef]
- Markiewicz, H.; Gehrke, M.; Malinowski, E.; Kaczmarowski, M. Evaluating the antioxidant potential in the blood of tran-sition cows. Med. Weterynaryjna 2005, 61, 1382–1384. [Google Scholar]
- Kowalska, J.; Jankowiak, D. Changes of reduction-oxidation balance in pregnant ruminants. Post. Biochem. 2009, 55, 323–328. [Google Scholar]
- Wankhade, P.R.; Manimaran, A.; Kumaresan, A.; Jeyakumar, S.; Ramesha, K.P.; Sejian, V.; Rajendran, D.; Varghese, M.R. Metabolic and immunological changes in transition dairy cows: A review. Vet. World 2017, 10, 1367–1377. [Google Scholar] [CrossRef] [PubMed]
- Intergovernmental Panel on Climate Change. Summary for policymakers. In Climate Change 2014: Mitigation of Climate Change; Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2015; p. 30. [Google Scholar]
- Das, R.; Sailo, L.; Verma, N.; Bharti, P.; Saikia, J.; Imtiwati; Kumar, R. Impact of heat stress on health and performance of dairy animals: A review. Vet. World 2016, 9, 260–268. [Google Scholar] [CrossRef]
- Polsky, L.; von Keyserlingk, M.A.G. Invited review: Effects of heat stress on dairy cattle welfare. J. Dairy Sci. 2017, 100, 8645–8657. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, S.S.; Zhang, M.; Osei-Amponsah, R.; Clarke, I.; Sejian, V.; Warner, R.; Dunshea, F.R. Impact of heat stress on ruminant livestock production and meat quality, and strategies for amelioration. Anim. Front. 2023, 13, 60–68. [Google Scholar] [CrossRef]
- Pinto, S.; Hoffmann, G.; Ammon, C.; Amon, T. Critical THI thresholds based on the physiological parameters of lactating dairy cows. J. Therm. Biol. 2020, 88, 102523. [Google Scholar] [CrossRef]
- Kelly, C.F.; Bond, T.E. Bioclimatic factors and their measurement. In A Guide to Environmental Research on Animals; National Academy of Sciences: Washington, DC, USA, 1971; pp. 7–92. [Google Scholar]
- Mishra, S.R. Behavioural, physiological, neuro-endocrine and molecular responses of cattle against heat stress: An updated review. Trop. Anim. Health Prod. 2021, 53, 400. [Google Scholar] [CrossRef] [PubMed]
- Moretti, R.; Biffani, S.; Chessa, S.; Bozzi, R. Heat stress effects on Holstein dairy cows’ rumination. Animal 2017, 11, 2320–2325. [Google Scholar] [CrossRef]
- Bernabucci, U.; Lacetera, N.; Baumgard, L.H.; Rhoads, R.P.; Ronchi, B.; Nardone, A. Metabolic and hormonal acclimation to heat stress in domesticated ruminants. Animal 2010, 4, 1167–1183. [Google Scholar] [CrossRef]
- Joy, A.; Dunshea, F.R.; Leury, B.J.; Clarke, I.J.; DiGiacomo, K.; Chauhan, S.S. Resilience of small ruminants to climate change and increased environmental temperature: A review. Animals 2020, 10, 867. [Google Scholar] [CrossRef]
- Sawyer, G.M.; Narayan, E.J. A review on the influence of climate change on sheep reproduction. In Comparative Endocrinology of Animals; Narayan, E.J., Ed.; BoD–Books on Demand: London, UK, 2019; Volume 10, pp. 1–21. [Google Scholar]
- Giannone, C.; Bovo, M.; Ceccarelli, M.; Torreggiani, D.; Tassinari, P. Review of the heat stress-induced responses in dairy cattle. Animals 2023, 13, 3451. [Google Scholar] [CrossRef]
- Cantet, J.M.; Yu, Z.; Ríus, A.G. Heat stress-mediated activation of immune-inflammatory pathways. Antibiotics 2021, 10, 1285. [Google Scholar] [CrossRef]
- Conte, G.; Ciampolini, R.; Cassandro, M.; Lasagna, E.; Calamari, L.; Bernabucci, U.; Abeni, F. Feeding and nutrition management of heat-stressed dairy ruminants. Ital. J. Anim. Sci. 2018, 17, 604–620. [Google Scholar] [CrossRef]
- Prathap, P.; Chauhan, S.S.; Leury, B.J.; Cottrell, J.J.; Joy, A.; Zhang, M.; Dunshea, F.R. Reducing the fermentability of wheat with a starch binding agent reduces some of the negative effects of heat stress in sheep. Animals 2022, 12, 1396. [Google Scholar] [CrossRef]
- Pawar, M.; Srivastava, A.; Chauhan, H.; Damor, S. Nutritional strategies to alleviate heat stress in dairy animals—A review. Int. J. Livest. Res. 2018, 8, 8–18. [Google Scholar] [CrossRef]
- Chauhan, S.S.; Celi, P.; Leury, B.J.; Dunshea, F.R. High dietary selenium and vitamin E supplementation ameliorates the impacts of heat load on oxidative status and acid-base balance in sheep. J. Anim. Sci. 2015, 93, 3342–3354. [Google Scholar] [CrossRef]
- Sakkas, P. The Effects of feed additives on farm animals under heat stress conditions. In Sustainable Use of Feed Additives in Livestock: Novel Ways for Animal Production; Springer International Publishing: Cham, Switzerland, 2023; pp. 285–326. [Google Scholar]
- Loor, J.J.; Lopreiato, V.; Palombo, V.; D’Andrea, M. Physiological impact of amino acids during heat stress in ruminants. Anim. Front. 2023, 13, 69–80. [Google Scholar] [CrossRef]
- Bouroutzika, E.V.; Theodosiadou, E.K.; Barbagianni, M.S.; Papadopoulos, S.; Kalogiannis, D.; Chadio, S.; Skaperda, Z.; Kouretas, D.; Katsogiannou, E.G.; Valasi, I. Redox status and hematological variables in melatonin-treated ewes during early pregnancy under heat stress. Vet. Sci. 2022, 9, 499. [Google Scholar] [CrossRef]
- Makris, A.; Alevra, A.I.; Exadactylos, A.; Papadopoulos, S. The tole of melatonin to ameliorate oxidative stress in sperm cells. Int. J. Mol. Sci. 2023, 24, 15056. [Google Scholar] [CrossRef]
- Hansen, P.J. Reproductive physiology of the heat-stressed dairy cow: Implications for fertility and assisted reproduction. In Proceedings of the 35th Annual Meeting of the European Embryo Transfer Association (AETE), Murcia, Spain, 12–14 September 2019. [Google Scholar]
- Dovolou, E.; Giannoulis, T.; Nanas, I.; Amiridis, G.S. Heat Stress: A serious disruptor of the reproductive physiology of dairy cows. Animals 2023, 13, 1846. [Google Scholar] [CrossRef]
- Osei-Amponsah, R.; Chauhan, S.S.; Leury, B.J.; Cheng, L.; Cullen, B.; Clarke, I.J.; Dunshea, F.R. Genetic selection for thermotolerance in ruminants. Animals 2019, 9, 948. [Google Scholar] [CrossRef]
- Kung, L., Jr.; Rode, L.M. Amino acid metabolism in ruminants. Anim. Feed Sci. Technol. 1996, 59, 167–172. [Google Scholar] [CrossRef]
- Coleman, D.N.; Lopreiato, V.; Alharthi, A.; Loor, J.J. Amino acids and the regulation of oxidative stress and immune function in dairy cattle. J. Anim. Sci. 2020, 98, S175–S193. [Google Scholar] [CrossRef]
- McCoard, S.A.; Sales, F.A.; Sciascia, Q.L. Amino acids in sheep production. Front. Biosci.-Elite 2016, 8, 264–288. [Google Scholar] [CrossRef]
- Martínez, Y.; Li, X.; Liu, G.; Bin, P.; Yan, W.; Más, D.; Valdivié, M.; Hu, C.A.; Ren, W.; Yin, Y. The role of methionine on metabolism, oxidative stress, and diseases. Amino Acids 2017, 49, 2091–2098. [Google Scholar] [CrossRef]
- Ratika, K.; James Singh, K.R.; Dahiya, S.S. Methionine, lysine and choline in dairy cows: A review article. Int. J. Curr. Microbiol. App. Sci. 2018, 7, 921–934. [Google Scholar] [CrossRef]
- Mavrommatis, A.; Mitsiopoulou, C.; Christodoulou, C.; Kariampa, P.; Simoni, M.; Righi, F.; Tsiplakou, E. Effects of supplementing rumen-protected methionine and lysine on milk performance and oxidative status of dairy ewes. Antioxidants 2021, 10, 654. [Google Scholar] [CrossRef]
- Abbasi, I.H.R.; Abbasi, F.; Soomro, R.N.; Abd El-Hack, M.E.; Abdel-Latif, M.A.; Li, W.; Hao, R.; Sun, F.; Bodinga, B.M.; Hayat, K.; et al. Considering choline as methionine precursor, lipoproteins transporter, hepatic promoter and antioxidant agent in animals. AMB Expr. 2017, 7, 214. [Google Scholar] [CrossRef]
- Han, L.; Batistel, F.; Ma, Y.; Alharthi, A.S.M.; Parys, C.; Loor, J.J. Methionine supply alters mammary gland antioxidant gene networks via phosphorylation of nuclear factor erythroid 2-like 2 (NFE2L2) protein in dairy cows during the periparturient period. J. Dairy Sci. 2018, 101, 8505–8512. [Google Scholar] [CrossRef]
- Brosnan, J.T.; Brosnan, M.E. The sulfur-containing amino acids: An overview. J. Nutr. 2006, 136, 1636S–1640S. [Google Scholar] [CrossRef]
- Li, P.; Yin, Y.L.; Li, D.; Kim, S.W.; Wu, G. Amino acids and immune function. Br. J. Nutr. 2007, 98, 237–252. [Google Scholar] [CrossRef]
- Atmaca, G. Antioxidant effects of sulfur-containing amino acids. Yonsei Med. J. 2004, 45, 776–788. [Google Scholar] [CrossRef] [PubMed]
- Colovic, M.; Vasic, V.M.; Djuric, D.M.; Krstic, D.Z. Sulphur-containing amino acids: Protective role against free radicals and heavy metals. Curr. Med. Chem. 2018, 25, 324–335. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Li, T.; Yin, Y. Methionine and antioxidant potential. J. Antioxid. Act. 2016, 1, 17–22. [Google Scholar] [CrossRef]
- Martinov, M.V.; Vitvitsky, V.M.; Banerjee, R.; Ataullakhanov, F.I. The logic of the hepatic methionine metabolic cycle. Biochim. Biophys. Acta 2010, 1804, 89–96. [Google Scholar] [CrossRef]
- Lu, S.C.; Mato, J.M. S-adenosylmethionine in liver health, injury, and cancer. Physiol. Rev. 2012, 92, 1515–1542. [Google Scholar] [CrossRef]
- Zeisel, S.H.; da Costa, K.A. Choline: An essential nutrient for public health. Nutr. Rev. 2009, 67, 615–623. [Google Scholar] [CrossRef]
- Osorio, J.S.; Trevisi, E.; Ji, P.; Drackley, J.K.; Luchini, D.; Bertoni, G.; Loor, J.J. Biomarkers of inflammation, metabolism, and oxidative stress in blood, liver, and milk reveal a better immunometabolic status in peripartal cows supplemented with Smar-tamine M or MetaSmart. J. Dairy Sci. 2014, 97, 7437–7450. [Google Scholar] [CrossRef]
- Zhou, Z.; Bulgari, O.; Vailati-Riboni, M.; Trevisi, E.; Ballou, M.A.; Cardoso, F.C.; Luchini, D.N.; Loor, J.J. Rumen-protected methionine compared with rumen-protected choline improves immunometabolic status in dairy cows during the peripartal period. J. Dairy Sci. 2016, 99, 8956–8969. [Google Scholar] [CrossRef]
- Osorio, J.S.; Ji, P.; Drackley, J.K.; Luchini, D.; Loor, J.J. Supplemental Smarta-mine M or MetaSmart during the transition period benefits postpartal cow performance and blood neutrophil function. J. Dairy Sci. 2013, 96, 6248–6263. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Vailati-Riboni, M.; Trevisi, E.; Drackley, J.K.; Luchini, D.N.; Loor, J.J. Better postpartal performance in dairy cows supplemented with rumen-protected methionine compared with choline during the peripartal period. J. Dairy Sci. 2016, 99, 8716–8732. [Google Scholar] [CrossRef] [PubMed]
- Batistel, F.; Arroyo, J.M.; Garces, C.I.M.; Trevisi, E.; Parys, C.; Ballou, M.A.; Cardoso, F.C.; Loor, J.J. Ethyl-cellulose rumen-protected methionine alleviates inflammation and oxidative stress and improves neutrophil function during the periparturient period and early lactation in Holstein dairy cows. J. Dairy Sci. 2018, 101, 480–490. [Google Scholar] [CrossRef]
- Sun, F.; Cao, Y.; Cai, C.; Li, S.; Yu, C.; Yao, J. Regulation of nutritional metabolism in transition dairy cows: Energy homeostasis and health in response to post-ruminal choline and methionine. PLoS ONE 2016, 11, e0160659. [Google Scholar] [CrossRef] [PubMed]
- Vailati-Riboni, M.; Zhou, Z.; Jacometo, C.B.; Minuti, A.; Trevisi, E.; Luchini, D.N.; Loor, J.J. Supplementation with rumen-protected methionine or choline during the transition period influences whole-blood immune response in periparturient dairy cows. J. Dairy Sci. 2017, 100, 3958–3968. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Lobos, N.E.; Weiss, W.P. Effects of supplementing rumen-protected lysine and methionine during prepartum and postpartum periods on performance of dairy cows. J. Dairy Sci. 2019, 102, 11026–11039. [Google Scholar] [CrossRef]
- Tsiplakou, E.; Mavrommatis, A.; Kalogeropoulos, T.; Chatzikonstantinou, M.; Koutsouli, P.; Sotirakoglou, K.; Labrou, N.; Zervas, G. The effect of dietary supplementation with rumen-protected methionine alone or in combination with rumen-protected choline and betaine on sheep milk and antioxidant capacity. J. Anim. Physiol. Anim. Nutr. 2017, 101, 1004–1013. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Trevisi, E.; Luchini, D.N.; Loor, J.J. Differences in liver functionality indexes in peripartal dairy cows fed rumen-protected methionine or choline are associated with performance, oxidative stress status, and plasma amino acid profiles. J. Dairy Sci. 2017, 100, 6720–6732. [Google Scholar] [CrossRef]
- Zom, R.L.G.; Van Baal, J.; Goselink, R.M.A.; Bakker, J.A.; De Veth, M.J.; Van Vuuren, A.M. Effect of rumen-protected choline on performance, blood metabolites, and hepatic triacylglycerols of periparturient dairy cattle. J. Dairy Sci. 2011, 94, 4016–4027. [Google Scholar] [CrossRef]
- Morrison, E.I.; Reinhardt, H.; Leclerc, H.; DeVries, T.J.; LeBlanc, S.J. Effect of rumen-protected b vitamins and choline supplementation on health, production, and re-production in transition dairy cows. J. Dairy Sci. 2018, 101, 9016–9027. [Google Scholar] [CrossRef]
- Bollatti, J.M.; Zenobi, M.G.; Barton, B.A.; Staples, C.R.; Santos, J.E.P. Responses to rumen-protected choline in transition cows do not depend on prepartum body condition. J. Dairy Sci. 2020, 103, 2272–2286. [Google Scholar] [CrossRef]
- Chung, Y.H.; Brown, N.E.; Martinez, C.M.; Cassidy, T.W.; Varga, G.A. Effects of rumen-protected choline and dry propylene glycol on feed intake and blood parameters for Holstein dairy cows in early lactation. J. Dairy Sci. 2009, 92, 2729–2736. [Google Scholar] [CrossRef] [PubMed]
- Ster, C.; Loiselle, M.C.; Lacasse, P. Effect of post calving serum nonesterified fatty acids concentration on the functionality of bovine immune cells. J. Dairy Sci. 2012, 95, 708–717. [Google Scholar] [CrossRef] [PubMed]
- Pinotti, L.; Baldi, A.; Politis, I.; Rebucci, R.; Sangalli, L.; Dell’ Orto, V. Rumen protected choline administration to transition cows: Effects on milk production and vitamine status. J. Vet. Med. Ser. A 2003, 50, 18–21. [Google Scholar] [CrossRef]
- Cooke, R.F.; Silva Del Río, N.; Caraviello, D.Z.; Bertics, S.J.; Ramos, M.H.; Grummer, R.R. Supplemental choline for prevention and alleviation of fatty liver in dairy cattle. J. Dairy Sci. 2007, 90, 2413–2418. [Google Scholar] [CrossRef]
- Pinotti, L.; Polidori, C.; Campagnoli, A.; Dell’Orto, V.; Baldi, A. A meta-analysis of the effects of rumen protected choline supplementation on milk production in dairy cows. EEAP Sci. Ser. 2010, 127, 321–322. [Google Scholar]
- Elek, P.; Gaal, T.; Husvéth, F. Influence of rumen-protected choline on liver composition and blood variables indicating energy balance in periparturient dairy cows. Acta Vet. Hung. 2013, 61, 59–70. [Google Scholar] [CrossRef]
- Goselink, R.M.A.; van Baal, J.; Widjaja, H.C.A.; Dekker, R.A.; Zom, R.L.G.; de Veth, M.J.; van Vuuren, A.M. Effect of rumen-protected choline supplementation on liver and adipose gene ex-pression during the transition period in dairy cattle. J. Dairy Sci. 2013, 96, 1102–1116. [Google Scholar] [CrossRef]
- Shahsavari, A.; Michael, J.D.; Al Jassim, R. The role of rumen-protected choline in hepatic function and performance of transition dairy cows. Br. J. Nutr. 2016, 116, 35–44. [Google Scholar] [CrossRef]
- Rathwa, S.D.; Chaudhary, S.S.; Singh, V.K.; Manat, T.; Patel, S.B. Effect of rumen protected methionine and choline supplementation on leukogram profile, oxidative stress, inflammatory and immunomodulatory responses of Surti buffaloes during transition period. Indian J. Anim. Sci. 2023, 93, 201–206. [Google Scholar] [CrossRef]
- Ranjan, S.; Singh, P.; Singh, N.; Singh, N.; Honparkhe, M.; Grewal, R.S.; Mohindroo, J. Effect of Dietary Rumen Protected Methionine on Postpartum Fertility Parameters in Multiparous Dairy Buffaloes (Bubalus bubalis). Indian J. Anim. Reprod. 2022, 43, 40. [Google Scholar] [CrossRef]
- Elsaadawy, S.A.; Wu, Z.; Wang, H.; Hanigan, M.D.; Bu, D. Supplementing ruminally protected lysine, methionine, or combination improved milk production in transition dairy cows. Front. Vet. Sci. 2022, 9, 780637. [Google Scholar] [CrossRef] [PubMed]
- Elsaadawy, S.A.; Wu, Z.; Bu, D. Feasibility of supplying ruminally protected lysine and methionine to periparturient dairy cows on the efficiency of subsequent lactation. Front. Vet. Sci. 2022, 9, 892709. [Google Scholar] [CrossRef] [PubMed]
- Cruzat, V.; Macedo Rogero, M.; Noel Keane, K.; Curi, R.; Newsholme, P. Glutamine: Metabolism and immune function, supplementation and clinical translation. Nutrients 2018, 10, 1564. [Google Scholar] [CrossRef]
- Jafari, A.; Emmanuel, D.G.; Christopherson, R.J.; Thompson, J.R.; Murdoch, G.K.; Woodward, J.; Field, C.J.; Ametaj, B.N. Parenteral administration of glutamine modulates acute phase response in postparturient dairy cows. J. Dairy Sci. 2006, 89, 4660–4668. [Google Scholar] [CrossRef]
- Nemati, M.; Menatian, S.; Joz Ghasemi, S.; Hooshmandfar, R.; Taheri, M.; Saifi, T. Effect of protected-glutamine supplementation on performance, milk composition and some blood metabolites in fresh Holstein cows. Iran. J. Vet. Res. 2018, 19, 225–228. [Google Scholar]
- Tanha, T.; Amanlou, H.; Chamani, M.; Ebrahimnezhad, Y.; Salamatdost, R.; Maheri, N.; Fathi, M. Effect of glutamine enhancement on oxidative stress and reproduction in Holstein dairy cows during transition period. J. Anim. Vet. Adv. 2011, 10, 2838–2845. [Google Scholar]
- Ruiz-Gonzalez, A.; Celemin, A.; Leung, Y.H.; Kenez, A.; Chouinard, P.Y.; Lapierre, H.; Ouellet, D.R.; Gervais, R.; Rico, D.E. Production performance and metabolism of Holstein cows fed low protein diets balanced for lysine, methionine, and histidine during heat stress. J. Dairy Sci. 2021, 104 (Suppl. S1), 354. [Google Scholar]
- Ruiz-Gonzalez, A.; Leung, Y.H.; Celemin, A.; Kenez, A.; Chouinard, P.Y.; Gervais, R.; Ouellet, D.R.; Lapierre, H.; Rico, D.E. Whole-body protein and glucose metabolism in cows fed diets with varying amino acid supply under heat stress. Am. Dairy Sci. Ass. 2022, 105 (Suppl. S1), 93. [Google Scholar]
- Salama, A.A.K.; Duque, M.; Wang, L.; Shahzad, K.; Olivera, M.; Loor, J.J. Enhanced supply of methionine or arginine alters mechanistic target of rapamycin signaling proteins, messenger RNA, and microRNA abundance in heat-stressed bovine mam-mary epithelial cells in vitro. J. Dairy Sci. 2019, 102, 2469–2480. [Google Scholar] [CrossRef]
- Coleman, D.N.; Totakul, P.; Onjai-Uea, N.; Aboragah, A.; Jiang, Q.; Vailati-Riboni, M.; Pate, R.T.; Luchini, D.; Paengkoum, P.; Wanapat, M.; et al. Rumen-protected methionine during heat stress alters mTOR, insulin signaling, and 1-carbon metabolism protein abundance in liver, and whole-blood transsulfuration pathway genes in Holstein cows. J. Dairy Sci. 2022, 105, 7787–7804. [Google Scholar] [CrossRef]
- Pate, R.T.; Luchini, D.; Cant, J.P.; Baumgard, L.H.; Cardoso, F.C. Immune and metabolic effects of rumen-protected methionine during a heat stress challenge in lactating Holstein cows. J. Anim. Sci. 2021, 99, skab323. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Lan, X.; Ling, H.; Qu, J.; Jiang, Q.; Tang, S.; Zhang, P. Effects of supplementation with rumen-protected methionine on milk performance, plasma biochemical indices and amino acid concentration in dairy goats subject to heat stress. Kaf. Ünivers. Vet. Fakültesi Derg. 2022, 28, 177–184. [Google Scholar]
- Caroprese, M.; Albenzio, M.; Marino, R.; Santillo, A.; Sevi, A. Dietary glutamine enhances immune responses of dairy cows under high ambient temperature. J. Dairy Sci. 2013, 96, 3002–3011. [Google Scholar] [CrossRef] [PubMed]
- Eklund, M.; Bauer, E.; Wamatu, J.; Mosenthin, R. Potential nutritional and physiological functions of betaine in livestock. Nutr. Res. Rev. 2005, 18, 31–48. [Google Scholar] [CrossRef]
- DiGiacomo, K.; Simpson, S.; Leury, B.J.; Dunshea, F.R. Dietary betaine impacts the physiological responses to moderate heat conditions in a dose dependent manner in sheep. Animals 2016, 6, 51. [Google Scholar] [CrossRef]
- Dunshea, R.F.; Oluboyede, K.; DiGiacomo, K.; Leury, J.B.; Cottrell, J.J. Betaine improves milk yield in grazing dairy cows supplemented with concentrates at high temperatures. Animals 2019, 9, 57. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.M.; Ma, J.; Wang, Z.; Zou, H.; Hu, R.; Peng, Q. Betaine supplementation improves the production performance, rumen fermentation, and antioxidant profile of dairy cows in heat stress. Animals 2020, 10, 634. [Google Scholar] [CrossRef] [PubMed]
- Shankhpal, S.; Waghela, C.; Sherasia, P.; Srivastava, A.; Sridhar, V. Effect of feeding betaine hydrochloride and bypass fat supplement on feed intake, milk yield and physiological parameters in lactating buffaloes during heat stress. Indian J. Dairy Sci. 2019, 72, 297–301. [Google Scholar] [CrossRef]
- Ríus, A.G. Invited Review: Adaptations of protein and amino acid metabolism to heat stress in dairy cows and other livestock species. Appl. Anim. Sci. 2019, 35, 39–48. [Google Scholar] [CrossRef]
- Weiss, W.P.; Pinos-Rodriguez, J.M.; Wyatt, D.J. The value of different fat supplements as sources of digestible energy for lactating dairy cows. J. Dairy Sci. 2011, 94, 931–939. [Google Scholar] [CrossRef]
- Clandinin, M.T.; Cheema, S.; Field, C.J.; Garg, M.L.; Venkatraman, J.; Clandinin, T.R. Dietary fat: Exogenous determination of membrane structure and cell function. FASEB J. 1991, 5, 2761–2769. [Google Scholar] [CrossRef]
- Moallem, U. Invited review: Roles of dietary n-3 fatty acids in performance, milk fat composition, and reproductive and immune systems in dairy cattle. J. Dairy Sci. 2018, 101, 8641–8661. [Google Scholar] [CrossRef]
- Bionaz, M.; Vargas-Bello-Pérez, E.; Busato, S. Advances in fatty acids nutrition in dairy cows: From gut to cells and effects on performance. J. Anim. Sci. Biotechn. 2020, 11, 110. [Google Scholar] [CrossRef] [PubMed]
- Patterson, E.; Wall, R.; Fitzgerald, G.F.; Ross, R.P.; Stanton, C. Health implications of high dietary omega-6 polyunsaturated fatty acids. J. Nutr. Metab. 2012, 2012, 539426. [Google Scholar] [CrossRef] [PubMed]
- Contreras, G.A.; Mattmiller, S.A.; Raphael, W.; Gandy, J.C.; Sordillo, L.M. Enhanced n-3 phospholipid content reduces inflammatory responses in bovine endothelial cells. J. Dairy Sci. 2012, 95, 7137–7150. [Google Scholar] [CrossRef] [PubMed]
- Zachut, M.; Tam, J.; Contreras, G.A. Modulating immunometabolism in transition dairy cows: The role of inflammatory lipid mediators. Anim. Front. 2022, 12, 37–45. [Google Scholar] [CrossRef]
- Veshkini, A.; Gnott, M.; Vogel, L.; Kröger-Koch, C.; Tuchscherer, A.; Tröscher, A.; Tröscher, A.; Bernabucci, U.; Trevisi, E.; Starke, A.; et al. Abomasal infusion of essential fatty acids and conjugated linoleic acid during late pregnancy and early lactation affects immunohematological and oxidative stress markers in dairy cows. J. Dairy Sci. 2023, 106, 5096–5114. [Google Scholar] [CrossRef]
- Veshkini, A. Importance of Supplying Dairy Cows with Essential Fatty Acids (EFA) and Conjugated Linoleic Acids (CLA) during the Transition Period on Metabolism and Health. Ph.D. Thesis, University of Bonn, Bonn, Germany, University of Milan, Milan, Italy, 25 May 2022. Available online: https://air.unimi.it/handle/2434/945231 (accessed on 15 April 2024).
- Baumgard, L.H.; Corl, B.A.; Dwyer, D.A.; Bauman, D.E. Effects of conjugated linoleic acids (CLA) on tissue response to homeostatic signals and plasma variables associated with lipid metabolism in lactating dairy cows. J. Dairy Sci. 2002, 80, 1285–1293. [Google Scholar] [CrossRef]
- Moallem, U.; Lehrer, H.; Livshits, L.; Zachut, M.J. The effects of omega-3 α-linolenic acid from flaxseed oil supplemented to high-yielding dairy cows on production, health, and fertility. Livest. Sci. 2020, 242, 104302. [Google Scholar] [CrossRef]
- Mezzetti, M.; Piccioli-Cappelli, F.; Minuti, A.; Trevisi, E. Effects of an intravenous infusion of emulsified fish oil rich in long-chained omega-3 fatty acids on plasma total fatty acids profile, metabolic conditions, and performances of post-partum dairy cows during the early lactation. Front. Vet. Sci. 2022, 9, 870901. [Google Scholar] [CrossRef]
- Bernal-Santos, G.; Perfield, J.W.; Barbano, D.M.; Bauman, D.E.; Overton, T.R. Production responses of dairy cows to dietary supplementation with conjugated linoleic acid (CLA) during the transition period and early lactation. J. Dairy Sci. 2003, 86, 3218–3228. [Google Scholar] [CrossRef] [PubMed]
- Petit, H.V.; Palin, M.F.; Doepel, L. Hepatic lipid metabolism in transition dairy cows fed flaxseed. J. Dairy Sci. 2007, 90, 4780–4792. [Google Scholar] [CrossRef] [PubMed]
- Ulfina, G.G.; Kimothi, S.P.; Oberoi, P.S.; Baithalu, R.K.; Kumaresan, A.; Mohanty, T.K.; Imtiwati, P.; Dang, A.K. Modulation of post-partum reproductive performance in dairy cows through supplementation of long-or short-chain fatty acids during transition period. J. Anim. Physiol. Anim. Nutr. 2015, 99, 1056–1064. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, Q.; Tang, C.; Yuan, J.; Luo, C.; Li, D.; Xie, T.; Sun, X.; Zhang, Y.; Yang, Z.; et al. Medium chain fatty acid supplementation improves animal metabolic and immune status during the transition period: A study on dairy cattle. Front. Immunol. 2023, 14, 1018867. [Google Scholar] [CrossRef] [PubMed]
- Ramteke, P.V.; Patel, D.C.; Parnerkar, S.; Shankhpal, S.S.; Patel, G.R.; Pandey, A. Effect of bypass fat supplementation during prepartum and postpartum on reproductive performance in buffaloes. Livest. Res. Int. 2014, 2, 54–58. [Google Scholar]
- Caroprese, M.; Marzano, A.; Entrican, G.; Wattegedera, S.; Albenzio, M.; Sevi, A. Immune response of cows fed polyunsaturated fatty acids under high ambient temperatures. J. Dairy Sci. 2009, 92, 2796–2803. [Google Scholar] [CrossRef] [PubMed]
- Caroprese, M.; Marzano, A.; Marino, R.; Gliatta, G.; Muscio, A.; Sevi, A. Flaxseed supplementation improves fatty acid profile of cow milk. J. Dairy Sci. 2010, 93, 2580–2588. [Google Scholar] [CrossRef]
- Liu, Z.L.; Chen, P.; Li, J.M.; Lin, S.B.; Wang, D.M.; Zhu, L.P.; Yang, D.P. Conjugated linoleic acids (CLA) moderate negative responses of heat- stressed cows. Livest. Sci. 2008, 118, 255–261. [Google Scholar] [CrossRef]
- Caroprese, M.; Albenzio, M.; Bruno, A.; Annichiarico, G.; Marino, R.; Sevi, A. Effects of shade and flaxseed supplementation on welfare of lactating ewes under high ambient temperatures. Small Rumin. Res. 2012, 102, 177–185. [Google Scholar] [CrossRef]
- Caroprese, M.; Ciliberti, M.G.; Annicchiarico, G.; Albenzio, M.; Muscio, A.; Sevi, A. Hypothalamic–pituitary–adrenal axis activation and immune regulation in heat stressed sheep after supplementation with polyunsaturated fatty acids. J. Dairy Sci. 2014, 97, 4247–4258. [Google Scholar] [CrossRef]
- Ciliberti, M.G.; Albenzio, M.; Annicchiarico, G.; Marino, R.; Santillo, A.; Sevi, A.; Caroprese, M. Role of different sources of dietary PUFA supplementation on sheep welfare under high ambient temperature. Small Rumin. Res. 2016, 135, 32–38. [Google Scholar]
- Silvestre, A.M.; Souza, J.M.; Millen, D.D. Adoption of adaptation protocols and feed additives to improve performance of feedlot cattle. J. Appl. Anim. Res. 2023, 51, 282–299. [Google Scholar]
- Humer, E.; Petri, R.M.; Aschenbach, J.R.; Bradford, B.J.; Penner, G.B.; Tafaj, M.; Südekum, K.H.; Zebeli, Q. Invited review: Practical feeding management recommendations to mitigate the risk of subacute ruminal acidosis in dairy cattle. J. Dairy Sci. 2018, 101, 872–888. [Google Scholar]
- Nikanova, D.A.; Kolodina, E.; Artemyeva, O.; Fomichev, Y. PSIX-13 Influence of an integrated fodder additive on productivity and metabolic homeostasis of dairy cattle in transition period. J. Anim. Sci. 2020, 98 (Suppl. S4), 416. [Google Scholar]
- Cavallini, D.; Mammi, L.M.; Palmonari, A.; García-González, R.; Chapman, J.D.; McLean, D.J.; Formigoni, A. Effect of an immunomodulatory feed additive in mitigating the stress responses in lactating dairy cows to a high concentrate diet challenge. Animals 2022, 12, 2129. [Google Scholar] [CrossRef]
- Purwar, V.; Oberoi, P.S.; Dang, A.K. Effect of feed supplement and additives on stress mitigation in Karan Fries heifers. Vet. World 2017, 10, 1407. [Google Scholar] [CrossRef] [PubMed]
- Riet-Correa, F. Mineral supplementation in small ruminants in the semi-arid region. Ciência Veterinária Trópicos 2004, 7, 112–130. [Google Scholar]
- Batistel, F.; Osorio, J.S.; Ferrari, A.; Trevisi, E.; Socha, M.T.; Loor, J.J. Immunometabolic status during the peripartum period is enhanced with supplemental Zn, Mn, and Cu from amino acid complexes and Co from Co glucoheptonate. PLoS ONE 2016, 11, e0155804. [Google Scholar]
- Żarczyńska, K.; Żarczyński, P.; Sobiech, P.; Snarska, A.; Stopyra, A.; Wieteska, M.; Płaczek, A. The effect of micronutrient deficiencies on the health status of transition cows. J. Elementol. 2017, 22, 1223–1234. [Google Scholar] [CrossRef]
- Andrieu, S. Is there a role for organic trace element supplements in transition cow health? Vet. J. 2008, 176, 77–83. [Google Scholar]
- Lean, I.J.; Van Saun, R.; DeGaris, P.J. Mineral and antioxidant management of transition dairy cows. Vet. Clin. N. Am. Food Anim. Pract. 2013, 29, 367–386. [Google Scholar]
- Mohammed, A.A.; Al-Suwaiegh, S.; Al-Gherair, I.; Al-Khamis, S.; Alessa, F. The potential impacts of antioxidant micronutrients on productive and reproductive performances of Mammalian species during stressful conditions. Indian J. Anim. Res. 2024, 1, 8. [Google Scholar]
- Ayyat, M.S.; Abdel Monem, U.M.; Abdel-Rahman, G.; Hussein, A.I.; El-Nagar, H.A.; Wafa, W.M.; Mahgoub, S.; Al-Sagheer, A.A. Supplementation of Multistrain Probiotics Improves Milk Production, Blood Metabolites, Digestibility, and Rectal Microbiota during the Prepartum and Early Lactation Stages in Crossbred Cows. Vet. Med. Int. 2024, 1, 7646024. [Google Scholar]
- Abdel-Fattah, M.; Shaker, Y.M.; Hashem, A.L.; Azamel, A.A. Effect of Probiotics and Walking Stress on Some Physiological and Hematological Parameters of Hassani Goats. J. Anim. Poult. Prod. 2008, 33, 5581–5593. [Google Scholar] [CrossRef]
- Abd El-Trwab, M.M.; Youssef, I.I.; Bakr, H.A.; Fthenakis, G.C.; Giadinis, N.D. Role of probiotics in nutrition and health of small ruminants. Pol. J. Vet. Sci. 2016, 19, 893–906. [Google Scholar]
- Podobed, L.I. Effectiveness of probiotic on the basis of lactic acid bacteria at change of diet in dairy cows. Agrar. Nauka 2021, 13, 15–19. [Google Scholar] [CrossRef]
- Xia, W.H.; Wang, L.; Niu, X.D.; Wang, J.H.; Wang, Y.M.; Li, Q.L.; Wang, Z.Y. Supplementation with beta-1, 3-glucan improves productivity, immunity and antioxidative status in transition Holstein cows. Res. Vet. Sci. 2021, 134, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Ghavipanje, N.; Fathi Nasri, M.H.; Farhangfar, S.H.; Ghiasi, S.E.; Vargas-Bello-Pérez, E. Pre-and post-partum berberine supplementation in dairy goats as a novel strategy to mitigate oxidative stress and inflammation. Front. Vet. Sci. 2021, 8, 743455. [Google Scholar]
- Salah, A.G.; Elnaker, Y.F.; El-Zoghby, R.R.; Mahmoud, O.A. Comparative treatment of simple indigestion, in goats by probiotic and prebiotic. New Valley Vet. J. 2024, 4, 1–5. [Google Scholar]
- Ghavipanje, N.; Fathi Nasri, M.H.; Farhangfar, S.H.; Ghiasi, S.E.; Vargas-Bello-Pérez, E. The impact of dietary berberine supplementation during the transition period on blood parameters, antioxidant indicators and fatty acids profile in colostrum and milk of dairy goats. Vet. Sci. 2022, 9, 76. [Google Scholar] [CrossRef]
- Baines, D.; Erb, S.; Turkington, K.; Kuldau, G.; Juba, J.; Sumarah, M.; Mazza, A.; Masson, L. Characterization of haemorrhagic enteritis in dairy goats and the effectiveness of probiotic and prebiotic applications in alleviating morbidity and production losses. Fungal Genom. Biol. 2011, 1, 1. [Google Scholar] [CrossRef]
- Uyarlar, C.; Rahman, A.; Gultepe, E.E.; Cetingul, I.S.; Bayram, I. Effect of a Dietary Essential Oil Blend in Dairy Cows during the Dry and Transition Period on Blood and Metabolic Parameters of Dams and Their Calves. Animals 2024, 14, 150. [Google Scholar] [CrossRef]
- Braun, H.S.; Schrapers, K.T.; Mahlkow-Nerge, K.; Stumpff, F.; Rosendahl, J. Dietary supplementation of essential oils in dairy cows: Evidence for stimulatory effects on nutrient absorption. Animal 2019, 13, 518–523. [Google Scholar]
- Caroprese, M.; Ciliberti, M.G.; Marino, R.; Santillo, A.; Sevi, A.; Albenzio, M. Essential oil supplementation in small ruminants: A review on their possible role in rumen fermentation, microbiota, and animal production. Dairy 2023, 4, 497–508. [Google Scholar] [CrossRef]
- Tassoul, M.D.; Shaver, R.D. Effect of a mixture of supplemental dietary plant essential oils on performance of periparturient and early lactation dairy cows. J. Dairy Sci. 2009, 92, 1734–1740. [Google Scholar]
- Dorantes-Iturbide, G.; Orzuna-Orzuna, J.F.; Lara-Bueno, A.; Mendoza-Martínez, G.D.; Miranda-Romero, L.A.; Lee-Rangel, H.A. Essential oils as a dietary additive for small ruminants: A meta-analysis on performance, rumen parameters, serum metabolites, and product quality. Vet. Sci. 2022, 9, 475. [Google Scholar] [CrossRef]
- Oh, J.; Wall, E.H.; Bravo, D.M.; Hristov, A.N. Host-mediated effects of phytonutrients in ruminants: A review. J. Dairy Sci. 2017, 100, 5974–5983. [Google Scholar] [PubMed]
- Sharma, L.; Dang, A.K.; Sharma, S.; Singh, T.P. Effect of Supplementation of Phyto-pharmaceutical Product on the Health and Productivity of Crossbred Cows during Transition Period. Indian J. Dairy Sci. 2023, 76, 371–375. [Google Scholar]
- Hashemzadeh-Cigari, F.; Khorvash, M.; Ghorbani, G.R.; Kadivar, M.; Riasi, A.; Zebeli, Q. Effects of supplementation with a phytobiotics-rich herbal mixture on performance, udder health, and metabolic status of Holstein cows with various levels of milk somatic cell counts. J. Dairy Sci. 2014, 97, 7487–7497. [Google Scholar]
- Ding, H.; Li, Y.; Zhao, C.; Yang, Y.; Xiong, C.; Zhang, D.; Feng, X.; Wang, Y.; Jia, Z.; Su, H. Dietary supplementation of a flavonoid mixture in transition dairy cows improves their anti-inflammatory status, antioxidative capacity and performance. J. Anim. Sci. Biotechnol. 2022, 13, 1–15. [Google Scholar]
- Sujani, S.; Seresinhe, R.T. Exogenous enzymes in ruminant nutrition: A review. Asian J. Anim. Sci. 2015, 9, 85–99. [Google Scholar] [CrossRef]
- Salem, A.Z.; El-Adawy, M.; Gado, H.; Camacho, L.M.; González-Ronquillo, M.; Alsersy, H.; Borhami, B. Effects of exogenous enzymes on nutrients digestibility and growth performance in sheep and goats. Trop. Sub. Agroec. 2011, 14, 867–874. [Google Scholar]
- Neiva, M.C.; Schultz, E.B.; Sousa, L.M.; Oliveira, K.A.; Sousa, L.F.; Macedo, G.D. Exogenous enzymes in sheep diet: Nutritional and physiological parameters. Acta Sci. Anim. Sci. 2022, 44, e56504. [Google Scholar]
- Son, A.R.; Kim, S.H.; Islam, M.; Oh, S.J.; Paik, M.J.; Lee, S.S.; Lee, S.S. Higher concentration of dietary selenium, zinc, and copper complex reduces heat stress-associated oxidative stress and metabolic alteration in the blood of Holstein and Jersey steers. Animals 2022, 12, 3104. [Google Scholar] [CrossRef] [PubMed]
- Del Río-Avilés, A.D.; Correa-Calderón, A.; Avendaño-Reyes, L.; Macías-Cruz, U.; Sánchez-Castro, M.A.; Thomas, M.G.; Enns, R.M.; Speidel, S.E.; Zamorano-Algander, R.; Leyva-Corona, J.C.; et al. Effects of an injectable mineral supplement on physiological responses and milk production of heat-stressed Holstein cows. J. Anim. Behav. Biometeorol. 2021, 9, 2116. [Google Scholar]
- Sejian, V.; Singh, A.K.; Sahoo, A.; Naqvi, S.M. Effect of mineral mixture and antioxidant supplementation on growth, reproductive performance and adaptive capability of Malpura ewes subjected to heat stress. J. Anim. Physiol. Anim. Nutr. 2014, 98, 72–83. [Google Scholar]
- Sunilkumar, B.V.; Kataria, M. Effect of dietary supplementation on electrolyte profile and lymphocyte proliferation during heat stress in buffaloes. J. Cell Tissue Res. 2011, 11, 2977. [Google Scholar]
- Felini, R.; Cavallini, D.; Buonaiuto, G.; Bordin, T. Assesing the impact of thermoregulatory mineral supplementation on thermal comfort in lactating dairy cows. Vet. Anim. Sci. 2024, 24, 100363. [Google Scholar] [CrossRef]
- Shaker, Y.; Hashem, A.L.; Abdel-Fattah, M.S.; Azamel, A.A. Probiotics and shading as means for alleviating heat stress on Hassani goats. J. Anim. Poult. Prod. 2008, 33, 5611–5629. [Google Scholar]
- Kassab, A.Y.; Hamdon, H.A.; Mohammed, A.A. Impact of probiotics supplementation on some productive performance, digestibility coefficient and physiological responses of beef bulls under heat stress conditions. Egypt. J. Nutr. Feeds 2017, 20, 29–39. [Google Scholar] [CrossRef]
- Cai, L.; Yu, J.; Hartanto, R.; Qi, D. Dietary supplementation with Saccharomyces cerevisiae, Clostridium butyricum and their combination ameliorate rumen fermentation and growth performance of heat-stressed goats. Animals 2021, 11, 2116. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Hartanto, R.; Zhang, J.; Qi, D. Clostridium butyricum improves rumen fermentation and growth performance of heat-stressed goats in vitro and in vivo. Animals 2021, 11, 3261. [Google Scholar] [CrossRef] [PubMed]
- Xue, L.; Wang, D.; Zhang, F.; Cai, L. Prophylactic feeding of Clostridium butyricum and Saccharomyces cerevisiae were advantageous in resisting the adverse effects of heat stress on rumen fermentation and growth performance in goats. Animals 2022, 12, 2455. [Google Scholar] [CrossRef]
- Broadway, P.R.; Carroll, J.A.; Burdick Sanchez, N.C.; Cravey, M.D.; Corley, J.R. Some negative effects of heat stress in feedlot heifers may be mitigated via yeast probiotic supplementation. Front. Veter. Sci. 2020, 6, 515. [Google Scholar] [CrossRef] [PubMed]
- Dantas, M.R.; Palhano, I.G.; de Souza Castelo, T.; Souza-Junior, J.B.; de Lima Júnior, D.M.; de Macedo Costa, L.L. Using propolis extract as heat stress attenuates agent in ruminants: An overall review. Multidisc. Rev. 2023, 6, 2023002. [Google Scholar] [CrossRef]
- Reuben, R.C.; Elghando, M.M.; Alqaisi, O.; Cone, J.W.; Márquez, O.; Salem, A.Z. Influence of microbial probiotics on ruminant health and nutrition: Sources, mode of action and implications. J. Sci. Food Agric. 2022, 102, 1319–1340. [Google Scholar]
- Estrada-Angulo, A.; Zapata-Ramírez, O.; Castro-Pérez, B.I.; Urías-Estrada, J.D.; Gaxiola-Camacho, S.; Angulo-Montoya, C.; Ríos-Rincón, F.G.; Barreras, A.; Zinn, R.A.; Leyva-Morales, J.B.; et al. The effects of single or combined supplementation of probiotics and prebiotics on growth performance, dietary energetics, carcass traits, and visceral mass in lambs finished under subtropical climate conditions. Biology 2021, 10, 1137. [Google Scholar] [CrossRef]
- Vovk, S.O.; Polovyi, I.V. Scientific and practical aspects of the use of prebiotics in the process of feeding ruminants. Sci. Messenger LNU Vet. Med. Biotechnol. Ser. Agric. Sci. 2020, 22, 9–14. [Google Scholar] [CrossRef]
- Reza-Yazdi, K.; Fallah, M.; Khodaparast, M.; Kateb, F.; Hosseini-Ghaffari, M. Effects of specific essential oil compounds on feed intake, milk production, and ruminal environment in dairy cows during heat exposure. Int. J. Biol. Biomol. Agric. Food Biotechnol. Eng. 2014, 8, 1394–1397. [Google Scholar]
- Andri, F.; Huda, A.N.; Marjuki, M. The use of essential oils as a growth promoter for small ruminants: A systematic review and meta-analysis. F1000Research 2020, 9, 486. [Google Scholar]
- Chávez Soto, D.Y.; Vázquez Armijo, J.F.; Hernández Meléndez, J.; Martínez González, J.C.; Esparza Jiménez, S.; Lopez Aguirre, D. Essential oils in small ruminants and their effects on productivity. Trop. Subtrop. Agroecosystems 2021, 24. [Google Scholar] [CrossRef]
- Ramirez, S.M.; Wickramasinghe, J.; Stepanchenko, N.; Oconitrillo, M.; Silva, J.; Goetz, B.M.; Abeyta, M.A.; Murugesan, R.; Tacconia, A.; Baumgard, L.H.; et al. Phytogenic feed additives as a potential strategy to mitigate the negative effects of heat stress in growing heifers. J. Anim. Sci. 2021, 99 (Suppl. S3), 156–157. [Google Scholar] [CrossRef]
- Bąkowski, M.; Kiczorowska, B. Probiotic microorganisms and herbs in ruminant nutrition as natural modulators of health and production efficiency—A review. Ann. Anim. Sci. 2021, 21, 3–28. [Google Scholar]
- Hashemzadeh, F.; Rafeie, F.; Hadipour, A.; Rezadoust, M.H. Supplementing a phytogenic-rich herbal mixture to heat-stressed lambs: Growth performance, carcass yield, and muscle and liver antioxidant status. Small Rumin. Res. 2022, 20, 106596. [Google Scholar]
- Giorgino, A.; Raspa, F.; Valle, E.; Bergero, D.; Cavallini, D.; Gariglio, M.; Bongiorno, V.; Bussone, G.; Bergagna, S.; Cimino, F.; et al. Effect of dietary organic acids and botanicals on metabolic status and milk parameters in mid–late lactating goats. Animals 2023, 13, 797. [Google Scholar] [CrossRef] [PubMed]
- Gado, H.M.; Almustafa, S.S.; Salem, A.Z.; Khalil, F.A.; Abdalla, E.B. Influence of vitamins and exogenous enzymes combination on alleviating heat stress in lactating ewes under Egyptian summer conditions. Anim. Nutr. Feed Technol. 2014, 14, 195–203. [Google Scholar]
- Meale, S.J.; Beauchemin, K.A.; Hristov, A.N.; Chaves, A.V.; McAllister, T.A. Opportunities and challenges in using exogenous enzymes to improve ruminant production. J. Anim. Sci. 2014, 92, 427–442. [Google Scholar] [CrossRef]
- Shakya, J.; Balhara, A.K.; Dahiya, S.S.; Lailer, P.C.; Singh, I. Improved dairy production through enzyme supplementation. Ind. J. Anim. Sci. 2019, 89, 1045–1061. [Google Scholar]
- Silanikove, N.; Koluman, N. Impact of climate change on the dairy industry in temperate zones: Predictions on the overall negative impact and on the positive role of dairy goats in adaptation to earth warming. Small Rumin. Res. 2015, 123, 27–34. [Google Scholar]
- Gowane, G.R.; Gadekar, Y.P.; Prakash, V.; Kadam, V.; Chopra, A.; Prince, L.L.L. Climate change impact on sheep production: Growth, milk, wool, and meat. In Sheep Production Adapting to Climate Change; Springer: Berlin/Heidelberg, Germany, 2017; pp. 31–69. [Google Scholar] [CrossRef]
- Lees, A.M.; Salvin, H.E.; Colditz, I.G.; Lee, C. The influence of temperament on body temperature response to handling in Angus cattle. Animals 2020, 10, 172. [Google Scholar] [CrossRef]
- Chen, Y.; Arsenault, R.; Napper, S.; Griebel, P. Models and methods to investigate acute stress responses in cattle. Animals 2015, 5, 1268–1295. [Google Scholar] [CrossRef] [PubMed]
- Arenas-Báez, P.; Torres-Hernández, G.; Castillo-Hernández, G.; Hernández-Rodríguez, M.; Sánchez-Gutiérrez, R.A.; Vargas-López, S.; González-Maldonado, J.; Alfredo, P.; Granados-Rivera, L.D.; Maldonado-Jáquez, J.A. Coat color in local goats: Influence on environmental adaptation and productivity and use as a selection criterion. Biology 2023, 12, 929. [Google Scholar] [CrossRef] [PubMed]
- Cloete, S.W.P.; Greeff, J.C.; Nel, C.L.; Scholtz, A.J. Breeds and lines of sheep suitable for production in challenging environments. Anim. Front. 2023, 13, 33–42. [Google Scholar] [CrossRef] [PubMed]
- FAO. The State of the World’s Animal Genetic Resources for Food and Agriculture; Food and Agriculture Organization of the United Nations: Rome, Italy, 2007; Available online: http://www.fao.org/docrep/fao/010/a1250e/a1250e.pdf (accessed on 18 April 2024).
Amino Acid | Observed Effects | Refs. |
---|---|---|
Amino acid supplementation during transition period. | ||
RPM | Enhancement of immunometabolic status, reduction in liver proinflammatory signaling, increase in albumin concentration, neutrophil phagocytosis capacity, proliferative ability of peripheral blood T lymphocytes, and alleviation of hyper response to inflammatory cytokines. | [77,78,79,80,81,82,83] |
RPM + RPC | Enhancement of immune function, elevation of IL-2, CD4+/CD8+ T lymphocyte ratio, and decrease in the (TNF-α) and IL-6 concentration. | [82] |
RPM + RPL | Decrease in milk somatic cell count and improvement of immunity and health status. | [84] |
RPM | Improvement of blood antioxidant status, increase in plasma ferric-reducing antioxidant power, β-carotene, tocopherol, total and reduced GSH, increasing total antioxidant capacity, GPX activity, vitamin E, and decrease in plasma reactive oxygen metabolites. | [78,80,81] |
RPM | Positive effects on mammary glad antioxidant status and greater mRNA abundance of specific key target genes that regulate tissue’s antioxidant mechanisms. | [81] |
RPM | Increase in liver function biomarkers, reduction in inflammation, and oxidative stress. | [77,79,80] |
RPM, RPM + RPC | Alleviation of oxidative stress and enhancement of plasma glutathione transferase activity of periparturient ewes. | [85] |
RPM, RPM + RPC | Alleviation of oxidative stress and increase in glutathione activity. | [86] |
RPC | Improvement of liver biomarkers and metabolic stress and decrease in NEFA and βHBA levels. | [87,88,89,90,91,92,93,94,95,96,97] |
RPM | Ιmproved follicular structures and increased production and reproduction outcomes in Murrah buffaloes. | [98] |
RPM, RPM + RPC | Increased in GSH, SOD, TAS, decreased LPO, TNF- α, and haptaglobin. Increase in antioxidant status and immune response. | [99] |
RPL, RPM, RPM + RPL | Improved DMI, milk yield and milk production efficiency, energy-corrected milk, and milk chemical composition. Greater peak milk yield, earlier milk peak, and higher fertility efficiency. | [100,101] |
Gln | Increase in cytokine production by immune system cells in peripartum dairy cows. | [103] |
RPGln | Enhancement of liver function, lower aspartate aminotransferase concentration, amelioration of metabolic stress, lower βHBA, and free FAs concentrations. | [104] |
RPGln | Improved antioxidant status of the animals as indicated by the higher total antioxidant capacity (TAC) and GSH activity. | [105] |
Amino acid supplementation to alleviate heat stress in ruminants. | ||
Lys, Met, Hist | Thermoregulation, decreased rectal temperature, and enhancement of intermediary metabolism in heat-stressed dairy cows. | [106,107] |
Met, Arg (In vitro) | Improvement cell functions of heat-stressed bovine mammary epithelial cells and mammary metabolism. | [108] |
RPM | Maintenance of mTOR homeostasis, insulin signaling, 1-carbon metabolism, and whole-blood antioxidant response of heat-stressed dairy cows. | [109] |
RPM | Decreased mammary cell apoptosis to proliferation ratio, no significant effects on blood immune biomarkers of heat stress-challenged cows | [110] |
RPM | Enhancement of plasma IgG concentration, increased milk protein content, and decreased plasma urea–nitrogen concentration in heat-stressed dairy goats. | [111] |
RPGln | Enhancement of immune function and improvement of cell-mediated immune response of heat-stressed dairy cows. | [112] |
Betaine | Anti-apoptotic properties, increase in cell proliferation, and preservation of gut tissue integrity of dairy cows. | [113] |
Betaine | Thermoregulation, decrease in rectal and skin temperatures, decrease in respiration rates, and plasma NEFA concentrations of heat-stressed sheep. | [114] |
Betaine | Improvement of milk yield and quality of heat-stressed grazing dairy cows. | [115] |
Betaine | Increase in feed intake, rumen fermentation, apparent digestibility, improvement of the antioxidant profile, and serum metabolites of heat-stressed cows. | [116] |
Betaine | Improvement milk fat. Lower rectal temperature, respiration rate, and pulse rate in heat-stressed buffaloes. | [117] |
Amino Acid | Observed Effects | Refs. |
---|---|---|
Fatty acid supplementation during transition period. | ||
EFA, CLA, EFA + CLA | Minor prevention of oxidative stress, enhancement of markers of oxidative stress in plasma, erythrocytes, and liver. | [126] |
EFA + CLA | Milk fat depression, increased energy balance, decreased postpartum plasma NEFA and triglyceride concentration, reduced markers of inflammation, attenuation of hepatic lipid accumulation, and ketosis in early lactation dairy cows. | [127,128] |
ALA | Decrease in ketosis incidence and severe metritis, reduced mortality, and enhancement of fertility performance. | [129] |
Fish oil (EPA and DHA) | Enhancement of milk production and amelioration of inflammatory and antioxidant status. | [130] |
RPCLA (Ca-salts) | No effects of glucose, NEFA, and βHBA in plasma and hepatic content of glycogen and triglycerides concentration of dairy cows, peripartum. | [131] |
Flaxseed | Increase in liver glycogen concentrations and decrease in triglycerides postpartum. | [132] |
Crushed flaxseed | Improvement cows’ metabolic status peripartum, decrease in serum NEFA and βHBA concentration, and increase in glucose concentration. | [133] |
MCSFA | Improvement of immune function and downregulation of serum myeloperoxidase level amyloid A of transition dairy cows. | [134] |
Bypass fat | Higher calf birth weight, reduced calf mortality, retention of placenta, metritis, pyometra, and the service period and number of artificial inseminations per conception in transitional buffaloes. | [135] |
Fatty acid supplementation to alleviate heat stress in ruminants. | ||
Whole flaxseed | Enhancement of immune responses of dairy cows, increase in both milk fat and protein content and milk yield, improvement of milk FA profile and CLA content. | [136,137] |
Ca-CLA | Increase in plasma concentrations of K, Na, Ca, and Cl; decrease in plasma aspartate aminotransferase and creatine kinase; and increase in thyroxin concentration of heat-stressed cows. | [138] |
Fish oil | Enhancement of n-3 PUFA, EPA, and DHA contents of milk; no effects on immune responses of heat-stressed cows. | [136,137] |
Whole flaxseed | Reduction of the respiration rate and rectal temperatures; increase in cortisol after ACTH challenge, glucose, Na, and Cl concentration; and enhancement of cell-mediated immune responses to phytohemagglutinin and humoral immune responses in sheep. | [139,140,141] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotsampasi, B.; Karatzia, M.A.; Tsiokos, D.; Chadio, S. Nutritional Strategies to Alleviate Stress and Improve Welfare in Dairy Ruminants. Animals 2024, 14, 2573. https://doi.org/10.3390/ani14172573
Kotsampasi B, Karatzia MA, Tsiokos D, Chadio S. Nutritional Strategies to Alleviate Stress and Improve Welfare in Dairy Ruminants. Animals. 2024; 14(17):2573. https://doi.org/10.3390/ani14172573
Chicago/Turabian StyleKotsampasi, Basiliki, Maria Anastasia Karatzia, Dimitrios Tsiokos, and Stella Chadio. 2024. "Nutritional Strategies to Alleviate Stress and Improve Welfare in Dairy Ruminants" Animals 14, no. 17: 2573. https://doi.org/10.3390/ani14172573
APA StyleKotsampasi, B., Karatzia, M. A., Tsiokos, D., & Chadio, S. (2024). Nutritional Strategies to Alleviate Stress and Improve Welfare in Dairy Ruminants. Animals, 14(17), 2573. https://doi.org/10.3390/ani14172573