Effects of Dietary Lipid Levels on the Growth, Muscle Fatty Acid and Amino Acid Composition, Antioxidant Capacity, and Lipid Deposition in Mirror Carp (Cyprinus carpio)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Diets
2.2. Experimental Design and Feeding Management
2.3. Sample Collection
2.4. Fish Performance
2.5. Indicator Determination
2.6. Oil Red O Stain
2.7. RNA Isolation and Real-Time Polymerase Chain Reaction (RT–PCR)
2.8. Data Analysis
3. Results
3.1. Growth Performance
3.2. Serum Biochemical Indices
3.3. Basic Nutrients
3.4. Oil Red O Staining
3.5. Antioxidant Oxidase Content
3.6. Expression of Genes Related to Growth and Lipid Synthesis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Steffens, W. Protein sparing effect and nutritive significance of lipid supplementation in carp diets. Arch. Tierernahr. 1996, 49, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-M.; Jeon, I.G.; Lee, J.Y. Effects of digestible protein and lipid levels in practical diets on growth, protein utilization and body composition of juvenile rockfish (Sebastes schlegeli). Aquaculture 2002, 211, 227–239. [Google Scholar] [CrossRef]
- Boujard, T.; Gélineau, A.; Covès, D.; Corraze, G.; Dutto, G.; Gasset, E.; Kaushik, S. Regulation of feed intake, growth, nutrient and energy utilisation in European sea bass (Dicentrarchus labrax) fed high fat diets. Aquaculture 2004, 231, 529–545. [Google Scholar] [CrossRef]
- Sargent, J.; Bell, G.; McEvoy, L.; Tocher, D.; Estevez, A. Recent developments in the essential fatty acid nutrition of fish. Aquaculture 1999, 177, 191–199. [Google Scholar] [CrossRef]
- Han, T.; Li, X.; Wang, J.; Hu, S.; Jiang, Y.; Zhong, X. Effect of dietary lipid level on growth, feed utilization and body composition of juvenile giant croaker Nibea japonica. Aquaculture 2014, 434, 145–150. [Google Scholar] [CrossRef]
- Yoshii, K.; Takakuwa, F.; Nguyen, H.P.; Masumoto, T.; Fukada, H. Effect of dietary lipid level on growth performance and feed utilization of juvenile kelp grouper Epinephelus bruneus. Fish. Sci. 2010, 76, 139. [Google Scholar] [CrossRef]
- Chen, Y.; Tian, L.; Yang, H.; Chen, P.; Yuan, Y.; Liu, Y.J.; Liang, G. Effect of Protein and Starch Level in Practical Extruded Diets on Growth, Feed Utilization, Body Composition, and Hepatic Transaminases of Juvenile Grass Carp, Ctenopharyngodon idella. J. World Aquac. Soc. 2012, 43, 187–197. [Google Scholar] [CrossRef]
- Guo, X.; Liang, X.-F.; Fang, L.; Yuan, X.; Zhou, Y.; He, S.; Shen, D. Effects of lipid-lowering pharmaceutical clofibrate on lipid and lipoprotein metabolism of grass carp (Ctenopharyngodon idellal Val.) fed with the high non-protein energy diets. Fish Physiol. Biochem. 2015, 41, 331–343. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, Z.; Wang, A.; Ye, C.; Zhu, X. Effects of dietary protein and lipid levels on growth, body and plasma biochemical composition and selective gene expression in liver of hybrid snakehead (Channa maculata ♀ × Channa argus ♂) fingerlings. Aquaculture 2017, 468, 1–9. [Google Scholar] [CrossRef]
- DU, Z.-Y.; Liu, Y.-J.; Tian, L.-X.; Wang, J.-T.; Wang, Y.; Liang, G.-Y. Effect of dietary lipid level on growth, feed utilization and body composition by juvenile grass carp (Ctenopharyngodon idella). Aquac. Nutr. 2005, 11, 139–146. [Google Scholar] [CrossRef]
- Gahete, M.D.; Córdoba-Chacón, J.; Lantvit, D.D.; Ortega-Salas, R.; Sanchez-Sanchez, R.; Pérez-Jiménez, F.; López-Miranda, J.; Swanson, S.M.; Castaño, J.P.; Luque, R.M.; et al. Elevated GH/IGF-I promotes mammary tumors in high-fat, but not low-fat, fed mice. Carcinogenesis 2014, 35, 2467–2473. [Google Scholar] [CrossRef]
- Holt, R.; Erotokritou-Mulligan, I.; Guha, N.; Stow, M.; Bassett, E.; Bartlett, C.; Cowan, D.; Sonksen, P. OR07-5 An overview of the GH-2004 project: Catching the growth hormone cheat. Growth Horm. Igf Res. 2012, 22, S19. [Google Scholar] [CrossRef]
- Xie, R.-P.; Liang, X.-F.; Peng, D.; Zhang, Q.-W.; Wu, D.-L.; Chen, J.-L.; Zeng, M. Dietary supplementation of pyridoxine can enhance the growth performance and improve the protein, lipid utilization efficiency of mandarin fish (Siniperca chuatsi). Fish Physiol. Biochem. 2023, 49, 1063–1078. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Liang, X.; Hu, J.; Li, C.; Hu, W.; Li, K.; Chang, X.; Zhang, Y.; Zhang, X.; Shen, Y.; et al. Feeding tea polysaccharides affects lipid metabolism, antioxidant capacity and immunity of common carp (Cyprinus carpio L.). Front. Immunol. 2022, 13, 1074198. [Google Scholar] [CrossRef] [PubMed]
- Eljasik, P.; Panicz, R.; Sobczak, M.; Sadowski, J.; Barbosa, V.; Marques, A.; Dias, J. Plasma biochemistry, gene expression and liver histomorphology in common carp (Cyprinus carpio) fed with different dietary fat sources. Food Chem. Toxicol. 2020, 140, 111300. [Google Scholar] [CrossRef] [PubMed]
- Stoneham, T.R.; Kuhn, D.D.; Taylor, D.P.; Neilson, A.P.; Smith, S.A.; Gatlin, D.M.; Chu, H.S.S.; O’keefe, S.F. Production of omega-3 enriched tilapia through the dietary use of algae meal or fish oil: Improved nutrient value of fillet and offal. PLoS ONE 2018, 13, e0194241. [Google Scholar] [CrossRef]
- Sissener, N.H. Are we what we eat? Changes to the feed fatty acid composition of farmed salmon and its effects through the food chain. J. Exp. Biol. 2018, 221 (Suppl. S1), jeb161521. [Google Scholar] [CrossRef]
- World-Organisation-for-Animal-Health, OIE-Listed Diseases Infections and Infestations in Force in 2019. Available online: https://www.woah.org/en/home/ (accessed on 17 July 2019).
- Li, J.; Xu, Q.; Wang, C.; Wang, L.; Zhao, Z.; Luo, L. Effects of dietary glucose and starch levels on the growth, haematological indices and hepatic hexokinase and glucokinase mRNA expression of juvenile mirror carp (Cyprinus carpio). Aquac. Nutr. 2016, 22, 550–558. [Google Scholar] [CrossRef]
- Wang, L.; Wei, Y.; Wang, C.; Li, J.; Zhao, Z.; Luo, L.; Du, X.; Qiyou, X. Effects of α-ketoglutarate on the growth performance, amino acid metabolism and related gene expression of mirror carp (Cyprinus carpio). Aquac. Nutr. 2017, 23, 926–933. [Google Scholar] [CrossRef]
- GB/T 36782; National Health Commission of the People’s Republic of China. State Administration for Market Regulation. Formula Feed for Common Carp (Cyprinus carpio). Standards Press of China: Beijing, China, 2018; pp. 1–6.
- Official Methods of Analysis of Official Analytical Chemists, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005.
- GB 5009.5; National Food Safety Standard Determination of Protein in Food. National Standard of the People’s Republic of China: Beijing, China, 2016.
- GB 5009.6; National Food Safety Standard Determination of Fat in Food. National Standard of the People’s Republic of China: Beijing, China, 2016.
- GB5009.124; Determination of Amino Acids in Food Safety National Standards. National Standard of the people’s Republic of China: Beijing, China, 2016.
- Jiang, X.; Li, Y.; Tian, J.; Li, C.; Ge, Y.; Hu, X.; Cheng, L.; Shi, X.; Shi, L.; Jia, Z. Nutritional Components, Biochemical Characteristics, Enzyme Activities, and Growth Differences of Five Freshwater Fish Species? Fishes 2022, 7, 285. [Google Scholar] [CrossRef]
- Jiang, X.; Ren, W.; Tian, L.; Ge, Y.; Li, C.; Hu, X.; Shi, L.; Jia, Z. IRF9 inhibits CyHV-3 replication by regulating the PI3K-AKT signalling pathway in common carp (Cyprinus carpio) epithelial cells. Dev. Comp. Immunol. 2023, 148, 104905. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using data using real-time quantitative PCR and the 2(--Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Li, J.; Zhang, Y.; Wu, D.; Zheng, X.; Wang, C.; Wang, L. Excessive Dietary Lipid Affecting Growth Performance, Feed Utilization, Lipid Deposition, and Hepatopancreas Lipometabolism of Large-Sized Common Carp (Cyprinus carpio). Front. Nutr. 2021, 8, 694426. [Google Scholar] [CrossRef] [PubMed]
- Seibel, H.; Baßmann, B.; Rebl, A. Blood Will Tell: What Hematological Analyses Can Reveal About Fish Welfare. Front. Vet. Sci. 2021, 8, 616955. [Google Scholar] [CrossRef]
- Scordo, K.; Pickett, K.A. CE: Triglycerides: Do They Matter? Am. J. Nurs. 2017, 117, 24–31. [Google Scholar] [CrossRef]
- Tenenbaum, A.; Klempfner, R.; Fisman, E.Z. Hypertriglyceridemia: A too long unfairly neglected major cardiovascular risk factor. Cardiovasc. Diabetol. 2014, 13, 159. [Google Scholar] [CrossRef]
- Jesch, E.D.; Carr, T.P. Food Ingredients That Inhibit Cholesterol Absorption. Prev. Nutr. Food Sci. 2017, 22, 67–80. [Google Scholar] [CrossRef]
- Ren, Y.; Wei, S.; Yu, H.; Xing, W.; Xu, G.; Li, T.; Luo, L. Dietary lipid levels affect growth, feed utilization, lipid deposition, health status and digestive enzyme activities of juvenile Siberian sturgeon, Acipenser baerii. Aquac. Nutr. 2021, 27, 2019–2028. [Google Scholar] [CrossRef]
- Guo, Z.; Zhu, X.; Liu, J.; Han, D.; Yang, Y.; Xie, S.; Lan, Z. Dietary lipid requirement of juvenile hybrid sturgeon, Acipenser baerii♀ × A. gueldenstaedtii♂. J. Appl. Ichthyol. 2011, 27, 743–748. [Google Scholar] [CrossRef]
- Narwal, V.; Deswal, R.; Batra, B.; Kalra, V.; Hooda, R.; Sharma, M.; Rana, J. Cholesterol biosensors: A review. Steroids 2018, 143, 6–17. [Google Scholar] [CrossRef]
- Rutledge, J.C.; Mullick, A.E.; Gardner, G.; Goldberg, I.J. Direct Visualization of Lipid Deposition and Reverse Lipid Transport in a Perfused Artery: Roles of VLDL and HDL. Circ. Res. 2000, 86, 768–773. [Google Scholar] [CrossRef] [PubMed]
- Tang, T.; Hu, Y.; Peng, M.; Chu, W.; Hu, Y.; Zhong, L. Effects of high-fat diet on growth performance, lipid accumulation and lipid metabolism-related MicroRNA/gene expression in the liver of grass carp (Ctenopharyngodon idella). Comp. Biochem. Physiol. Part. B Biochem. Mol. Biol. 2019, 234, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Yuan, X.; Liang, X.-F.; Liu, L.; Li, J.; Li, B.; Fang, J.; Li, J.; He, S.; Xue, M.; et al. Adaptations of lipid metabolism and food intake in response to low and high fat diets in juvenile grass carp (Ctenopharyngodon idellus). Aquaculture 2016, 457, 43–49. [Google Scholar] [CrossRef]
- Luo, L.; Xue, M.; Vachot, C.; Geurden, I.; Kaushik, S. Dietary medium chain fatty acids from coconut oil have little effects on postprandial plasma metabolite profiles in rainbow trout (Oncorhynchus mykiss). Aquaculture 2014, 420–421, 24–31. [Google Scholar] [CrossRef]
- Xie, R.-T.; Amenyogbe, E.; Chen, G.; Huang, J.-S. Effects of feed fat level on growth performance, body composition and serum biochemical indices of hybrid grouper (Epinephelus fuscoguttatus × Epinephelus polyphekadion). Aquaculture 2021, 530, 735813. [Google Scholar] [CrossRef]
- Jiang, W.-D.; Wu, P.; Tang, R.-J.; Liu, Y.; Kuang, S.-Y.; Jiang, J.; Tang, L.; Tang, W.-N.; Zhang, Y.-A.; Zhou, X.-Q.; et al. Nutritive values, flavor amino acids, healthcare fatty acids and flesh quality improved by manganese referring to up-regulating the antioxidant capacity and signaling molecules TOR and Nrf2 in the muscle of Fish. Food Res. Int. 2016, 89 Pt 1, 670–678. [Google Scholar] [CrossRef]
- Zou, T.-B.; He, T.-P.; Li, H.-B.; Tang, H.-W.; Xia, E.-Q. The Structure-Activity Relationship of the Antioxidant Peptides from Natural Proteins. Molecules 2015, 21, 72. [Google Scholar] [CrossRef]
- Xu, X.; Yang, H.; Zhang, C.; Bian, Y.; Yao, W.; Xu, Z.; Wang, Y.; Li, X.; Leng, X. Effects of replacing fishmeal with cottonseed protein concentrate on growth performance, flesh quality and gossypol deposition of largemouth bass (Micropterus salmoides). Aquaculture 2022, 548, 737551. [Google Scholar] [CrossRef]
- Gylfason, G.A.; Knútsdóttir, E.; Ásgeirsson, B. Isolation and biochemical characterisation of lipid rafts from Atlantic cod (Gadus morhua) intestinal enterocytes. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2010, 155, 86–95. [Google Scholar] [CrossRef]
- Cooper, C.; Beaven, S. Dietary arachidonate enhances tissue arachidonate levels and eicosanoid production in Syrian hamsters. J. Nutr. 1993, 12, 521–523. [Google Scholar] [CrossRef]
- Narayan, B.; Miyashita, K.; Hosakawa, M. Physiological Effects of Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA)—A Review. Food Rev. Int. 2006, 22, 291–307. [Google Scholar] [CrossRef]
- Rubio-Rodríguez, N.; Beltrán, S.; Jaime, I.; de Diego, S.M.; Sanz, M.T.; Carballido, J.R. Production of omega-3 polyunsaturated fatty acid concentrates: A review. Innov. Food Sci. Emerg. Technol. 2010, 11, 1–12. [Google Scholar] [CrossRef]
- Mraz, J.; Pickova, J. Factors influencing fatty acid composition of common carp (Cyprinus carpio) muscle. Neuro Endocrinol. Lett. 2011, 32 (Suppl. S2), E1–E39. [Google Scholar] [CrossRef]
- Tamura, S.; Shimomura, L. Contribution of adipose tissue and de novo lipogenesis to nonalcoholic fatty liver disease. J. Clin. Investig. 2005, 115, 1139–1142. [Google Scholar] [CrossRef]
- Guo, J.-L.; Zhou, Y.-L.; Zhao, H.; Chen, W.-Y.; Chen, Y.-J.; Lin, S.-M. Effect of dietary lipid level on growth, lipid metabolism and oxidative status of largemouth bass, Micropterus salmoides. Aquaculture 2019, 506, 394–400. [Google Scholar] [CrossRef]
- Zhao, P.-F.; Li, F.-J.; Chen, X.-R.; Chen, Y.-J.; Lin, S.-M.; Zhang, L.; Li, Y. Dietary lipid concentrations influence growth, liver oxidative stress, and serum metabolites of juvenile hybrid snakehead (Channa argus × Channa maculata). Aquac. Int. 2016, 24, 1353–1364. [Google Scholar] [CrossRef]
- Dawood, M.A.O.; Ali, M.F.; Amer, A.A.; Gewaily, M.S.; Mahmoud, M.M.; Alkafafy, M.; Assar, D.H.; Soliman, A.A.; Van Doan, H. The influence of coconut oil on the growth, immune, and antioxidative responses and the intestinal digestive enzymes andhistomorphometry features of Nile tilapia (Oreochromis niloticus). Fish Physiol. Biochem. 2021, 47, 869–880. [Google Scholar] [CrossRef]
- Dragun, Z.; Marijić, V.F.; Krasnići, N.; Ramani, S.; Valić, D.; Rebok, K.; Kostov, V.; Jordanova, M.; Erk, M. Malondialdehyde concentrations in the intestine and gills of Vardar chub (Squalius vardarensis Karaman) as indicator of lipid peroxidation. Environ. Sci. Pollut. Res. 2017, 24, 16917–16926. [Google Scholar] [CrossRef]
- Xie, S.; Wang, Y.; Nie, Z.; Xu, G. Effect of feeding frequency on growth, physiology and expression abundance of IGF-I and GH mRNA in largemouth bass (Micropterus salmoides) reared in in-pond raceway culture systems. J. Fish. Sci. China 2020, 27, 363–374. [Google Scholar]
- Romano, N.; Fischer, H.; Rubio-Benito, M.M.; Overtuf, K.; Sinha, A.K.; Kumar, V. Different dietary combinations of high/low starch and fat with or without bile acid supplementation on growth, liver histopathology, gene expression and fatty acid composition of largemouth bass, Micropterus salmoides. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2022, 266, 111157. [Google Scholar] [CrossRef]
- Elshafey, A.E.; Khalafalla, M.M.; Zaid, A.A.A.; Mohamed, R.A.; Abdel-Rahim, M.M. Source diversity of Artemia enrichment boosts goldfish (Carassius auratus) performance, β-carotene content, pigmentation, immune-physiological and transcriptomic responses. Sci. Rep. 2023, 13, 21801. [Google Scholar] [CrossRef] [PubMed]
- Thompson, W.A.; Rajeswari, J.J.; Holloway, A.C.; Vijayan, M.M. Excess feeding increases adipogenesis but lowers leptin transcript abundance in zebrafish larvae. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2024, 276, 109816. [Google Scholar] [CrossRef]
- Tian, J.; Wu, F.; Yang, C.-G.; Jiang, M.; Liu, W.; Wen, H. Dietary lipid levels impact lipoprotein lipase, hormone-sensitive lipase, and fatty acid synthetase gene expression in three tissues of adult GIFT strain of Nile tilapia, Oreochromis niloticus. Fish Physiol. Biochem. 2015, 41, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Zheng, K.; Zhu, X.; Han, D.; Yang, Y.; Lei, W.; Xie, S. Effects of dietary lipid levels on growth, survival and lipid metabolism during early ontogeny of Pelteobagrus vachelli larvae. Aquaculture 2010, 299, 121–127. [Google Scholar] [CrossRef]
Ingredient | Lipid Content | |||||
---|---|---|---|---|---|---|
3% | 5% | 7% | 9% | 11% | 13% | |
Rapeseed meal 1 | 11.20 | 11.20 | 11.20 | 11.20 | 11.20 | 11.20 |
Soybean meal 1 | 37.00 | 37.00 | 37.00 | 37.00 | 37.00 | 37.00 |
Fish meal 1 | 15.00 | 15.00 | 15.00 | 15.00 | 15.00 | 15.00 |
Soybean oil | 0.55 | 1.57 | 2.60 | 3.61 | 4.64 | 5.65 |
Fish oil | 0.55 | 1.58 | 2.59 | 3.62 | 4.63 | 5.66 |
Cornstarch | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 | 7.00 |
Wheat middling 1 | 15.00 | 15.00 | 15.00 | 15.00 | 15.00 | 15.00 |
Dicalcium phosphate | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 |
Microcrystalline cellulose | 10.30 | 8.25 | 6.21 | 4.17 | 2.13 | 0.09 |
Vitamin premix 2 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |
Trace mineral premix 2 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |
Choline chloride | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 |
Methionine | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 |
Threonine | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 |
Total | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Proximate composition | ||||||
Crude protein | 32.76 | 32.87 | 33.11 | 33.09 | 33.12 | 33.24 |
Crude lipid | 3.07 | 4.93 | 7.09 | 9.05 | 10.91 | 13.10 |
Total Phosphorus | 1.26 | 1.25 | 1.23 | 1.28 | 1.26 | 1.24 |
Lysine | 1.97 | 1.94 | 1.98 | 1.95 | 1.93 | 1.97 |
Lipid Content | ||||||
---|---|---|---|---|---|---|
3% | 5% | 7% | 9% | 11% | 13% | |
Initial body weight (g) | 7.09 ± 0.19 | 7.17 ± 0.39 | 6.89 ± 0.08 | 6.52 ± 0.40 | 6.95 ± 0.30 | 6.77 ± 0.26 |
Final body weight (g) | 31.33 ± 4.14 a | 32.67 ± 0.21 b | 34.81 ± 0.22 ab | 37.74 ± 3.07 ab | 34.50 ± 2.85 ab | 34.82 ± 3.03 ab |
Absolute weight gain rate (AWGR, %) | 341.89 ± 24.32 c | 357.01 ± 25.52 c | 405.06 ± 8.84 b | 482.15 ± 83.72 a | 396.36 ± 36.93 b | 414.94 ± 54.17 b |
Relative weight gain rate (WGR, g/d) | 0.47 ± 0.01 b | 0.46 ± 0.01 b | 0.50 ± 0.01 ab | 0.56 ± 0.06 a | 0.49 ± 0.05 ab | 0.50 ± 0.06 ab |
Protein efficiency ratio (PER,%) | 1.51 ± 0.00 c | 1.49 ± 0.10 c | 1.60 ± 0.02 c | 2.18 ± 0.06 a | 1.92 ± 0.20 b | 1.67 ± 0.03 c |
Feed conversion ratio (FCR,%) | 2.87 ± 0.1 a | 2.56 ± 0.19 b | 2.12 ± 0.03 c | 1.26 ± 0.03 e | 1.65 ± 0.17 d | 1.61 ± 0.03 d |
Survival rate/% | 100 | 100 | 100 | 100 | 100 | 100 |
Lipid Content | ||||||
---|---|---|---|---|---|---|
3% | 5% | 7% | 9% | 11% | 13% | |
Total cholesterol (T-CHO) | 3.64 ± 0.36 b | 3.38 ± 0.23 b | 3.50 ± 0.39 b | 3.45 ± 0.91 b | 4.07 ± 0.21 a | 4.32 ± 0.55 a |
Triglyceride (TG) | 0.76 ± 0.17 b | 0.65 ± 0.12 b | 0.65 ± 0.10 b | 0.74 ± 0.15 b | 0.93 ± 0.12 ab | 1.29 ± 0.57 a |
High-density lipoprotein (HDL-C) | 1.76 ± 0.26 c | 1.85 ± 0.36 c | 1.98 ± 0.07 c | 2.43 ± 0.32 a | 2.14 ± 0.29 b | 2.15 ± 0.29 b |
Low-density lipoprotein (LDL-C) | 0.96 ± 0.15 | 0.9 ± 0.13 | 0.87 ± 0.10 | 0.92 ± 0.20 | 0.91 ± 0.11 | 0.95 ± 0.12 |
Glucose (GLU) | 3.99 ± 0.58 | 4.94 ± 0.18 | 4.05 ± 0.33 | 4.25 ± 0.81 | 4.89 ± 0.65 | 4.09 ± 0.54 |
Lipid Content | Moisture | Crude Ash | Crude Fat | Crude Protein |
---|---|---|---|---|
3% | 77.07 ± 0.85 a | 0.82 ± 0.04 b | 2.97 ± 0.21 e | 18.13 ± 0.71 |
5% | 75.23 ± 0.49 b | 0.83 ± 0.04 b | 3.53 ± 0.15 d | 19.40 ± 0.78 |
7% | 74.60 ± 0.26 b | 1.07 ± 0.06 a | 4.60 ± 0.40 b | 18.67 ± 0.32 |
9% | 72.57 ± 0.49 c | 1.07 ± 0.06 a | 6.20 ± 0.20 a | 19.20 ± 0.72 |
11% | 74.33 ± 0.96 b | 1.03 ± 0.06 a | 4.57 ± 0.12 b | 19.03 ± 0.90 |
13% | 74.30 ± 0.80 b | 1.03 ± 0.06 a | 4.03 ± 0.15 c | 19.27 ± 0.71 |
Lipid Content | ||||||
---|---|---|---|---|---|---|
3% | 5% | 7% | 9% | 11% | 13% | |
Aspargine (Asp) * | 1.513 ± 0.032 a | 1.543 ± 0.061 a | 1.587 ± 0.097 a | 1.530 ± 0.087 a | 1.290 ± 0.069 b | 1.470 ± 0.096 a |
Throsine (Thr) # | 0.650 ± 0.035 ab | 0.610 ± 0.030 b | 0.710 ± 0.050 a | 0.683 ± 0.042 ab | 0.480 ± 0.036 c | 0.627 ± 0.075 ab |
Serine (Ser) ● | 0.533 ± 0.035 ab | 0.573 ± 0.035 a | 0.593 ± 0.040 a | 0.557 ± 0.047ab | 0.497 ± 0.031 b | 0.563 ± 0.021 ab |
Glutamine (Glu) * | 2.047 ± 0.095 a | 1.983 ± 0.112 a | 2.180 ± 0.161 a | 2.137 ± 0.153 a | 1.610 ± 0.122 b | 1.973 ± 0.156 a |
Glycine (Gly) * | 0.640 ± 0.010 ab | 0.643 ± 0.042 ab | 0.710 ± 0.078 a | 0.720 ± 0.046 a | 0.577 ± 0.021 b | 0.653 ± 0.032 ab |
Alanine (Ala) * | 0.900 ± 0.010 a | 0.910 ± 0.044 a | 0.940 ± 0.066 a | 0.923 ± 0.0513 a | 0.813 ± 0.040 b | 0.903 ± 0.040 a |
Cystine (Cys) ● | 0.112 ± 0.050 | 0.089 ± 0.018 | 0.107 ± 0.006 | 0.117 ± 0.023 | 0.084 ± 0.023 | 0.105 ± 0.030 |
Valine (Val) # | 0.640 ± 0.199 ab | 0.410 ± 0.036 cd | 0.707 ± 0.083 ab | 0.757 ± 0.021 a | 0.310 ± 0.020 d | 0.517 ± 0.150 bc |
Methionine (Met) # | 0.377 ± 0.021 a | 0.380 ± 0.010 a | 0.387 ± 0.025 a | 0.357 ± 0.038 ab | 0.317 ± 0.045 b | 0.383 ± 0.032 a |
Isoleucine (Ile) # | 0.567 ± 0.171 ab | 0.360 ± 0.200 cd | 0.617 ± 0.086 ab | 0.677 ± 0.021 a | 0.2533 ± 0.0252 d | 0.440 ± 0.140 bc |
Leucine (Leu) # | 1.183 ± 0.062 a | 1.123 ± 0.058 a | 1.260 ± 0.092 a | 1.2367 ± 0.064 a | 0.930 ± 0.061 b | 1.133 ± 0.107 a |
Tyrosine (Tyr) ● | 0.457 ± 0.025 | 0.483 ± 0.031 | 0.463 ± 0.038 | 0.447 ± 0.046 | 0.433 ± 0.040 | 0.457 ± 0.021 |
Phenylalanine(Phe) # | 0.597 ± 0.040 a | 0.563 ± 0.015 a | 0.627 ± 0.038 a | 0.617 ± 0.038 a | 0.490 ± 0.027 b | 0.560 ± 0.056 a |
Lysine (Lys) # | 1.397 ± 0.145 ab | 1.250 ± 0.063 b | 1.493 ± 0.117 a | 1.490 ± 0.078 a | 1.023 ± 0.067 c | 1.310 ± 0.181 ab |
Histidine (His) ※ | 0.550 ± 0.020 bc | 0.610 ± 0.020 a | 0.627 ± 0.038 a | 0.587 ± 0.015 ab | 0.507 ± 0.012 c | 0.537 ± 0.038 c |
Arginine (Arg) ※ | 0.853 ± 0.055 ab | 0.790 ± 0.061 b | 0.927 ± 0.076 a | 0.923 ± 0.055 a | 0.657 ± 0.047 c | 0.827 ± 0.090 ab |
Proline (Pro) ● | 0.513 ± 0.021 ab | 0.533 ± 0.035 a | 0.533 ± 0.038 a | 0.483 ± 0.021 ab | 0.410 ± 0.036 c | 0.467 ± 0.040 bc |
Tryptophan (Trp) # | 13.529 ± 0.836 a | 12.856 ± 0.616 a | 14.467 ± 1.036 a | 14.241 ± 0.802a | 10.680 ± 0.653 b | 12.925 ± 1.271 a |
Total amino acids (TAA) | 5.100 ± 0.130 a | 5.080 ± 0.254 a | 5.417 ± 0.385 a | 5.310 ± 0.311 a | 4.290 ± 0.251 b | 5.000 ± 0.320 a |
Flavour amino acid (FAA) | 5.410 ± 0.661 ab | 4.697 ± 0.218 b | 5.800 ± 0.448 a | 5.817 ± 0.298 a | 3.803 ± 0.266 c | 4.970 ± 0.737 ab |
Essential amino acid (EAA) | 1.403 ± 0.074 ab | 1.400 ± 0.078 ab | 1.553 ± 0.117 a | 1.510 ± 0.070 ab | 1.163 ± 0.040 c | 1.363 ± 0.123 b |
Half essential amino acids (HEAA) | 6.076 ± 0.151 a | 6.116 ± 0.291 a | 6.403 ± 0.430 a | 6.194 ± 0.423 a | 5.137 ± 0.328 b | 5.938 ± 0.385 a |
Nonessential amino acids (NEAA) | 37.757 | 39.513 | 37.444 | 37.285 | 40.172 | 38.774 |
FAA/TAA (F/T, %) | 39.887 | 36.536 | 40.086 | 40.855 | 35.599 | 38.328 |
EAA/TAA (E/T, %) | 10.377 | 10.887 | 10.736 | 10.6079 | 10.904 | 10.554 |
HEAA/TAA% | 88.981 | 76.807 | 90.582 | 93.983 | 74.021 | 83.398 |
Lipid Content | ||||||
---|---|---|---|---|---|---|
3% | 5% | 7% | 9% | 11% | 13% | |
C14:0 | 0.038 ± 0.003 c | 0.050 ± 0.006 c | 0.104 ± 0.012 b | 0.144 ± 0.012 a | 0.108 ± 0.015 b | 0.117 ± 0.009 b |
C15:0 | 0.006 ± 0.001 c | 0.008 ± 0.001 c | 0.016 ± 0.002 b | 0.022 ± 0.002 a | 0.016 ± 0.002 b | 0.017 ± 0.009 b |
C16:0 | 0.590 ± 0.060 e | 0.695 ± 0.035 de | 0.997 ± 0.118 b | 1.247 ± 0.048 a | 0.849 ± 0.075 c | 0.804 ± 0.047 cd |
C17:0 | 0.009 ± 0.001 c | 0.011 ± 0.001 c | 0.018 ± 0.002 b | 0.024 ± 0.002 a | 0.016 ± 0.002 c | 0.016 ± 0.001 c |
C18:0 | 0.189 ± 0.016 c | 0.204 ± 0.006 c | 0.264 ± 0.018 b | 0.337 ± 0.017 a | 0.206 ± 0.010 c | 0.194 ± 0.014 c |
C20:0 | 0 b | 0 b | 0.008 ± 0.001 a | 0.012 ± 0.002 a | 0.012 ± 0.008 a | 0.008 ± 0.001 a |
Saturated fatty acid (SFA) | 0.833 ± 0.082 c | 0.968 ± 0.048 c | 1.408 ± 0.145 b | 1.787 ± 0.076 a | 1.207 ± 0.099 b | 1.155 ± 0.071 b |
C16:1 | 0.106 ± 0.009 c | 0.123 ± 0.008 c | 0.198 ± 0.028 b | 0.261 ± 0.012 a | 0.180 ± 0.025 b | 0.168 ± 0.011 b |
C18:1n9c | 0.970 ± 0.093 cd | 1.135 ± 0.036 c | 1.457 ± 0.136 b | 1.758 ± 0.135 a | 1.060 ± 0.114 cd | 0.912 ± 0.079 d |
C20:1 | 0.060 ± 0.007 c | 0.0812 ± 0.003 c | 0.156 ± 0.022 b | 0.222 ± 0.024 a | 0.147 ± 0.017 b | 0.161 ± 0.008 b |
C22:1n9 | 0.007 ± 0.001 d | 0.001 ± 0.0012 cd | 0.015 ± 0.003 b | 0.018 ± 0.002 a | 0.012 ± 0.001 bc | 0.015 ± 0.002 b |
C24:1 | 0.007 ± 0.001 c | 0.007 ± 0.001 c | 0.012 ± 0.0014 b | 0.017 ± 0.002 a | 0.012 ± 0.003 b | 0.013 ± 0.001 b |
Monounsaturated fatty acid (MUFA) | 1.152 ± 0.112 c | 1.356 ± 0.043 c | 1.837 ± 0.186 b | 2.276 ± 0.171 a | 1.411 ± 0.155 c | 1.269 ± 0.099 c |
C18:2n6c * | 0.441 ± 0.042 c | 0.689 ± 0.079 c | 0.689 ± 0.0584 b | 0.728 ± 0.094 a | 0.411 ± 0.041 c | 0.374 ± 0.030 c |
C18:3n3 * | 0.043 ± 0.002 c | 0.071 ± 0.009 a | 0.063 ± 0.006 b | 0.084 ± 0.008 a | 0.049 ± 0.005c | 0.048 ± 0.004 c |
C20:2 | 0.014 ± 0.002 c | 0.184 ± 0.001 b | 0.018 ± 0.003 b | 0.024 ± 0.002 a | 0.014 ± 0.001 c | 0.014 ± 0.001 c |
C20:3n3 | 0.022 ± 0.004 ab | 0.025 ± 0.001 a | 0.019 ± 0.0007 b | 0.025 ± 0.003 a | 0.014 ± 0.001 c | 0.012 ± 0.000 c |
C20:3n6 | 0 d | 0.004 ± 0.000 c | 0.005 ± 0.001 b | 0.007 ± 0.000 a | 0.005 ± 0.001 b | 0.007 ± 0.000 a |
C20:4n6 | 0.035 ± 0.005 e | 0.062 ± 0.004 d | 0.125 ± 0.020 c | 0.203 ± 0.022 a | 0.143 ± 0.012 bc | 0.164 ± 0.011 b |
C20:5n3 Eicosapentaenoic acid (EPA) | 0.063 ± 0.007 d | 0.069 ± 0.005 d | 0.127 ± 0.005 c | 0.180 ± 0.016 a | 0.130 ± 0.009 bc | 0.147 ± 0.012 b |
C22:6n3 Docosahexaenoic acid (DHA) | 0.164 ± 0.0198 c | 0.171 ± 0.012 c | 0.307 ± 0.011 b | 0.452 ± 0.042 a | 0.314 ± 0.011 b | 0.345 ± 0.012 b |
Polyunsaturated fatty acid (PUFA) | 0.781 ± 0.080 c | 1.100 ± 0.106 b | 1.241 ± 0.101 b | 1.702 ± 0.176 a | 1.080 ± 0.077 b | 1.110 ± 0.067 b |
DHA + EPA | 0.226 ± 0.027 d | 0.231 ± 0.016 d | 0.435 ± 0.015 c | 0.632 ± 0.057 a | 0.444 ± 0.019 bc | 0.491 ± 0.024 b |
Essential fatty acid (EFA) | 0.484 ± 0.042 c | 0.760 ± 0.088 a | 0.641 ± 0.065 b | 0.812 ± 0.101 a | 0.459 ± 0.045 c | 0.422 ± 0.033 c |
Total fatty acid (TFA) | 2.767 ± 0.264 d | 3.423 ± 0.179 c | 4.487 ± 0.385 b | 5.763 ± 0.422 a | 3.697 ± 0.326 c | 3.533 ± 0.231 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, X.; Song, Z.; Li, C.; Hu, X.; Ge, Y.; Cheng, L.; Shi, X.; Jia, Z. Effects of Dietary Lipid Levels on the Growth, Muscle Fatty Acid and Amino Acid Composition, Antioxidant Capacity, and Lipid Deposition in Mirror Carp (Cyprinus carpio). Animals 2024, 14, 2583. https://doi.org/10.3390/ani14172583
Jiang X, Song Z, Li C, Hu X, Ge Y, Cheng L, Shi X, Jia Z. Effects of Dietary Lipid Levels on the Growth, Muscle Fatty Acid and Amino Acid Composition, Antioxidant Capacity, and Lipid Deposition in Mirror Carp (Cyprinus carpio). Animals. 2024; 14(17):2583. https://doi.org/10.3390/ani14172583
Chicago/Turabian StyleJiang, Xiaona, Zhenguo Song, Chitao Li, Xuesong Hu, Yanlong Ge, Lei Cheng, Xiaodan Shi, and Zhiying Jia. 2024. "Effects of Dietary Lipid Levels on the Growth, Muscle Fatty Acid and Amino Acid Composition, Antioxidant Capacity, and Lipid Deposition in Mirror Carp (Cyprinus carpio)" Animals 14, no. 17: 2583. https://doi.org/10.3390/ani14172583
APA StyleJiang, X., Song, Z., Li, C., Hu, X., Ge, Y., Cheng, L., Shi, X., & Jia, Z. (2024). Effects of Dietary Lipid Levels on the Growth, Muscle Fatty Acid and Amino Acid Composition, Antioxidant Capacity, and Lipid Deposition in Mirror Carp (Cyprinus carpio). Animals, 14(17), 2583. https://doi.org/10.3390/ani14172583