Making Noah’s Ark Work for Fishing Cat Conservation: A Blueprint for Connecting Populations across an Interactive Wild Ex Situ Spectrum
Abstract
:Simple Summary
Abstract
1. Introduction
2. Opportunities to Thrive Framework for Ex Situ Fishing Cat Populations
2.1. Strategically Placed, Well-Balanced Diet
2.1.1. Diet
2.1.2. Food Presentation and Placement
2.1.3. Food as a Part of Environmental Enrichment
2.2. Afford Self-Maintenance Opportunities
2.3. Ensure Optimal Health
2.4. Encourage Species-Typical Behaviour
2.5. Provide Freedom to Choose from Multiple Options
3. Best Practices to Aid Captive Breeding
3.1. Ex Situ Conservation
3.2. Integration with In Situ Conservation
4. Examining Genetic Robustness of Founder Populations and Requirements to Maintain Population Viability—Case Study from West Bengal
4.1. Baseline Scenario
4.2. Baseline with Catastrophe
4.3. Baseline with Catastrophe and Harvesting
4.4. Baseline with Catastrophe and Supplementation
4.5. Baseline with Catastrophe, Supplementation, and Harvesting
5. Supplementation of Wild Populations in West Bengal
6. Discussion
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barnosky, A.D.; Matzke, N.; Tomiya, S.; Wogan, G.O.; Swartz, B.; Quental, T.B.; Marshall, C.; McGuire, J.L.; Lindsey, E.L.; Maguire, K.C.; et al. Has the Earth’s sixth mass extinction already arrived? Nature 2011, 471, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Dirzo, R.; Young, H.S.; Galetti, M.; Ceballos, G.; Isaac, N.J.; Collen, B. Defaunation in the Anthropocene. Science 2014, 345, 401–406. [Google Scholar] [CrossRef] [PubMed]
- Tittensor, D.P.; Tittensor, D.P.; Walpole, M.J.; Hill, S.L.L.; Boyce, D.G.; Britten, G.L.; Burgess, N.D.; Butchart, S.H.M.; Leadley, P.W.; Regan, E.C.; et al. A mid-term analysis of progress toward international biodiversity targets. Science 2014, 346, 241–244. [Google Scholar] [CrossRef]
- Butchart, S.H.M.; Stattersfield, A.J.; Brooks, T.M. Going or gone: Defining ‘Possibly Extinct’ species to give a truer picture of recent extinctions. Bull. Br. Ornithologists’ Club 2006, 126A, 7–24. [Google Scholar]
- Hoffmann, M.; Hilton-Taylor, C.; Angulo, A.; Böhm, M.; Brooks, T.M.; Butchart, S.H.M.; Carpenter, K.E.; Chanson, J.; Collen, B.; Cox, N.A.; et al. The impact of conservation on the status of the world’s vertebrates. Science 2010, 330, 1503–1509. [Google Scholar] [CrossRef]
- Hoffmann, M.; Duckworth, J.W.; Holmes, K.; Mallon, D.P.; Rodrigues, A.S.; Stuart, S.N. The difference conservation makes to extinction risk of the world’s ungulates. Conserv. Biol. 2015, 29, 1303–1313. [Google Scholar] [CrossRef]
- Redford, K.H.; Amato, G.; Baillie, J.; Beldomenico, P.; Bennett, E.L. What does it mean to successfully conserve a (vertebrate) species? BioScience 2011, 61, 39–48. [Google Scholar] [CrossRef]
- Shaffer, M.L. Minimum population sizes for species conservation. BioScience 1981, 31, 131–134. [Google Scholar] [CrossRef]
- Barros de Assis, L.; Venter, M.; Ramírez-Delgado, J.P.; Coelho-Junior, M.G.; Venter, O. No evidence of local deforestation leakage from protected areas establishment in Brazil’s Amazon and Atlantic Forest. Biol. Conserv. 2022, 273, 109695. [Google Scholar] [CrossRef]
- Mace, G.M.; Balmford, A.; Leader-Williams, N.; Manica, A.; Walter, O.; West, C.; Zimmermann, A. Measuring conservation success: Assessing zoos’ contribution. In Zoos in the 21st Century. Catalysts for Conservation; Zimmermann, A., Hatchwell, M., Dickie, L., et al., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 322–342. [Google Scholar]
- Byers, O.; Lees, C.; Wilcken, J.; Schwitzer, C. The one plan approach: The philosophy and implementation of CBSG’s approach to integrated species conservation planning. WAZA Mag. 2013, 14, 2–5. [Google Scholar]
- Traylor-Holzer, K.; Leus, K.; Byers, O. Ex-situ Management for Conservation. In Life on Land. Encyclopedia of the UN Sustainable Development Goals; Leal Filho, W., Azul, A., Brandli, L., Özuyar, P., Wall, T., Eds.; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Beck, B.B.; Rapaport, L.G.; Stanley Price, M.R.; Wilson, A.C. Reintroduction of captive-born animals. In Creative Conservation: Interactive Management of Wild and Captive Animals; Olney, P., Ed.; Chapman & Hall: London, UK, 1994; pp. 265–286. [Google Scholar] [CrossRef]
- Reid, M.; Zippel, K.C. Can zoos and aquariums ensure the survival of amphibians in the 21st century? Int. Zoo Yearb. 2008, 42, 1–6. [Google Scholar] [CrossRef]
- World Association of Zoos and Aquariums (WAZA). Executive Summary of the World Zoo Conservation Strategy—The Role of the Zoos and Aquaria of the World in Global Conservation; WAZA: Barcelona, Spain, 1993. [Google Scholar]
- Singer, P. Not for humans only: The place of nonhumans in environmental issues. In Ethics and Problems of the 21st Century; Goodpaster, K., Sayre, K.M.E., Eds.; University of Notre Dame Press: Notre Dame, IN, USA, 1979; pp. 191–206. [Google Scholar]
- Keulartz, J. Captivity for Conservation? Zoos at a Crossroads. J. Agric. Environ. Ethics 2015, 28, 335–351. [Google Scholar] [CrossRef]
- Conde, D.A.; Flesness, N.; Colchero, F.; Jones, O.R.; Scheuerlein, A. An emerging role of zoos to conserve biodiversity. Science 2011, 331, 1390–1391. [Google Scholar] [CrossRef]
- Beck, B. Reintroduction, zoos, conservation, and animal welfare. In Ethics on the Ark; Norton, B., Hutchins, M., Stevens, E., Maple, T., Eds.; Smithsonian Institution Press: Washington, DC, USA, 1995; pp. 155–163. [Google Scholar]
- Price, M.R.S.; Fa, J.E. Reintroductions from zoos: A conservation guiding light or a shooting star? In Zoos in the 21st Century. Catalysts for Conservation; Zimmermann, A., Hatchwell, M., Dickie, L., West, C., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 155–177. [Google Scholar]
- Francisco, M.R.; Costa, M.C.; Azeredo, R.M.A.; Simpson, J.G.P.; da Costa Dias, T.; Fonseca, A.; Pinto, F.J.M.; Silveira, L.F. Recovered after an extreme bottleneck and saved by ex situ management: Lessons from the Alagoas curassow (Pauxi mitu [Linnaeus, 1766]; Aves, Galliformes, Cracidae). Zoo Biol. 2021, 40, 76–78. [Google Scholar] [CrossRef]
- Bouley, P.; Paulo, A.; Angela, M.; Du Plessis, C.; Marneweck, D.G. The successful reintroduction of African wild dogs (Lycaon pictus) to Gorongosa National Park, Mozambique. PLoS ONE 2021, 16, e0249860. [Google Scholar] [CrossRef]
- Cheng, Z.; Tian, X.; Zhong, Z.; Li, P.; Sun, D.; Bai, J.; Meng, Y.; Zhang, S.; Zhang, Y.; Wang, L.; et al. Reintroduction, distribution, population dynamics and conservation of a species formerly extinct in the wild: A review of thirty-five years of successful Milu (Elaphurus davidianus) reintroduction in China. Glob. Ecol. Conserv. 2021, 31, e01860. [Google Scholar] [CrossRef]
- Gasparini-Morato, R.L.; Sartorello, L.; Rampim, L.; Fragoso, C.E.; Adenilson, J.; Teles, P.; Haberfeld, M.; de Paula, R.C.; Morato, R.G. Is reintroduction a tool for the conservation of the jaguar Panthera onca? A case study in the Brazilian Pantanal. Oryx 2021, 55, 461–465. [Google Scholar] [CrossRef]
- Rueda, C.; Jiménez, J.; Palacios, M.J.; Margalida, A. Exploratory and territorial behavior in a reintroduced population of Iberian lynx. Sci. Rep. 2021, 11, 14148. [Google Scholar] [CrossRef]
- Vilarta, M.R.; Wittkoff, W.; Lobato, C.; Oliveira, R.d.A.; Pereira, N.G.P.; Silveira, L.F. Reintroduction of the Golden Conure (Guaruba guarouba) in Northern Brazil: Establishing a Population in a Protected Area. Diversity 2021, 13, 198. [Google Scholar] [CrossRef]
- Donadio, E.; Zamboni, T.; Martino, S.D. Bringing Jaguars and Their Prey Base Back to the Iberá Wetlands, Argentina. In Conservation Translocations. Ecology, Biodiversity and Conservation; Gaywood, M.J., Ewen, J.G., Hollingsworth, P.M., Moehrenschlager, A., Eds.; Cambridge University Press: Cambridge, UK, 2022; pp. 443–448. [Google Scholar]
- Turghan, M.A.; Jiang, Z.; Niu, Z. An Update on Status and Conservation of the Przewalski’s Horse (Equus ferus przewalskii): Captive Breeding and Reintroduction Projects. Animals 2022, 12, 3158. [Google Scholar] [CrossRef]
- Purchase, C.; Lugarini, C.; Purchase, C.; Ferreira, A.; Vercillo, U.E.; Stafford, M.L.; White, T.H., Jr. Reintroduction of the Extinct-in-the-Wild Spix’s Macaw (Cyanopsitta spixii) in the Caatinga Forest Domain of Brazil. Diversity 2024, 16, 80. [Google Scholar] [CrossRef]
- Redford, K.; Jensen, D.; Breheny, J. Integrating the captive and the wild. Science 2012, 338, 1157–1158. [Google Scholar] [CrossRef]
- Conde, D.A.; Colchero, F.; Gusset, M.; Pearce-Kelly, P.; Byers, O.; Flesness, N.; Browne, R.K.; Jones, O.R. Zoos through the lens of the IUCN Red List: A global metapopulation approach to support conservation breeding pograms. PLoS ONE 2013, 8, e80311. [Google Scholar] [CrossRef] [PubMed]
- Byers, O. The One Plan Approach with Apologies to Shakespeare; AZA Connect: Silver Spring, MD, USA, 2014; pp. 19–20. [Google Scholar]
- Greggor, A.L.; Vicino, G.A.; Swaisgood, R.R.; Fidgett, A.; Brenner, D.J.; Kinney, M.E.; Farabaugh, S.; Masuda, B.; Lamberski, N. Animal welfare in conservation breeding: Applications and challenges. Front. Vet. Sci. 2018, 5, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Maple, T.L.; Perdue, B.M. Zoo Animal Welfare; Springer: Berlin, Germany, 2013; Volume 14. [Google Scholar]
- Guesgen, M.; Bench, C. What can kinematics tell us about the affective states of animals? Anim. Welf. 2017, 26, 383–397. [Google Scholar] [CrossRef]
- Paul, E.S.; Mendl, M.T. Animal emotion: Descriptive and prescriptive definitions and their implications for a comparative perspective. Appl. Anim. Behav. Sci. 2018, 205, 202–209. [Google Scholar] [CrossRef]
- Binding, S.; Farmer, H.; Krusin, L.; Cronin, K. Status of animal welfare research in zoos and aquariums: Where are we, where to next? J. Zoo Aquar. Res. 2020, 8, 166–174. [Google Scholar] [CrossRef]
- Díez-León, M.; Mason, G. Effects of environmental enrichment and stereotypic behavior on maternal behavior and infant viability in a model carnivore, the American mink (Neovison vison). Zoo Biol. 2016, 35, 19–28. [Google Scholar] [CrossRef]
- Tensen, L. Biases in wildlife and conservation research, using felids and canids as a case study. Glob. Ecol. Conserv. 2018, e00423. [Google Scholar] [CrossRef]
- Petersen, W.J.; Savini, T.; Chutipong, W.; Kamjing, A.; Phosri, K.; Tantipisanuh, N.; Ngoprasert, D. Predicted Pleistocene–Holocene range and connectivity declines of the vulnerable fishing cat and insights for current conservation. J. Biogeogr. 2022, 49, 1494–1507. [Google Scholar] [CrossRef]
- Haque, N.M.; Vijayan, V. Food habits of the fishing cat Felis viverrina in Keoladeo National Park, Bharatpur, Rajasthan. J. Bombay Nat. Hist. Soc. 1993, 90, 498–500. [Google Scholar]
- Hunter, L. Wild Cats of the World; Bloomsbury Publishing: London, UK, 2015. [Google Scholar]
- Veron, G.; Patterson, B.D.; Reeves, R. Global diversity of mammals (Mammalia) in freshwater. Freshw. Anim. Divers. Assess. 2008, 607–617. [Google Scholar] [CrossRef]
- Willcox, D.; Phuong, T.Q.; Nguyen, V.T.; Van Nguyen, V.N.; Kempinski, J.; Roberton, S. The conservation status of small carnivores in the Ke Go–Khe Net Lowlands, central Vietnam. Small Carniv. Conserv. 2015, 52, 56–73. [Google Scholar]
- Mukherjee, S.; Appel, A.; Duckworth, J.W.; Sanderson, J.; Dahal, S. Prionailurus viverrinus (errata version published in 2022). IUCN Red List Threat. Species 2016, e.T18150A221434864. [Google Scholar] [CrossRef]
- Lin, N.; Platt, S.G. Recent photographic records of fishing cat Prionailurus viverrinus (Bennett, 1833) (Carnivora: Felidae) in the Ayeyarwady delta of Myanmar. J. Threat. Taxa 2019, 11, 13910–13914. [Google Scholar] [CrossRef]
- Duckworth, J.W.; Shepherd, C.R.; Semiadi, G.; Schauenberg, P.; Sanderson, J.; Roberton, S.I.; O’brien, T.G.; Maddox, T.; Linkie, M.; Holden, J.; et al. Does the fishing cat inhabit Sumatra? Cat News 2009, 51, 4–9. [Google Scholar]
- Sanderson, J.G. How the fishing cat came to occur in Sumatra. Cat News 2009, 50, 6–9. [Google Scholar]
- Jutzeler, E.; Xie, Y.; Vogt, K. Fishing cat Prionailurus viverrinus. Cat News Spec. Issue Autumn 2010, 5, 48–49. [Google Scholar]
- Adhya, T. Status survey of fishing cats (Prionailurus viverrinus) in Howrah and Hooghly, W. Bengal. WWF India 2011, 12–18. [Google Scholar]
- Mishra, R.; Gautam, B.; Kaspal, P.; Shah, S.K. Population status and threats to fishing cat Prionailurus viverrinus (Bennett, 1833) in Koshi Tappu wildlife reserve, Eastern Nepal. Nepal. J. Zool. 2021, 5, 13–21. [Google Scholar] [CrossRef]
- Timilsina, S.; Mishra, R.; Adhikari, A.; Gautam, S.; Neupane, B. Status, current distribution and threats to the Fishing cat Prionailurus viverrinus (Bennett, 1833) in Nepal. J. Anim. Divers. 2021. [Google Scholar] [CrossRef]
- Chakraborty, S.; Mitra, S.; Chatterjee, P.; Dey, D.; Mazumdar, S.; Saha, G.K. State representative beaten to death: A decade long conflict scenario of fishing cats (Prionailurus viverrinus) from southern West Bengal, India. Proc. Zool. Soc. 2022, 75, 449–455. [Google Scholar] [CrossRef]
- Veasey, J.S. In pursuit of peak animal welfare; the need to prioritize the meaningful over the measurable. Zoo Biol. 2017, 36, 413–425. [Google Scholar] [CrossRef] [PubMed]
- Jeschke, J.M. When carnivores are “full and lazy”. Oecologia 2007, 152, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Clubb, R.; Mason, G.J. Natural behavioural biology as a risk factor in carnivore welfare: How analysing species differences could help zoos improve enclosures. Appl. Anim. Behav. Sci. 2007, 102, 303–328. [Google Scholar] [CrossRef]
- Sutherland-Smith, M.; Harvey, C.; Campbell, M.; McAloose, D.; Rideout, B.; Morris, P. Transitional cell carcinoma in four fishing cats (Prionailurus viverrinus). J. Zoo Wildl. Med. 2004, 35, 370–380. [Google Scholar] [CrossRef]
- Landolfi, J.A.; Terio, K.A. Transitional cell carcinoma in fishing cats (Prionailurus viverrinus): Pathology and expression of cyclooxygenase-1,-2, and P53. Vet. Pathol. 2006, 43, 674–681. [Google Scholar] [CrossRef]
- Lintzenich, B.A.; Williams, J.J.; Dikeman, C.L.; Swanson, W.F.; Kelley, R.L. Quantification of nutrient data from the diets of captive fishing cats (Prionailurus viverrinus). In Proceedings of the 7th Biennial Symposium of the Comparative Nutrition Society, Poster Presentation, Liscomb Mills, NS, Canada, 8–13 August 2008. [Google Scholar]
- Brown, S.A. Effects of dietary lipids on renal function in dogs and cats. Proc. Purina Nutr. Forum 1998, 12–14. [Google Scholar]
- Polzin, D.J.; Osborne, C.A.; Ross, S.; Jacob, F. Dietary management of feline chronic renal failure: Where are we now? In what direction are we headed? J. Feline Med. Surg. 2000, 2, 75–82. [Google Scholar] [CrossRef]
- Larsson, S.C.; Kumlin, M.; Ingelman-Sundberg, M.; Wolk, A. Links Dietary long-chain n-3 fatty acids for the prevention of cancer: A review of potential mechanisms. Am. J. Clin. Nutr. 2004, 79, 935–945. [Google Scholar] [CrossRef]
- Takesaki, T.; Gao, C.M.; Wu, J.Z. Dietary factors and lung cancer risk in Japanese with special reference to fish consumption and adenocarcinomas. Br. J. Cancer 2001, 84, 1199–1206. [Google Scholar] [CrossRef] [PubMed]
- Hussein, O.; Rosenblat, M.; Refael, G.; Aviram, M. Dietary selenium increases cellular glutathione peroxidase activity and reduces the enhanced susceptibility to lipid peroxidation of plasma and low-density lipoprotein in kidney transplant recipients. Transplantation 1997, 63, 679–685. [Google Scholar] [CrossRef] [PubMed]
- Nutrient Requirements of Cats (NRC). National Research Council; National Academy Press: Washington, DC, USA, 2006. [Google Scholar]
- Banning, A.; Florian, S.; Deubel, S.; Thalmann, S.; Müller-Schmehl, K.; Jacobasch, G.; Brigelius-Flohe, R. GPx2 counteracts PGE2 production by dampening COX-2 and mPGES-1 expression in human colon cancer cells. Antioxid. Redox Signal. 2008, 10, 1491–1500. [Google Scholar] [CrossRef] [PubMed]
- Eaton, R.L. Predatory and feeding behavior in adult lions: The deprivation experiment 1. Z. FÜR Tierpsychol. 1972, 31, 461–473. [Google Scholar]
- Leyhausen, P. Cat Behaviour: The Predatory and Social Behaviour of Domestic and Wild Cats (B. Tonkin Trans.); Garland STPM Press: New York, NY, USA, 1979. [Google Scholar]
- Shepherdson, D.J.; Carlstead, K.; Mellen, J.D.; Seidensticker, J. The influence of food presentation on the behavior of small cats in confined environments. Zoo Biol. 1993, 12, 203–216. [Google Scholar] [CrossRef]
- Ganguly, D.; Adhya, T. How fishing cats Prionailurus viverrinus Bennett, 1833 fish: Describing a felid’s strategy to hunt aquatic prey. Mammalia 2022, 86, 182–189. [Google Scholar] [CrossRef]
- Kitchener, A. The Natural History of the Wild Cats; Comstock Pub. Associates: New York, NY, USA, 1991; pp. 272–280. [Google Scholar]
- Sunquist, M.E.; Sunquist, F.C. Tigers. In Great Cats, Majestic Creatures of the Wild; Seidensticker, J., Lumpkins, S., Eds.; Rodale Press: Emmanus, PA, USA, 1991; pp. 94–104. [Google Scholar]
- Gartner, M.C. Personality and Well-Being in Felids: Assessment and Applications to Captive Management and Conservation. Ph.D Thesis, University of Edinburgh, Edinburgh, UK, 2014. [Google Scholar]
- Lindburg, D.G. Improving the feeding of captive felines through application of field data. Zoo Biol. 1988, 7, 211–218. [Google Scholar] [CrossRef]
- Mansard, P. Breeding and husbandry of the Margay Leopardus wiedii yucatanica at the Ridgeway Trust for Endangered Cats, Hastings. Int. Zoo Yearb. 1997, 35, 94–100. [Google Scholar] [CrossRef]
- Law, G.; Macdonald, A.; Reid, A. Dispelling some common misconceptions about the keeping of felids in captivity. Int. Zoo Yearb. 1997, 35, 197–207. [Google Scholar] [CrossRef]
- Trevelline, B.K.; Fontaine, S.S.; Hartup, B.K.; Kohl, K.D. Conservation biology needs a microbial renaissance: A call for considering host-associated microbiota in wildlife management practices. Proc. R. Soc. B 2019, 286, 20182448. [Google Scholar] [CrossRef]
- West, A.G.; Waite, D.W.; Deines, P.; Bourne, D.G.; Digby, A.; McKenzie, V.J.; Taylor, M.W. The microbiome in threatened species conservation. Biol. Conserv. 2019, 229, 85–98. [Google Scholar] [CrossRef]
- Mellen, J.D. A comparative analysis of scent marking, social and reproductive behaviour in 20 species of small cats (Felis). Am. Zool. 1993, 33, 151–166. [Google Scholar] [CrossRef]
- Chong, R.; Grueber, C.E.; Fox, S.; Wise, P.; Barrs, V.R.; Hogg, C.J.; Belov, K. Looking like the locals—Gut microbiome changes post-release in an endangered species. Anim. Microbiome 2019, 1, 8. [Google Scholar] [CrossRef]
- Menotti-Raymond, M.; David, V.A.; Lyons, L.A.; Schäffer, A.A.; Tomlin, J.F.; Hutton, M.K.; O’Brien, S.J. A genetic linkage map of microsatellites in the domestic cat (Felis catus). Genomics 1999, 57, 9–23. [Google Scholar] [CrossRef]
- Eo, S.H.; Ko, B.J.; Lee, B.J.; Seomun, H.; Kim, S.; Kim, M.J.; Kim, J.H.; An, J. A set of microsatellite markers for population genetics of leopard cat (Prionailurus bengalensis) and cross-species amplification in other felids. Biochem. Syst. Ecol. 2016, 66, 196–200. [Google Scholar] [CrossRef]
- Kalinowski, S.T.; Taper, M.L.; Marshall, T.C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 2007, 16, 1099–1106. [Google Scholar] [CrossRef]
- Raymond, M.; Rousset, F. GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism. J. Hered. 1995, 86, 248–249. [Google Scholar] [CrossRef]
- Rousset, F. Genepop’007: A complete reimplementation of the Genepop software for Windows and Linux. Mol. Ecol. Resour. 2008, 8, 103–106. [Google Scholar] [CrossRef] [PubMed]
- Kalinowski, S.T.; Wagner, A.P.; Taper, M.L. ML-Relate: A computer program for maximum likelihood estimation of relatedness and relationship. Mol. Ecol. Notes 2006, 6, 576–579. [Google Scholar] [CrossRef]
- Blouin, M.S. DNA-based methods for pedigree reconstruction and kinship analysis in natural populations. Trends Ecol. Evol. 2003, 18, 503–511. [Google Scholar] [CrossRef]
- Lacy, R.C. Structure of the VORTEX simulation model for population viability analysis. Ecol. Bull. 2000, 191–203. [Google Scholar]
- O’Grady, J.J.; Brook, B.W.; Reed, D.H.; Ballou, J.D.; Tonkyn, D.W.; Frankham, R. Realistic levels of inbreeding depression strongly affect extinction risk in wild populations. Biol. Conserv. 2006, 133, 42–51. [Google Scholar] [CrossRef]
- Bezerra, J.A.B.; Limeira, C.H.; de Miranda Maranhão, A.C.P.; de Paula Antunes, J.M.A.; de Azevedo, S.S. Global seroprevalence and factors associated with seropositivity for feline immunodeficiency virus (FIV) in cats: A systematic review and meta-analysis. Prev. Vet. Med. 2024, 106315. [Google Scholar] [CrossRef] [PubMed]
- Coyne, K.P.; Jones, B.R.D.; Kipar, A.; Chantrey, J.; Porter, C.J.; Barber, P.J.; Dawson, S.; Gaskell, R.M.; Radford, A.D. Lethal outbreak of disease associated with feline calicivirus infection in cats. Vet. Rec. 2006, 158, 544–550. [Google Scholar] [CrossRef]
- Izes, A.M.; Yu, J.; Norris, J.M.; Govendir, M. Current status on treatment options for feline infectious peritonitis and SARS-CoV-2 positive cats. Vet. Q. 2020, 40, 322–330. [Google Scholar] [CrossRef]
- Ottinger, M.; Huth, J.; Bachofer, F. Mapping inland pond aquaculture for the coastal zone of Asia: An object-based, multi-sensor approach using Sentinel-1 and Sentinel-2 time-series. Remote Sens. 2022, 14, 153. [Google Scholar] [CrossRef]
- Silva, A.P.; Mukherjee, S.; Ramakrishnan, U.; Fernandes, C.; Björklund, M. Closely related species show species-specific environmental responses and different spatial conservation needs: Prionailurus cats in the Indian subcontinent. Sci. Rep. 2020, 10, 18705. [Google Scholar] [CrossRef]
- Jarvis, A.; Guevara, E.; Reuter, H.I.; Nelson, A. Hole-Filled SRTM for the Globe Version 4. 2008. Available online: https://srtm.csi.cgiar.org (accessed on 23 July 2024).
- Gumbricht, T.; Román-Cuesta, R.M.; Verchot, L.V.; Herold, M.; Wittmann, F.; Householder, E.; Herold, N.; Murdiyarso, D. Tropical and Subtropical Wetlands Distribution; Center for International Forestry Research (CIFOR): Bogor, Indonesia, 2017. [Google Scholar] [CrossRef]
- Marconcini, M.; Metz-Marconcini, A.; Esch, T.; Gorelick, N. Understanding current trends in global urbanisation—The World Settlement Footprint Suite. GI_Forum 2021, 1, 33–38. [Google Scholar] [CrossRef]
- Teluguntla, P.; Thenkabail, P.; Oliphant, A.; Gumma, M.; Aneece, I.; Foley, D.; McCormick, R. Landsat-Derived Global Rainfed and Irrigated-Cropland Product 30 m V001 (V001). NASA EOSDIS Land Processes DAAC IP148728. 2023. Available online: https://lpdaac.usgs.gov/documents/1618/LGRIP30_ATBD_v1.pdf (accessed on 23 July 2024).
- Cutter, P. Fishing Cat ecology: Food Habits, Home Ranges, Habitat Use and Mortality in a Human-Dominated Landscape around Khao Sam Roi Yot Area, Peninsular Thailand. Ph.D. Thesis, University of Minnesota, Minneapolis, MN, USA, 2014. [Google Scholar]
- Mishra, R.; Lamichhane, B.R.; Leirs, H.; Subedi, N.; Adhikari, S.; Acharya, H.R.; de Iongh, H.H. Cats in Farms: Ranging Behavior of Fishing Cats (Prionailurus viverrinus) in a Human-Dominated Landscape. Research Square. 2024. Available online: https://www.researchsquare.com/article/rs-4261765/v1 (accessed on 23 July 2024).
- Weise, F.J.; Lemeris, J.R., Jr.; Munro, S.J.; Bowden, A.; Venter, C.; van Vuuren, M.; van Vuuren, R.J. Cheetahs (Acinonyx jubatus) running the gauntlet: An evaluation of translocations into free-range environments in Namibia. PeerJ 2015, 3, e1346. [Google Scholar] [CrossRef]
- Ratnayaka, A.A.; Serieys, L.E.; Prasad, T.; Leighton, G.R.; Sanderson, J.G.; Leung, L.K.P. Urban habitat use and home ranges of fishing cats in Colombo, Sri Lanka. Mamm. Biol. 2022, 102, 271–277. [Google Scholar] [CrossRef]
- Battin, J. When good animals love bad habitats: Ecological traps and the conservation of animal populations. Conserv. Biol. 2004, 18, 1482–1491. [Google Scholar] [CrossRef]
- Deco-Souza, T.; Araújo, G.R.; Pizzutto, C.S.; Requena, L.A.; Jorge-Neto, P.N. In situ and ex situ jaguar (Panthera onca) reproduction: What do we have so far? Theriogenol. Wild 2024, 4, 100070. [Google Scholar] [CrossRef]
Indicators to Evaluate the Implementation of the Opportunities to Thrive Framework | Example of Indicators to Evaluate Interventions Taken under the Opportunities to Thrive Framework |
---|---|
| Reduction in stress hormones. |
| Improved body condition or maintenance of optimal body conditions. |
| Decrease in negative behaviors such as weight loss, lack of appetite, excessive pacing, self-mutilation, constant hiding Increase in positive markers such as an overall increase in behavioral diversity such as exploring, scent marking, resting, eating, engaging with the environment, successful breeding, etc. |
| Positive vocal/postural signals |
Locus | No. of Alleles | Observed Heterozygosity | Expected Heterozygosity | PIC | HWE |
---|---|---|---|---|---|
Pbe02 | 7 | 0.759 | 0.819 | 0.779 | 0.1798 |
Pbe03 | 4 | 0.571 | 0.513 | 0.451 | 0.9375 |
Pbe06 | 3 | 0.292 | 0.260 | 0.231 | 1.0000 |
Pbe10 | 4 | 0.318 | 0.290 | 0.269 | 1.0000 |
Pbe13 | 5 | 0.481 | 0.760 | 0.707 | 0.0136 |
Pbe15 | 4 | 0.217 | 0.205 | 0.192 | 1.0000 |
Pbe26 | 4 | 0.538 | 0.479 | 0.420 | 0.8748 |
Pbe31 | 3 | 0.286 | 0.254 | 0.226 | 1.0000 |
F124 | 7 | 0.759 | 0.737 | 0.681 | 0.2044 |
F115 | 10 | 0.828 | 0.867 | 0.836 | 0.2409 |
F141 | 3 | 0.655 | 0.656 | 0.570 | 0.2013 |
F42 | 6 | 0.667 | 0.740 | 0.685 | 0.5063 |
F37 | 3 | 0.556 | 0.451 | 0.360 | 0.5521 |
F53 | 6 | 0.800 | 0.774 | 0.713 | 0.1607 |
Fca146 | 2 | 0.143 | 0.136 | 0.124 | 1.0000 |
Fca424 | 4 | 0.773 | 0.760 | 0.695 | 0.9604 |
Fca441 | 4 | 0.826 | 0.737 | 0.668 | 0.8910 |
Mean | 4.647 | 0.557 | 0.555 | 0.506 |
Environmental Variable | Source | Criterion |
---|---|---|
Wetland | CIFOR | Presence of wetland (any type) |
Elevation | SRTM | <150 m |
Urbanisation | World Settlement Footprint | Absence of settlement |
Aquaculture | Ottinger et al. [93] | Absence of aquaculture pond |
Irrigated Agriculture | LGRIP | Absence of agriculture (irrigation type) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adhya, T.; Singh, S.; Gottumukkala, H.V.; Banerjee, A.; Chongder, I.; Maity, S.; Reddy, P.A. Making Noah’s Ark Work for Fishing Cat Conservation: A Blueprint for Connecting Populations across an Interactive Wild Ex Situ Spectrum. Animals 2024, 14, 2770. https://doi.org/10.3390/ani14192770
Adhya T, Singh S, Gottumukkala HV, Banerjee A, Chongder I, Maity S, Reddy PA. Making Noah’s Ark Work for Fishing Cat Conservation: A Blueprint for Connecting Populations across an Interactive Wild Ex Situ Spectrum. Animals. 2024; 14(19):2770. https://doi.org/10.3390/ani14192770
Chicago/Turabian StyleAdhya, Tiasa, Simran Singh, Himaja Varma Gottumukkala, Aditya Banerjee, Ishita Chongder, Sulata Maity, and P. Anuradha Reddy. 2024. "Making Noah’s Ark Work for Fishing Cat Conservation: A Blueprint for Connecting Populations across an Interactive Wild Ex Situ Spectrum" Animals 14, no. 19: 2770. https://doi.org/10.3390/ani14192770
APA StyleAdhya, T., Singh, S., Gottumukkala, H. V., Banerjee, A., Chongder, I., Maity, S., & Reddy, P. A. (2024). Making Noah’s Ark Work for Fishing Cat Conservation: A Blueprint for Connecting Populations across an Interactive Wild Ex Situ Spectrum. Animals, 14(19), 2770. https://doi.org/10.3390/ani14192770