Unveiling Insights into the Whole Genome Sequencing of Mycobacterium spp. Isolated from Siamese Fighting Fish (Betta splendens)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. DNA Extraction and Sequencing
2.2. Whole Genome Assembly and Annotation
2.3. Analysis of the Assembled Draft Genomes
2.3.1. Genome-Based Taxonomic Analysis
2.3.2. Clustering and Phylogenetic Inference
2.3.3. Plasmid Identification and Antimicrobial Resistance Profiling
2.3.4. Pangenome Analysis
3. Results
3.1. Data Summary
3.2. Genome Assembly and Annotation
3.3. Species Identification
3.4. Type-Based Species and Subspecies Clustering
3.5. Comparative Genomic Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wolinsky, E. Mycobacterial Diseases Other than Tuberculosis. Clin. Infect. Dis. 1992, 15, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Tortoli, E. The Taxonomy of the Genus Mycobacterium. In Nontuberculous Mycobacteria (NTM): Microbiological, Clinical and Geographical Distribution; Academic Press: London, UK; Elsevier: London, UK, 2019; pp. 1–10. [Google Scholar] [CrossRef]
- Shinnick, T.M.; Good, R.C. Mycobacterial Taxonomy. Eur. J. Clin. Microbiol. Infect. Dis. 1994, 13, 884–901. [Google Scholar] [CrossRef] [PubMed]
- Tortoli, E. Phylogeny of the Genus Mycobacterium: Many Doubts, Few Certainties. Infect. Genet. Evol. 2012, 12, 827–831. [Google Scholar] [CrossRef]
- Gupta, R.S.; Lo, B.; Son, J. Phylogenomics and Comparative Genomic Studies Robustly Support Division of the Genus Mycobacterium into an Emended Genus Mycobacterium and Four Novel Genera. Front. Microbiol. 2018, 9, 67. [Google Scholar] [CrossRef]
- Gauthier, D.T.; Rhodes, M.W. Mycobacteriosis in Fishes: A Review. Vet. J. 2009, 180, 33–47. [Google Scholar] [CrossRef]
- Rogall, T.; Wolters, J.; Flohr, T.; Bottger, E.C. Towards a Phylogeny and Definition of Species at the Molecular Level within the Genus Mycobacterium. Int. J. Syst. Bacteriol. 1990, 40, 323–330. [Google Scholar] [CrossRef]
- Roetzer, A.; Diel, R.; Kohl, T.A.; Rückert, C.; Nübel, U.; Blom, J.; Wirth, T.; Jaenicke, S.; Schuback, S.; Rüsch-Gerdes, S.; et al. Whole Genome Sequencing versus Traditional Genotyping for Investigation of a Mycobacterium tuberculosis Outbreak: A Longitudinal Molecular Epidemiological Study. PLoS Med. 2013, 10, e1001387. [Google Scholar] [CrossRef] [PubMed]
- Shelenkov, A. Whole-Genome Sequencing of Pathogenic Bacteria—New Insights into Antibiotic Resistance Spreading. Microorganisms 2021, 9, 2624. [Google Scholar] [CrossRef] [PubMed]
- Fraser, C.M.; Eisen, J.A.; Salzberg, S.L. Microbial Genome Sequencing. Nature 2000, 406, 799–803. [Google Scholar] [CrossRef]
- Dinh-Hung, N.; Dong, H.T.; Senapin, S.; Pimsannil, K.; Thompson, K.D.; Shinn, A.P.; Soontara, C.; Sirimanapong, W.; Chatchaiphan, S.; Rodkhum, C. Insight into Characteristics and Pathogenicity of Five Rapidly Growing Non-Tuberculous Mycobacterium Species Isolated from the Siamese Fighting Fish, Betta Splendens. Aquaculture 2023, 575, 739822. [Google Scholar] [CrossRef]
- Dinh-Hung, N.; Dong, H.T.; Senapin, S.; Linh, N.V.; Shinn, A.P.; Pirarat, N.; Hirono, I.; Chatchaiphan, S.; Rodkhum, C. Infection and Histopathological Consequences in Siamese Fighting Fish (Betta Splendens) Due to Exposure to a Pathogenic Mycobacterium Chelonae via Different Routes. Aquaculture 2024, 579, 740191. [Google Scholar] [CrossRef]
- Dinh-Hung, N.; Dong, H.T.; Senapin, S.; Shinn, A.P.; Linh, N.V.; Dien, L.T.; Soontara, C.; Hirono, I.; Chatchaiphan, S.; Rodkhum, C. Using Ozone Nanobubbles to Mitigate the Risk of Mycobacteriosis in Siamese Fighting Fish (Betta Splendens). Aquaculture 2024, 581, 740390. [Google Scholar] [CrossRef]
- Dong, H.T.; Senapin, S.; Phiwsaiya, K.; Techatanakitarnan, C.; Dokladda, K.; Ruenwongsa, P.; Panijpan, B. Histopathology and Culturable Bacteria Associated with “Big Belly” and “Skin Nodule” Syndromes in Ornamental Siamese Fighting Fish, Betta Splendens. Microb. Pathog. 2018, 122, 46–52. [Google Scholar] [CrossRef]
- Gautam, A. Phenol-Chloroform DNA Isolation Method; Springer: Cham, Switzerland, 2022; pp. 33–39. [Google Scholar] [CrossRef]
- Salvà Serra, F.; Salvà-Serra, F.; Svensson-Stadler, L.; Busquets, A.; Jaén-Luchoro, D.; Karlsson, R.; Moore, E.R.B.; Gomila, M. A Protocol for Extraction and Purification of High-Quality and Quantity Bacterial DNA Applicable for Genome Sequencing: A Modified Version of the Marmur Procedure. Protoc. Exch. 2018. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Y.; Shi, C.; Huang, Z.; Zhang, Y.; Li, S.; Li, Y.; Ye, J.; Yu, C.; Li, Z.; et al. SOAPnuke: A MapReduce Acceleration-Supported Software for Integrated Quality Control and Preprocessing of High-Throughput Sequencing Data. Gigascience 2018, 7, gix120. [Google Scholar] [CrossRef]
- Souvorov, A.; Agarwala, R.; Lipman, D.J. SKESA: Strategic k-Mer Extension for Scrupulous Assemblies. Genome Biol. 2018, 19, 153. [Google Scholar] [CrossRef]
- Ciufo, S.; Kannan, S.; Sharma, S.; Badretdin, A.; Clark, K.; Turner, S.; Brover, S.; Schoch, C.L.; Kimchi, A.; DiCuccio, M. Using Average Nucleotide Identity to Improve Taxonomic Assignments in Prokaryotic Genomes at the NCBI. Int. J. Syst. Evol. Microbiol. 2018, 68, 2386–2392. [Google Scholar] [CrossRef] [PubMed]
- Tatusova, T.; Dicuccio, M.; Badretdin, A.; Chetvernin, V.; Nawrocki, E.P.; Zaslavsky, L.; Lomsadze, A.; Pruitt, K.D.; Borodovsky, M.; Ostell, J. NCBI Prokaryotic Genome Annotation Pipeline. Nucleic Acids Res. 2016, 44, 6614–6624. [Google Scholar] [CrossRef]
- Seemann, T. Prokka: Rapid Prokaryotic Genome Annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef]
- Grant, J.R.; Enns, E.; Marinier, E.; Mandal, A.; Herman, E.K.; Chen, C.Y.; Graham, M.; Van Domselaar, G.; Stothard, P. Proksee: In-Depth Characterization and Visualization of Bacterial Genomes. Nucleic Acids Res. 2023, 51, W484–W492. [Google Scholar] [CrossRef]
- Brown, C.L.; Mullet, J.; Hindi, F.; Stoll, J.E.; Gupta, S.; Choi, M.; Keenum, I.; Vikesland, P.; Pruden, A.; Zhang, L. MobileOG-Db: A Manually Curated Database of Protein Families Mediating the Life Cycle of Bacterial Mobile Genetic Elements. Appl. Environ. Microbiol. 2022, 88, e00991-22. [Google Scholar] [CrossRef] [PubMed]
- Jolley, K.A.; Bliss, C.M.; Bennett, J.S.; Bratcher, H.B.; Brehony, C.; Colles, F.M.; Wimalarathna, H.; Harrison, O.B.; Sheppard, S.K.; Cody, A.J.; et al. Ribosomal Multilocus Sequence Typing: Universal Characterization of Bacteria from Domain to Strain. Microbiology 2012, 158, 1005–1015. [Google Scholar] [CrossRef] [PubMed]
- Meier-Kolthoff, J.P.; Göker, M. TYGS Is an Automated High-Throughput Platform for State-of-the-Art Genome-Based Taxonomy. Nat. Commun. 2019, 10, 2182. [Google Scholar] [CrossRef] [PubMed]
- Meier-Kolthoff, J.P.; Carbasse, J.S.; Peinado-Olarte, R.L.; Göker, M. TYGS and LPSN: A Database Tandem for Fast and Reliable Genome-Based Classification and Nomenclature of Prokaryotes. Nucleic Acids Res. 2022, 50, D801–D807. [Google Scholar] [CrossRef] [PubMed]
- Ondov, B.D.; Treangen, T.J.; Melsted, P.; Mallonee, A.B.; Bergman, N.H.; Koren, S.; Phillippy, A.M. Mash: Fast Genome and Metagenome Distance Estimation Using MinHash. Genome Biol. 2016, 17, 132. [Google Scholar] [CrossRef]
- Lagesen, K.; Hallin, P.; Rødland, E.A.; Stærfeldt, H.H.; Rognes, T.; Ussery, D.W. RNAmmer: Consistent and Rapid Annotation of Ribosomal RNA Genes. Nucleic Acids Res. 2007, 35, 3100–3108. [Google Scholar] [CrossRef]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and Applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef]
- Meier-Kolthoff, J.P.; Auch, A.F.; Klenk, H.P.; Göker, M. Genome Sequence-Based Species Delimitation with Confidence Intervals and Improved Distance Functions. BMC Bioinform. 2013, 14, 60. [Google Scholar] [CrossRef]
- Yoon, S.H.; Ha, S.M.; Lim, J.; Kwon, S.; Chun, J. A Large-Scale Evaluation of Algorithms to Calculate Average Nucleotide Identity. Antonie Leeuwenhoek Int. J. General. Mol. Microbiol. 2017, 110, 1281–1286. [Google Scholar] [CrossRef]
- Jain, C.; Rodriguez-R, L.M.; Phillippy, A.M.; Konstantinidis, K.T.; Aluru, S. High Throughput ANI Analysis of 90K Prokaryotic Genomes Reveals Clear Species Boundaries. Nat. Commun. 2018, 9, 5114. [Google Scholar] [CrossRef]
- Meier-Kolthoff, J.P.; Hahnke, R.L.; Petersen, J.; Scheuner, C.; Michael, V.; Fiebig, A.; Rohde, C.; Rohde, M.; Fartmann, B.; Goodwin, L.A.; et al. Complete Genome Sequence of DSM 30083T, the Type Strain (U5/41T) of Escherichia coli, and a Proposal for Delineating Subspecies in Microbial Taxonomy. Stand. Genom. Sci. 2014, 9, 2. [Google Scholar] [CrossRef] [PubMed]
- Lefort, V.; Desper, R.; Gascuel, O. FastME 2.0: A Comprehensive, Accurate, and Fast Distance-Based Phylogeny Inference Program. Mol. Biol. Evol. 2015, 32, 2798–2800. [Google Scholar] [CrossRef] [PubMed]
- Farris, J.S. Estimating Phylogenetic Trees from Distance Matrices. Am. Nat. 1972, 106, 645–668. [Google Scholar] [CrossRef]
- Kreft, L.; Botzki, A.; Coppens, F.; Vandepoele, K.; Van Bel, M. PhyD3: A Phylogenetic Tree Viewer with Extended PhyloXML Support for Functional Genomics Data Visualization. Bioinformatics 2017, 33, 2946–2947. [Google Scholar] [CrossRef]
- Zhu, Q.; Gao, S.; Xiao, B.; He, Z.; Hu, S. Plasmer: An Accurate and Sensitive Bacterial Plasmid Prediction Tool Based on Machine Learning of Shared k-Mers and Genomic Features. Microbiol. Spectr. 2023, 11, e04645-22. [Google Scholar] [CrossRef] [PubMed]
- Wood, D.E.; Lu, J.; Langmead, B. Improved Metagenomic Analysis with Kraken 2. Genome Biol. 2019, 20, 257. [Google Scholar] [CrossRef]
- Florensa, A.F.; Kaas, R.S.; Clausen, P.T.L.C.; Aytan-Aktug, D.; Aarestrup, F.M. ResFinder—An Open Online Resource for Identification of Antimicrobial Resistance Genes in next-Generation Sequencing Data and Prediction of Phenotypes from Genotypes. Microb. Genom. 2022, 8, 000748. [Google Scholar] [CrossRef]
- Sherry, N.L.; Horan, K.A.; Ballard, S.A.; Gonçalves da Silva, A.; Gorrie, C.L.; Schultz, M.B.; Stevens, K.; Valcanis, M.; Sait, M.L.; Stinear, T.P.; et al. An ISO-Certified Genomics Workflow for Identification and Surveillance of Antimicrobial Resistance. Nat. Commun. 2023, 14, 60. [Google Scholar] [CrossRef]
- Feldgarden, M.; Brover, V.; Haft, D.H.; Prasad, A.B.; Slotta, D.J.; Tolstoy, I.; Tyson, G.H.; Zhao, S.; Hsu, C.H.; McDermott, P.F.; et al. Validating the AMRFinder Tool and Resistance Gene Database by Using Antimicrobial Resistance Genotype-Phenotype Correlations in a Collection of Isolates. Antimicrob. Agents Chemother. 2019, 63, 10–1128. [Google Scholar] [CrossRef]
- Jia, B.; Raphenya, A.R.; Alcock, B.; Waglechner, N.; Guo, P.; Tsang, K.K.; Lago, B.A.; Dave, B.M.; Pereira, S.; Sharma, A.N.; et al. CARD 2017: Expansion and Model-Centric Curation of the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res. 2017, 45, D566–D573. [Google Scholar] [CrossRef]
- Zankari, E.; Hasman, H.; Cosentino, S.; Vestergaard, M.; Rasmussen, S.; Lund, O.; Aarestrup, F.M.; Larsen, M.V. Identification of Acquired Antimicrobial Resistance Genes. J. Antimicrob. Chemother. 2012, 67, 2640–2644. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.K.; Padmanabhan, B.R.; Diene, S.M.; Lopez-Rojas, R.; Kempf, M.; Landraud, L.; Rolain, J.M. ARG-ANNOT, a New Bioinformatic Tool to Discover Antibiotic Resistance Genes in Bacterial Genomes. Antimicrob. Agents Chemother. 2014, 58, 212–220. [Google Scholar] [CrossRef]
- Chen, L.; Zheng, D.; Liu, B.; Yang, J.; Jin, Q. VFDB 2016: Hierarchical and Refined Dataset for Big Data Analysis—10 Years On. Nucleic Acids Res. 2016, 44, D694–D697. [Google Scholar] [CrossRef]
- Carattoli, A.; Zankari, E.; Garciá-Fernández, A.; Larsen, M.V.; Lund, O.; Villa, L.; Aarestrup, F.M.; Hasman, H. In Silico Detection and Typing of Plasmids Using PlasmidFinder and Plasmid Multilocus Sequence Typing. Antimicrob. Agents Chemother. 2014, 58, 3895–3903. [Google Scholar] [CrossRef] [PubMed]
- Ingle, D.J.; Valcanis, M.; Kuzevski, A.; Tauschek, M.; Inouye, M.; Stinear, T.; Levine, M.M.; Robins-Browne, R.M.; Holt, K.E. In Silico Serotyping of E. coli from Short Read Data Identifies Limited Novel O-Loci but Extensive Diversity of O:H Serotype Combinations within and between Pathogenic Lineages. Microb. Genom. 2016, 2, e000064. [Google Scholar] [CrossRef]
- Doster, E.; Lakin, S.M.; Dean, C.J.; Wolfe, C.; Young, J.G.; Boucher, C.; Belk, K.E.; Noyes, N.R.; Morley, P.S. MEGARes 2.0: A Database for Classification of Antimicrobial Drug, Biocide and Metal Resistance Determinants in Metagenomic Sequence Data. Nucleic Acids Res. 2020, 48, D561–D569. [Google Scholar] [CrossRef]
- Alcock, B.P.; Huynh, W.; Chalil, R.; Smith, K.W.; Raphenya, A.R.; Wlodarski, M.A.; Edalatmand, A.; Petkau, A.; Syed, S.A.; Tsang, K.K.; et al. CARD 2023: Expanded Curation, Support for Machine Learning, and Resistome Prediction at the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res. 2023, 51, D690–D699. [Google Scholar] [CrossRef] [PubMed]
- Page, A.J.; Cummins, C.A.; Hunt, M.; Wong, V.K.; Reuter, S.; Holden, M.T.G.; Fookes, M.; Falush, D.; Keane, J.A.; Parkhill, J. Roary: Rapid Large-Scale Prokaryote Pan Genome Analysis. Bioinformatics 2015, 31, 3691–3693. [Google Scholar] [CrossRef] [PubMed]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; Von Haeseler, A.; Lanfear, R.; Teeling, E. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef]
- Oren, A.; Arahal, D.R.; Göker, M.; Moore, E.R.B.; Rossello-Mora, R.; Sutcliffe, I.C. International Code of Nomenclature of Prokaryotes. Prokaryotic Code (2022 Revision). Int. J. Syst. Evol. Microbiol. 2023, 73, 005585. [Google Scholar] [CrossRef]
- Chen, C.Y.; Fuqua, C.; Jackson, C.R.; Kadlec, K.; Top, E.M. Editorial: Plasmid Transfer-Mechanisms, Ecology, Evolution and Applications. Front. Microbiol. 2022, 13, 993628. [Google Scholar] [CrossRef] [PubMed]
- Redondo-Salvo, S.; Fernández-López, R.; Ruiz, R.; Vielva, L.; de Toro, M.; Rocha, E.P.C.; Garcillán-Barcia, M.P.; de la Cruz, F. Pathways for Horizontal Gene Transfer in Bacteria Revealed by a Global Map of Their Plasmids. Nat. Commun. 2020, 11, 3602. [Google Scholar] [CrossRef] [PubMed]
- Movahedzadeh, F.; Bitter, W. Ins and Outs of Mycobacterial Plasmids. Methods Mol. Biol. 2008, 465, 217–228. [Google Scholar] [CrossRef]
- Deng, Y.; Xu, L.; Chen, H.; Liu, S.; Guo, Z.; Cheng, C.; Ma, H.; Feng, J. Prevalence, Virulence Genes, and Antimicrobial Resistance of Vibrio Species Isolated from Diseased Marine Fish in South China. Sci. Rep. 2020, 10, 14329. [Google Scholar] [CrossRef] [PubMed]
- Takayama, K.; Wang, C.; Besra, G.S. Pathway to Synthesis and Processing of Mycolic Acids in Mycobacterium tuberculosis. Clin. Microbiol. Rev. 2005, 18, 81–101. [Google Scholar] [CrossRef]
- Saini, D.K.; Malhotra, V.; Dey, D.; Pant, N.; Das, T.K.; Tyagi, J.S. DevR-DevS Is a Bona Fide Two-Component System of Mycobacterium tuberculosis That Is Hypoxia-Responsive in the Absence of the DNA-Binding Domain of DevR. Microbiology 2004, 150, 865–875. [Google Scholar] [CrossRef]
- Ng, V.H.; Cox, J.S.; Sousa, A.O.; MacMicking, J.D.; McKinney, J.D. Role of KatG Catalase-Peroxidase in Mycobacterial Pathogenesis: Countering the Phagocyte Oxidative Burst. Mol. Microbiol. 2004, 52, 1291–1302. [Google Scholar] [CrossRef]
- Behra, P.R.K.; Pettersson, B.M.F.; Ramesh, M.; Dasgupta, S.; Kirsebom, L.A. Insight into the Biology of Mycobacterium mucogenicum and Mycobacterium neoaurum Clade Members. Sci. Rep. 2019, 9, 19259. [Google Scholar] [CrossRef]
- Choo, S.W.; Ang, M.Y.; Dutta, A.; Tan, S.Y.; Siow, C.C.; Heydari, H.; Mutha, N.V.R.; Wee, W.Y.; Wong, G.J. MycoCAP—Mycobacterium Comparative Analysis Platform. Sci. Rep. 2015, 5, 18227. [Google Scholar] [CrossRef]
- Xia, X. Horizontal Gene Transfer and Drug Resistance Involving Mycobacterium tuberculosis. Antibiotics 2023, 12, 1367. [Google Scholar] [CrossRef]
- Hong, H.; Demangel, C.; Pidot, S.J.; Leadlay, P.F.; Stinear, T. Mycolactones: Immunosuppressive and Cytotoxic Polyketides Produced by Aquatic Mycobacteria. Nat. Prod. Rep. 2008, 25, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Chalut, C. MmpL Transporter-Mediated Export of Cell-Wall Associated Lipids and Siderophores in Mycobacteria. Tuberculosis 2016, 100, 32–45. [Google Scholar] [CrossRef] [PubMed]
Sample ID | Clean Reads | Clean Bases (bp) | Read Length | Q20 (%) | Q30 (%) | GC (%) |
---|---|---|---|---|---|---|
BN1956 | 4,050,677 | 1,215,203,100 | PE150 | 95.00 | 87.02 | 66.64 |
BN1983 | 4,043,521 | 1,213,056,300 | PE150 | 95.42 | 87.77 | 64.06 |
BN1984 | 4,037,827 | 1,211,348,100 | PE150 | 95.09 | 87.31 | 64.05 |
BN1985 | 4,038,265 | 1,211,479,500 | PE150 | 95.16 | 87.36 | 65.94 |
SNSK5 | 4,037,574 | 1,211,272,200 | PE150 | 95.22 | 87.73 | 66.22 |
N041 | 4,048,072 | 1,214,421,621 | PE150 | 95.22 | 87.69 | 67.27 |
Features | Isolates | ||||||
---|---|---|---|---|---|---|---|
BN1956 | BN1983 | BN1984 | BN1985 | SNSK5 | N041 | ||
GenBank accession | JAYXBQ000000000 | JAYXBR000000000 | JAYXBS000000000 | JAYXBT000000000 | JAYXBU000000000 | JAYXBV000000000 | |
Size (bp) | 6,369,566 | 5,056,078 | 7,557,134 | 6,818,352 | 6,342,755 | 7,556,912 | |
Minimum sequence length | 350 | 374 | 361 | 378 | 378 | 361 | |
Maximum sequence length | 446,856 | 1,063,941 | 1,115,510 | 1,179,774 | 903,710 | 861,703 | |
Contigs | 84 | 19 | 57 | 39 | 30 | 59 | |
N50 (bp) | 205,143 | 800,484 | 398,421 | 540,107 | 520,742 | 385,935 | |
Completeness (CheckM) (%) | 99.32 | 99.48 | 99.62 | 100 | 99.66 | 99.62 | |
Contamination (%) | 1.06 | 0.38 | 5.29 | 1.15 | 0.98 | 5.29 | |
L50 | 10 | 2 | 7 | 5 | 5 | 8 | |
Genes | 6184 | 4937 | 7512 | 6644 | 6118 | 7511 | |
CDSs | 6088 | 4885 | 7425 | 6558 | 6063 | 7424 | |
Genes (coding) | 6010 | 4854 | 7324 | 6506 | 6013 | 7322 | |
Genes (RNA) | 96 | 52 | 87 | 86 | 55 | 87 | |
rRNA | 5S | 2 | 1 | 2 | 2 | 2 | 2 |
16S | 2 | 1 | 2 | 1 | 1 | 2 | |
23S | 6 | 1 | 3 | 2 | 2 | 3 | |
tRNAs | 83 | 46 | 77 | 77 | 47 | 77 | |
ncRNAs | 3 | 3 | 3 | 4 | 3 | 3 | |
Pseudo Genes | 78 | 31 | 101 | 52 | 50 | 102 |
Sample ID | 16s rRNA * | MLST | PubMLST | TYGS | RAPT | DFAST | Conclusion |
---|---|---|---|---|---|---|---|
BN1956 | M. mucogenicum | Mycobacteria | M. phocaicum | Potential new species | Inconclusive | Inconclusive | M. mucogenicum subsp. phocaicum sp. nov. |
BN1983 | M. chelonae | Mycobacteria | M. chelonae | M. chelonae | M. chelonae | M. chelonae | M. chelonae |
BN1984 | M. cosmeticum | Mycobacteria | M. cosmeticum | M. cosmeticum | M. cosmeticum | M. cosmeticum | M. cosmeticum |
BN1985 | M. senegalense | Mycobacteria | M. conceptionense | M. senegalense | M. conceptionense | M. conceptionense | M. conceptionense |
SNSK5 | M. farcinogenes | Mycobacteria | M. conceptionense | M. senegalense | M. conceptionense | M. conceptionense | M. conceptionense |
N041 | M. cosmeticum | Mycobacteria | M. cosmeticum | M. cosmeticum | M. cosmeticum | M. cosmeticum | M. cosmeticum |
Isolates | BN1956 | Mycobacterium mucogenicum | Mycobacterium phocaicum |
---|---|---|---|
GenBank accession | JAYXBQ000000000 | GCF_005670685.2 | GCF_010731115.1 |
Size (bp) | 6,326,040 | 6,098,580 | 5,853,197 |
GC (%) | 67.11 | 67.23 | 67.05 |
OrthoANIu (%) | 93.26 | 92.51 | |
dDDH (d4, in %) | 51.0 | 70.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dinh-Hung, N.; Mwamburi, S.M.; Dong, H.T.; Rodkhum, C.; Meemetta, W.; Linh, N.V.; Mai, H.N.; Dhar, A.K.; Hirono, I.; Senapin, S.; et al. Unveiling Insights into the Whole Genome Sequencing of Mycobacterium spp. Isolated from Siamese Fighting Fish (Betta splendens). Animals 2024, 14, 2833. https://doi.org/10.3390/ani14192833
Dinh-Hung N, Mwamburi SM, Dong HT, Rodkhum C, Meemetta W, Linh NV, Mai HN, Dhar AK, Hirono I, Senapin S, et al. Unveiling Insights into the Whole Genome Sequencing of Mycobacterium spp. Isolated from Siamese Fighting Fish (Betta splendens). Animals. 2024; 14(19):2833. https://doi.org/10.3390/ani14192833
Chicago/Turabian StyleDinh-Hung, Nguyen, Samuel Mwakisha Mwamburi, Ha Thanh Dong, Channarong Rodkhum, Watcharachai Meemetta, Nguyen Vu Linh, Hung N. Mai, Arun K. Dhar, Ikuo Hirono, Saengchan Senapin, and et al. 2024. "Unveiling Insights into the Whole Genome Sequencing of Mycobacterium spp. Isolated from Siamese Fighting Fish (Betta splendens)" Animals 14, no. 19: 2833. https://doi.org/10.3390/ani14192833
APA StyleDinh-Hung, N., Mwamburi, S. M., Dong, H. T., Rodkhum, C., Meemetta, W., Linh, N. V., Mai, H. N., Dhar, A. K., Hirono, I., Senapin, S., & Chatchaiphan, S. (2024). Unveiling Insights into the Whole Genome Sequencing of Mycobacterium spp. Isolated from Siamese Fighting Fish (Betta splendens). Animals, 14(19), 2833. https://doi.org/10.3390/ani14192833