Composition and Quality of Honey Bee Feed: The Methodology and Monitoring of Candy Boards
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Standards and Reagents
2.3. Samples
2.4. Water Content
2.5. Ash Content
2.6. pH Determination and Free Acidity
2.7. 5-Hydroxymethylfurfural (5-5-HMF)
2.8. Determination of Sugars by HPLC-RI
2.9. C3-C4 Sugar Origin
2.10. Texture
2.11. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wright, G.A.; Nicolson, S.W.; Shafir, S. Nutritional Physiology and Ecology of Honey Bees. Annu. Rev. Entomol. 2018, 63, 327–344. [Google Scholar] [CrossRef] [PubMed]
- Schmickl, T.; Crailsheim, K. Inner nest homeostasis in a changing environment with special emphasis on honey bee brood nursing and pollen supply. Apidologie 2004, 35, 249–263. [Google Scholar] [CrossRef]
- Somerville, D. Fat Bees Skinny Bees: A Manual on Honey Bee Nutrition for Beekeepers: A Report for the Rural Industries Research and Development Corporation; Rural Industries Research and Development Corporation: Goulburn, Australia, 2005.
- Brodschneider, R.; Crailsheim, K. Nutrition and health in honey bees. Apidologie 2010, 41, 278–294. [Google Scholar] [CrossRef]
- Kaftanoglu, O.; Linksvayer, T.A.; Page, R.E. Rearing Honey Bees, Apis mellifera, in vitro 1: Effects of Sugar Concentrations on Survival and Development. J. Insect Sci. 2011, 11, 96. [Google Scholar] [CrossRef]
- AOAC 998.12; C-4 Plant Sugars in Honey: Internal Standard Stable Carbon Isotope Ratio Method—First Action 1998. AOAC: Rockville, MD, USA, 2010.
- Cabañero, A.I.; Recio, J.L.; Rupérez, M. Liquid Chromatography Coupled to Isotope Ratio Mass Spectrometry: A New Perspective on Honey Adulteration Detection. J. Agric. Food Chem. 2006, 54, 9719–9727. [Google Scholar] [CrossRef]
- Elflein, L.; Raezke, K.P. Improved detection of honey adulteration by measuring differences between 13 C/12 C stable carbon isotope ratios of protein and sugar compounds with a combination of elemental analyzer—Isotope ratio mass spectrometry and liquid chromatography—Isotope ratio mass spectrometry (δ 13 C—EA/LC-IRMS). Apidologie 2008, 39, 574–587. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (CONTAM); Schrenk, D.; Bignami, M.; Bodin, L.; Chipman, J.K.; del Mazo, J.; Grasl-Kraupp, B.; Hogstrand, C.; Hoogenboom, L.; Leblanc, J.C.; et al. Evaluation of the risks for animal health related to the presence of hydroxymethylfurfural (5-HMF) in feed for honey bees. EFSA J. 2022, 20, e07227. [Google Scholar] [CrossRef]
- Frizzera, D.; Del Fabbro, S.; Ortis, G.; Zanni, V.; Bortolomeazzi, R.; Nazzi, F.; Annoscia, D. Possible side effects of sugar supplementary nutrition on honey bee health. Apidologie 2020, 51, 594–608. [Google Scholar] [CrossRef]
- Gregorc, A.; Jurišić, S.; Sampson, B. Hydroxymethylfurfural Affects Caged Honey Bees (Apis mellifera carnica). Diversity 2019, 12, 18. [Google Scholar] [CrossRef]
- Krainer, S.; Brodschneider, R.; Vollmann, J.; Crailsheim, K.; Riessberger-Gallé, U. Effect of hydroxymethylfurfural (5-HMF) on mortality of artificially reared honey bee larvae (Apis mellifera carnica). Ecotoxicology 2016, 25, 320–328. [Google Scholar] [CrossRef]
- LeBlanc, B.W.; Eggleston, G.; Sammataro, D.; Cornett, C.; Dufault, R.; Deeby, T.; St. Cyr, E. Formation of Hydroxymethylfurfural in Domestic High-Fructose Corn Syrup and Its Toxicity to the Honey Bee (Apis mellifera). J. Agric. Food Chem. 2009, 57, 7369–7376. [Google Scholar] [CrossRef] [PubMed]
- Shapla, U.M.; Solayman, M.D.; Alam, N.; Khalil, M.D.I.; Gan, S.H. 5-Hydroxymethylfurfural (5-HMF) levels in honey and other food products: Effects on bees and human health. Chem. Cent. J. 2018, 12, 35. [Google Scholar] [CrossRef] [PubMed]
- Smodiš Škerl, M.I.; Gregorc, A. A preliminary laboratory study on the longevity of A. m. carnica honey bees after feeding with candies containing 5-HMF. J. Apic. Res. 2014, 53, 422–423. [Google Scholar] [CrossRef]
- Alaux, C.; Allier, F.; Decourtye, A.; Odoux, J.F.; Tamic, T.; Chabirand, M.; Delestra, E.; Decugis, F.; Le Conte, Y.; Henry, M. A ‘Landscape physiology’ approach for assessing bee health highlights the benefits of floral landscape enrichment and semi-natural habitats. Sci. Rep. 2017, 7, 40568. [Google Scholar] [CrossRef]
- Ricigliano, V.A.; Mott, B.M.; Floyd, A.S.; Copeland, D.C.; Carroll, M.J.; Anderson, K.E. Honey bees overwintering in a southern climate: Longitudinal effects of nutrition and queen age on colony-level molecular physiology and performance. Sci. Rep. 2018, 8, 10475. [Google Scholar] [CrossRef]
- Zhang, G.; Chen, Y.; Wu, Y.; Wang, S.; Zheng, H.; Hu, F. The effect of nutritional status on the synthesis ability, protein content and gene expression of mandibular glands in honey bee (Apis mellifera) workers. J. Apic. Res. 2022, 63, 747–756. [Google Scholar] [CrossRef]
- Corby-Harris, V.; Jones, B.M.; Walton, A.; Schwan, M.R.; Anderson, K.E. Transcriptional markers of sub-optimal nutrition in developing Apis mellifera nurse workers. BMC Genom. 2014, 15, 134. [Google Scholar] [CrossRef]
- Anderson, K.E.; Ricigliano, V.A. Honey bee gut dysbiosis: A novel context of disease ecology. Curr. Opin. Insect Sci. 2017, 22, 125–132. [Google Scholar] [CrossRef]
- Almeida, E.L.; Ribiere, C.; Frei, W.; Kenny, D.; Coffey, M.F.; O’Toole, P.W. Geographical and Seasonal Analysis of the Honeybee Microbiome. Microb. Ecol. 2023, 85, 765–778. [Google Scholar] [CrossRef]
- Paray, B.A.; Kumari, I.; Hajam, Y.A.; Sharma, B.; Kumar, R.; Albeshr, M.F.; Farah, M.A.; Khan, J.M. Honeybee nutrition and pollen substitutes: A review. Saudi J. Biol. Sci. 2021, 28, 1167–1176. [Google Scholar] [CrossRef]
- Al-Ghamdi, A.A.; Abou-Shaara, H.F.; Ansari, M.J. Effects of sugar feeding supplemented with three plant extracts on some parameters of honey bee colonies. Saudi J. Biol. Sci. 2021, 28, 2076–2082. [Google Scholar] [CrossRef] [PubMed]
- Guler, A.; Ekinci, D.; Biyik, S.; Garipoglu, A.V.; Onder, H.; Kocaokutgen, H. Effects of Feeding Honey Bees (Hymenoptera: Apidae) With Industrial Sugars Produced by Plants Using Different Photosynthetic Cycles (Carbon C3 and C4) on the Colony Wintering Ability, Lifespan, and Forage Behavior. J. Econ. Entomol. 2018, 111, 2003–2010. [Google Scholar] [CrossRef] [PubMed]
- Sammataro, D.; Weiss, M. Comparison of Productivity of Colonies of Honey Bees, Apis mellifera, Supplemented with Sucrose or High Fructose Corn Syrup. J. Insect Sci. 2013, 13, 19. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, M.M.; Robinson, G.E. Diet-dependent gene expression in honey bees: Honey vs. sucrose or high fructose corn syrup. Sci. Rep. 2014, 4, 5726. [Google Scholar] [CrossRef]
- Liao, C.; Xu, Y.; Sun, Y.; Lehnert, M.S.; Xiang, W.; Wu, J.; Wu, Z. Feeding behavior of honey bees on dry sugar. J. Insect Physiol. 2020, 124, 104059. [Google Scholar] [CrossRef]
- Bhattarai, S.; Kusma, R. Preparation and Quality Evaluation Of Sugar And Honey Based Beetroot Candies. Sustain. Food Agric. 2022, 3, 15–18. [Google Scholar] [CrossRef]
- Gates, B.N. Soft Candy for Bees. DigiCat. 2022. Available online: https://www.biodiversitylibrary.org/item/116363#page/13/mode/1up (accessed on 1 July 2024).
- Madzgarashvili, G.; Kobakhidze, E. Innovative Technology of Making Candy (Paste Food) for Bees. Eur. J. Food Sci. Technol. 2023, 11, 31–35. [Google Scholar] [CrossRef]
- Bocquet, M.; Tosi, S. A New COLOSS Task Force: Bee Nutrition. Bee World 2022, 99, 35–36. [Google Scholar] [CrossRef]
- AOAC 925.45; Loss on Drying (Moisture) in Sugars. AOAC: Rockville, MD, USA, 2010.
- AOAC 900.02; Ash of Sugars and Syrups. AOAC: Rockville, MD, USA, 2010.
- Bogdanov, S. Harmonised Methods of the International Honey Commission. 2002. Available online: https://ihc-platform.net/ihcmethods2009.pdf (accessed on 1 July 2024).
- Zirbes, L.; Nguyen, B.K.; de Graaf, D.C.; De Meulenaer, B.; Reybroeck, W.; Haubruge, E.; Saegerman, C. Hydroxymethylfurfural: A Possible Emergent Cause of Honey Bee Mortality? J. Agric. Food Chem. 2013, 61, 11865–11870. [Google Scholar] [CrossRef]
- Ricigliano, V.A.; Williams, S.T.; Oliver, R. Effects of different artificial diets on commercial honey bee colony performance, health biomarkers, and gut microbiota. BMC Vet. Res. 2022, 18, 52. [Google Scholar] [CrossRef]
- Klekotko, K.; Bermingham, M.; Oliver, M.; Blaxland, J.A. Identification of gluten and the major milk allergens Bos d 5 and Bos d 11 within commercially available honey samples. Authorea, 2022; preprints. [Google Scholar]
Sample Code | Label Information |
---|---|
S-1 | Glucose/fructose syrup Sugars (97%), fiber (0.1%), ash (0.1%), sodium (0.02%) |
S-2 | Sucrose in dry substance (max. 83.0%), dextrose (app. 5.5%), fructose (app. 3.0), maltose (app. 2.5%), higher saccharides (app. 8.0%) |
S-3 | Inverted liquid sugar glucose syrup sucrose, fructose, glucose |
S-4 | Saccharose (75%), glucose syrup (16%), fructose (9%) |
S-5 | Water content (11%), pH (6); sugars in dry substance: sucrose (86%), fructose (3%), glucose (2%), other sugars (9%) |
S-6 | Glucose, fructose, other sugars |
S-7 | Sucrose (77.28%), fructose (6.08%), glucose (6.01%) Total sugars (90.52%), water content (9.00%) |
S-8 | Sugar, glucose, syrup. Total sugars: 78.3% |
S-9 | Saccharose, inverted sugar |
Metabolic Pathway | Plant Examples | δ13C | Method/Analysis Type |
---|---|---|---|
C4 | Corn (maize), Sugar cane | −8‰ ÷ 13‰ | AOAC 998.12, EA-IRMS |
C3 | Rice, Beet, Wheat, Chicory | −22‰ ÷ −30‰ | Raezke 2008, LC-IRMS |
Acidity (meq/kg Candy) | Sucrose (g/100 g Candy) | Fructose (g/100 g Candy) | Glucose (g/100 g Candy) | 5-HMF (mg/kg Candy) | pH | Water (g/100 g Candy) | ||
---|---|---|---|---|---|---|---|---|
Candy board (CB) | S-1 | 0.8 ± 0.1 | 70 ± 2 | 10 ± 1 | 10 ± 1 | 3.0 ± 0.5 | 6.2 ± 0.2 | 2 ± 1 |
S-2 | 0.9 ± 0.1 | 74 ± 4 | 2.5 ± 0.3 | 4.3 ± 0.4 | 20 ± 11 | 4.8 ± 0.3 | 4 ± 1 | |
S-3 | 0.6 ± 0.1 | 78 ± 4 | 0.4 ± 0.3 | 4.4 ± 0.4 | 1.3 ± 0.4 | 5.5 ± 0.5 | 4 ± 1 | |
S-4 | 2.3 ± 0.2 | 75 ± 3 | 7.6 ± 0.3 | 7.8 ± 0.3 | 18 ± 8 | 4.4 ± 0.2 | 2 ± 1 | |
S-5 | 0.8 ± 0.1 | 77 ± 6 | 3.7 ± 0.3 | 2.0 ± 0.1 | 3.2 ± 0.5 | 4.8 ± 0.3 | 3 ± 1 | |
S-6 | 4.5 ± 0.3 | nd | 32 ± 1 | 40 ± 1 | 58 ± 5 | 3.9 ± 0.1 | 14 ± 1 | |
S-7 | 2.8 ± 0.3 | 76 ± 4 | 6 ± 1 | 5 ± 1 | 18 ± 6 | 4.1 ± 0.4 | 3 ± 1 | |
S-8 | 0.6 ± 0.1 | 70 ± 3 | nd | 2.4 ± 0.3 | 1 ± 1 | 5.6 ± 0.4 | 4 ± 1 | |
S-9 | 0.7 ± 0.1 | 75 ± 4 | 8 ± 1 | 5.3 ± 0.5 | 2.2 ± 0.5 | 6.3 ± 0.3 | 2 ± 1 | |
p-Value A (n = 27) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
Laboratory (Lab) | Portugal | 1.5 ± 1.2 | 67 ± 24 | 8 ± 8 | 9 ± 11 | 11 ± 17 | 5 ± 1 | 3 ± 4 |
Slovakia | 1.5 ± 1.3 | 67 ± 24 | 8 ± 9 | 9 ± 11 | 18 ± 21 | 5 ± 1 | 5 ± 4 | |
Slovenia | 1.7 ± 1.4 | 65 ± 23 | 7 ± 9 | 9 ± 11 | 14 ± 16 | 5 ± 1 | 5 ± 3 | |
p-value B (n = 81) | 0.514 | 0.809 | 0.934 | 0.999 | 0.057 | 0.082 | <0.001 | |
CB × Lab p-value C (n = 243) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Samples | ||||||||
---|---|---|---|---|---|---|---|---|
S-1 | S-2 | S-3 | S-4 | S-5 | S-6 | S-7 | S-9 | |
δ13Ccb (‰) | −25.61 | −26.36 | −26.00 | −25.23 | −26.81 | −11.82 | −23.52 | −23.61 |
δ13Cp (‰) | −25.63 | −26.17 | −26.18 | −26.36 | −26.81 | −11.66 | −22.51 | −25.50 |
Δδ13Ccd-p (‰) | −0.02 | 0.19 | −0.18 | −0.12 | 0.00 | 0.15 | 1.01 | −1.89 |
δ13Cdiss(‰) | −29.03 | −25.40 | −26.89 | −28.92 | - | −12.52 | −25.40 | −29.08 |
δ13Ctriss(‰) | - | −25.35 | - | - | - | - | −25.41 | - |
Δδ13Cf-g(‰) | 0.18 | −1.3 | 0.23 | 1.51 | −31.2 | −2.15 | 0.18 | −5.59 |
Δδ13Cmax(‰) | 2.68 | −1.43 | 1.01 | 3.55 | −31.2 | −2.15 | 0.18 | 23.54 |
Diss (%) | 62.3 | 14.3 | 4.50 | 74.5 | - | 3.30 | 13.5 | 74.7 |
Triss (%) | - | 14.3 | - | - | - | - | 13.4 | - |
C4 (%) | 0.20 | 0.00 | 1.10 | 0.80 | 0.00 | 100.0 | 0.00 | 25.3 |
C3 (%) | 99.0 | 99.8 | 98.9 | 99.2 | 100 | 0.00 | 100.0 | 74.7 |
Samples | Hardness/g |
---|---|
S-1 | 302.4 ± 44.5 |
S-2 | 74.2 ± 17.5 |
S-3 | 528.8 ± 7.1 |
S-4 | 474.4 ± 28.7 |
S-5 | 83.3 ± 21.3 |
S-6 | 35.6 ± 6.3 |
S-7 | 202.0 ± 20.1 |
S-8 | 230.3 ± 14.6 |
S-9 | 274.0 ± 17.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falcão, S.I.; Bocquet, M.; Chlebo, R.; Barreira, J.C.M.; Giacomelli, A.; Smodiš Škerl, M.I.; Quaglia, G. Composition and Quality of Honey Bee Feed: The Methodology and Monitoring of Candy Boards. Animals 2024, 14, 2836. https://doi.org/10.3390/ani14192836
Falcão SI, Bocquet M, Chlebo R, Barreira JCM, Giacomelli A, Smodiš Škerl MI, Quaglia G. Composition and Quality of Honey Bee Feed: The Methodology and Monitoring of Candy Boards. Animals. 2024; 14(19):2836. https://doi.org/10.3390/ani14192836
Chicago/Turabian StyleFalcão, Soraia I., Michel Bocquet, Robert Chlebo, João C. M. Barreira, Alessandra Giacomelli, Maja Ivana Smodiš Škerl, and Giancarlo Quaglia. 2024. "Composition and Quality of Honey Bee Feed: The Methodology and Monitoring of Candy Boards" Animals 14, no. 19: 2836. https://doi.org/10.3390/ani14192836
APA StyleFalcão, S. I., Bocquet, M., Chlebo, R., Barreira, J. C. M., Giacomelli, A., Smodiš Škerl, M. I., & Quaglia, G. (2024). Composition and Quality of Honey Bee Feed: The Methodology and Monitoring of Candy Boards. Animals, 14(19), 2836. https://doi.org/10.3390/ani14192836