Comparison of Citrated Whole Blood to Native Whole Blood for Coagulation Testing Using the Viscoelastic Coagulation Monitor (VCM Vet™) in Horses
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Blood Sampling and Testing
2.3. Determination of Reference Intervals
2.4. Statistical Analysis
3. Results
3.1. Animals
3.2. Viscoelastic Testing Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Monreal, L.; Cesarini, C. Coagulopathies in Horses with Colic. Vet. Clin. N. Am. Equine Pract. 2009, 25, 247–258. [Google Scholar] [CrossRef] [PubMed]
- Dallap, S.; Barbara, L.; Epstein, K. Coagulopathy of the critically ill equine patient. J. Vet. Emerg. Crit. Care 2009, 19, 53–65. [Google Scholar] [CrossRef] [PubMed]
- Epstein, K.L.; Brainard, B.M.; Gomez-Ibanez, S.E.; Lopes, M.A.F.; Barton, M.H.; Moore, J.N. Thrombelastography in Horses with Acute Gastrointestinal Disease. J. Vet. Intern. Med. 2011, 25, 307–314. [Google Scholar] [CrossRef] [PubMed]
- DeNotta, S.L.; Brooks, M.B. Coagulation Assessment in the Equine Patient. Vet. Clin. North Am. Equine Pract. 2020, 36, 53–71. [Google Scholar] [CrossRef]
- Hyldahl Laursen, S.; Haubro Andersen, P.; Kjelgaard-Hansen, M.; Wiinberg, B. Comparison of components of biological variation between 3 equine thromboelastography assays. Vet. Clin. Pathol. 2013, 42, 443–450. [Google Scholar] [CrossRef]
- Leclere, M.; Lavoie, J.-P.; Dunn, M.; Bédard, C. Evaluation of a modified thrombelastography assay initiated with recombinant human tissue factor in clinically healthy horses. Vet. Clin. Pathol. 2009, 38, 462–466. [Google Scholar] [CrossRef]
- Thane, K.; Bedenice, D.; Pacheco, A. Operator-based variability of equine thromboelastography. J. Vet. Emerg. Crit. Care 2017, 27, 419–424. [Google Scholar] [CrossRef]
- Flatland, B.; Koenigshof, A.M.; Rozanski, E.A.; Goggs, R.; Wiinberg, B. Systematic evaluation of evidence on veterinary viscoelastic testing part 2: Sample acquisition and handling. J. Vet. Emerg. Crit. Care 2014, 24, 30–36. [Google Scholar] [CrossRef]
- de Laforcade, A.; Goggs, R.; Wiinberg, B. Systematic evaluation of evidence on veterinary viscoelastic testing part 3: Assay activation and test protocol. J. Vet. Emerg. Crit. Care 2014, 24, 37–46. [Google Scholar] [CrossRef]
- Yucupicio, S.D.; Bishop, R.C.; Fick, M.E.; Austin, S.M.; Barger, A.M.; Stolsworth, B.; Wilkins, P.A. Prolonged holding time and sampling protocol affects viscoelastic coagulation parameters as measured by the VCM-Vet™ using fresh equine native whole blood. Am. J. Vet. Res. 2023, 84, 6. [Google Scholar] [CrossRef]
- York, W.; Smith, M.R.; Liu, C.-C. Use of citrated whole blood for point-of-care viscoelastic coagulation testing in dogs. Front. Vet. Sci. 2022, 9, 827350. [Google Scholar] [CrossRef] [PubMed]
- Henneke, D.R.; Potter, G.D.; Kreider, J.L.; Yeates, B.F. Relationship between condition score, physical measurements and body fat percentage in mares. Equine Vet. J. 1983, 15, 371–372. [Google Scholar] [CrossRef] [PubMed]
- Mendez-Angulo, J.; Mudge, M.; Couto, C. Thromboelastography in equine medicine: Technique and use in clinical research. Equine Vet. Educ. 2012, 24, 639–649. [Google Scholar] [CrossRef]
- Lovett, A.L.; Gilliam, L.L.; Sykes, B.W.; McFarlane, D. Thromboelastography in obese horses with insulin dysregulation compared to healthy controls. J. Vet. Intern. Med. 2022, 36, 1131–1138. [Google Scholar] [CrossRef]
- Ltd, S.E. Power Calculator for Continuous Outcome Equivalence Trial. Available online: https://www.sealedenvelope.com/power/continuous-equivalence/ (accessed on 4 March 2024).
- Bishop, R.C.; Kemper, A.M.; Burges, J.W.; Jandrey, K.E.; Wilkins, P.A. Preliminary evaluation of reference intervals for a point-of-care viscoelastic coagulation monitor (VCM Vet) in healthy adult horses. J. Vet. Emerg. Crit. Care 2023, 33, 540–548. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; D’Agostino McGowan, L.; Francois, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Wickham, H. ggplot2. In Elegant Graphics for Data Analysis, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Bland, J.M.; Altman, D.G. Statistical Methods For Assessing Agreement Between Two Methods Of Clinical Measurement. Lancet 1986, 327, 307–310. [Google Scholar] [CrossRef]
- Shieh, G. The appropriateness of Bland-Altman’s approximate confidence intervals for limits of agreement. BMC Med. Res. Methodol. 2018, 18, 45. [Google Scholar] [CrossRef]
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Lüdecke, D. Sjstats: Statistical Functions for Regression Models. Version 0.17.2, 15 November 2018. Available online: https://zenodo.org/records/1489175 (accessed on 13 September 2024).
- Friedrichs, K.R.; Harr, K.E.; Freeman, K.P.; Szladovits, B.; Walton, R.M.; Barnhart, K.F.; Blanco-Chavez, J. ASVCP reference interval guidelines: Determination of de novo reference intervals in veterinary species and other related topics. Vet. Clin. Pathol. 2012, 41, 441–453. [Google Scholar] [CrossRef]
- Finnegan, D. ReferenceIntervals. 2020. Available online: https://cran.r-project.org/web/packages/referenceIntervals/referenceIntervals.pdf (accessed on 4 March 2024).
- Burton, A.G.; Jandrey, K.E. Use of Thromboelastography in Clinical Practice. Vet. Clin. N. Am. Small Anim. Pract. 2020, 50, 1397–1409. [Google Scholar] [CrossRef] [PubMed]
- Hans, G.A.; Besser, M.W. The place of viscoelastic testing in clinical practice. Br. J. Haematol. 2016, 173, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Camenzind, V.; Bombeli, T.; Seifert, B.; Jamnicki, M.; Popovic, D.; Pasch, T.; Spahn, D.R. Citrate Storage Affects Thrombelastograph® Analysis. Anesthesiology 2000, 92, 1242–1249. [Google Scholar] [CrossRef] [PubMed]
- Vig, S.; Chitolie, A.; Bevan, D.H.; Halliday, A.; Dormandy, J. Thromboelastography: A reliable test? Blood Coagul. Fibrinolysis 2001, 12, 555–561. [Google Scholar] [CrossRef]
- Rossi, T.M.; Smith, S.A.; McMichael, M.A.; Wilkins, P.A. Evaluation of contact activation of citrated equine whole blood during storage and effects of contact activation on results of recalcification-initiated thromboelastometry. Am. J. Vet. Res. 2014, 76, 122–128. [Google Scholar] [CrossRef]
- Paltrinieri, S.; Meazza, C.; Giordano, A.; Tunesi, C. Validation of thromboelastometry in horses. Vet. Clin. Pathol. 2008, 37, 277–285. [Google Scholar] [CrossRef]
- Garcia-Pereira, B.L.; Scott, M.A.; Koenigshof, A.M.; Brown, A.J. Effect of venipuncture quality on thromboelastography. J. Vet. Emerg. Crit. Care 2012, 22, 225–229. [Google Scholar] [CrossRef]
- Goggs, R.; Brainard, B.; De Laforcade, A.M.; Flatland, B.; Hanel, R.; McMichael, M.; Wiinberg, B. Partnership on Rotational ViscoElastic Test Standardization (PROVETS): Evidence-based guidelines on rotational viscoelastic assays in veterinary medicine. J. Vet. Emerg. Crit. Care 2014, 24, 1–22. [Google Scholar] [CrossRef]
- Zambruni, A.; Thalheimer, U.; Leandro, G.; Perry, D.; Burroughs, A.K. Thromboelastography with citrated blood: Comparability with native blood, stability of citrate storage and effect of repeated sampling. Blood Coagul. Fibrinolysis 2004, 15, 103–107. [Google Scholar] [CrossRef]
- Windberger, U.; Dibiasi, C.; Lotz, E.M.; Scharbert, G.; Reinbacher-Koestinger, A.; Ivanov, I.; Ploszczanski, L.; Antonova, N.; Lichtenegger, H. The effect of hematocrit, fibrinogen concentration and temperature on the kinetics of clot formation of whole blood. Clin. Hemorheol. Microcirc. 2020, 75, 431–445. [Google Scholar] [CrossRef]
- Beeck, H.; Becker, T.; Kiessig, S.T.; Kaeser, R.; Wolter, K.; Hellstern, P. The influence of citrate concentration on the quality of plasma obtained by automated plasmapheresis: A prospective study. Transfusion 1999, 11–12, 1266–1270. [Google Scholar] [CrossRef] [PubMed]
- Bar, J.; Schoenfeld, A.; Hod, M.; Rabinerson, D.; Marmur, A.; Brook, G.J.; Aviram, M. The effects of time interval after venipuncture and of anticoagulation on platelet adhesion and aggregation. Clin. Lab. Haematol. 1996, 18, 281–284. [Google Scholar] [CrossRef] [PubMed]
- Germanovich, K.; Femia, E.A.; Cheng, C.Y.; Dovlatova, N.; Cattaneo, M. Effects of pH and concentration of sodium citrate anticoagulant on platelet aggregation measured by light transmission aggregometry induced by adenosine diphosphate. Platelets 2017, 29, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Piccione, G.; Casella, S.; Giannetto, C.; Assenza, A.; Caola, G. Effect of Different Storage Conditions on Platelet Aggregation in Horse. J. Equine Vet. Sci. 2010, 30, 371–375. [Google Scholar] [CrossRef]
- Vincent, J.L. Microvascular endothelial dysfunction: A renewed appreciation of sepsis pathophysiology. Crit. Care 2001, 5, S1–S5. [Google Scholar] [CrossRef]
- Chang, J.; Jandrey, K.E.; Burges, J.W.; Kent, M.S. Comparison of healthy blood donor Greyhounds and non-Greyhounds using a novel point-of-care viscoelastic coagulometer. J. Vet. Emerg. Crit. Care 2021, 31, 766–772. [Google Scholar] [CrossRef]
- Roeloffzen, W.W.; Kluin-Nelemans, H.C.; Mulder, A.B.; Veeger, N.J.; Bosman, L.; de Wolf, J.T.M. In normal controls, both age and gender affect coagulability as measured by thrombelastography. Anesth. Analg. 2010, 110, 987–994. [Google Scholar] [CrossRef]
- McMichael, M.A.; Smith, S.A.; McConachie, E.L.; Lascola, K.; Wilkins, P.A. In-vitro hypocoagulability on whole blood thromboelastometry associated with in-vivo expansion of red cell mass in an equine model. Vet. Clin. Pathol. 2011, 22, 424–430. [Google Scholar] [CrossRef]
VCM Vet™ Parameter | Timepoint | Estimate ± SE | p Value | Bias (from T0) | Limits of Agreement | Intraclass Correlation |
---|---|---|---|---|---|---|
CT | T0 (Intercept) | 1027.31 ± 20.17 | <0.001 | 0.47 | ||
T1 | −58.97 ± 16.08 | <0.001 | −45.05 | −388.88–298.79 | ||
T4 | −197.84 ± 15.43 | <0.001 | −195.01 | −500.05–110.03 | ||
CFT | T0 (Intercept) | 441.02 ± 29.96 | <0.001 | 0.39 | ||
T1 | 299.4 ± 27.34 | <0.001 | 233 | −94.09–1059.53 | ||
T4 | 67.19 ± 26.25 | 0.011 | 41.25 | −271.25–707.43 | ||
AA | T0 (Intercept) | 27.17 ± 1.22 | <0.001 | 0.54 | ||
T1 | −7.13 ± 0.76 | <0.001 | −8.16 | −18.68–5.78 | ||
T4 | 1.18 ± 0.73 | 0.107 | −0.21 | −13.47–21.59 | ||
MCF | T0 (Intercept) | 28.01 ± 1.01 | <0.001 | 0.51 | ||
T1 | 1.31 ± 0.85 | 0.126 | −0.67 | −16.13–26.02 | ||
T4 | 4.66 ± 0.82 | <0.001 | 6.03 | −11.35–23.48 | ||
Li30 | T0 (Intercept) | 99.4 ± 0.07 | <0.001 | 0.16 | ||
T1 | 0.55 ± 0.08 | <0.001 | 0.32 | −0.03–2.95 | ||
T4 | 0.51 ± 0.08 | <0.001 | 0.24 | −0.36–2.59 | ||
Li45 | T0 (Intercept) | 91.44 ± 0.54 | <0.001 | 0.17 | ||
T1 | 6.31 ± 0.59 | <0.001 | 5.98 | −0.01–11.34 | ||
T4 | 6.28 ± 0.56 | <0.001 | 6.65 | 1.69–11.08 | ||
A10 | T0 (Intercept) | 16.08 ± 0.84 | <0.001 | 0.54 | ||
T1 | −5.64 ± 0.54 | <0.001 | −6.23 | −12.48–4.32 | ||
T4 | −0.32 ± 0.52 | 0.535 | −1.7 | −11.87–15.02 | ||
A20 | T0 (Intercept) | 25.65 ± 0.86 | <0.001 | 0.46 | ||
T1 | −4.69 ± 0.75 | <0.001 | −5.01 | −21.97–16.16 | ||
T4 | 1.46 ± 0.72 | 0.043 | 1.6 | −12.3–20.38 |
VCM Vet™ Parameter | Timepoint | 95% Reference Intervals | Coefficient of Variation (95% CI) |
---|---|---|---|
CT | T0 | 743–1408 | 0.17 (0.13–0.21) |
T1 | 685–1482 | 0.19 (0.15–0.24) | |
T4 | 573–1104 | 0.17 (0.13–0.20) | |
CFT | T0 | 251–698 | 0.26 (0.20–0.32) |
T1 | 337–2494 | 0.52 (0.41–0.64) | |
T4 | 197–2499 | 0.76 (0.60–0.93) | |
AA | T0 | 16–42 | 0.23 (0.18–0.28) |
T1 | 7–36 | 0.38 (0.30–0.46) | |
T4 | 9–49 | 0.35 (0.28–0.43) | |
MCF | T0 | 13–42 | 0.22 (0.17–0.27) |
T1 | 8–47 | 0.37 (0.29–0.45) | |
T4 | 8–40 | 0.30 (0.23–0.36) | |
Li30 | T0 | 98–100 | 0.01 (0–0.01) |
T1 | 100–100 | <0.01 (0–0.01) | |
T4 | 100–100 | <0.01 (0–0.01) | |
Li45 | T0 | 88–100 | 0.05 (0.04–0.06) |
T1 | 97–100 | 0.02 (0.01–0.02) | |
T4 | 93–100 | 0.02 (0.02–0.02) | |
A10 | T0 | 8–24 | 0.26 (0.20–0.32) |
T1 | 3–17 | 0.43 (0.34–0.53) | |
T4 | 4–28 | 0.41 (0.32–0.50) | |
A20 | T0 | 13–35 | 0.21 (0.17–0.26) |
T1 | 7–40 | 0.43 (0.34–0.53) | |
T4 | 6–38 | 0.32 (0.25–0.39) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vokes, J.R.; Lovett, A.L.; de Kantzow, M.C.; Rogers, C.W.; Wilkins, P.A.; Sykes, B.W. Comparison of Citrated Whole Blood to Native Whole Blood for Coagulation Testing Using the Viscoelastic Coagulation Monitor (VCM Vet™) in Horses. Animals 2024, 14, 2892. https://doi.org/10.3390/ani14192892
Vokes JR, Lovett AL, de Kantzow MC, Rogers CW, Wilkins PA, Sykes BW. Comparison of Citrated Whole Blood to Native Whole Blood for Coagulation Testing Using the Viscoelastic Coagulation Monitor (VCM Vet™) in Horses. Animals. 2024; 14(19):2892. https://doi.org/10.3390/ani14192892
Chicago/Turabian StyleVokes, Jessica R., Amy L. Lovett, Max C. de Kantzow, Chris W. Rogers, Pamela A. Wilkins, and Benjamin W. Sykes. 2024. "Comparison of Citrated Whole Blood to Native Whole Blood for Coagulation Testing Using the Viscoelastic Coagulation Monitor (VCM Vet™) in Horses" Animals 14, no. 19: 2892. https://doi.org/10.3390/ani14192892
APA StyleVokes, J. R., Lovett, A. L., de Kantzow, M. C., Rogers, C. W., Wilkins, P. A., & Sykes, B. W. (2024). Comparison of Citrated Whole Blood to Native Whole Blood for Coagulation Testing Using the Viscoelastic Coagulation Monitor (VCM Vet™) in Horses. Animals, 14(19), 2892. https://doi.org/10.3390/ani14192892