Thyme and Oregano Oil Potential Therapeutics against Malathion Toxicity through Biochemical, Histological, and Cytochrome P450 1A2 Activities in Male Wistar Rats
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Rats and Management
2.3. Experimental Design
2.4. Biological Evaluation
2.5. Biochemical Assays
2.6. Histological Examination
2.7. Specific Gene Detection Technique
2.7.1. PCR Amplification
2.7.2. Agarose Gel Electrophoresis
2.7.3. Data Analysis
2.8. Protein Electrophoretic Studies
2.9. Statistical Analysis
3. Results
3.1. Biological Evaluation
3.2. Biochemical Assays
3.3. Oxidative Stress Markers
3.4. Histopathological Examination
3.5. Specific Gene Detection
PCR Amplification
3.6. The Identity Matrix Analysis of the CYP1A2 Gene Sequences
3.6.1. CYP1A2 Sequence
3.6.2. CYP1A2 Phylogenetic Analysis
3.7. Protein Electrophoretic Studies
3.7.1. SDS-PAGE Gel Electrophoresis and Molecular Weights (MWs)
3.7.2. A Visual Tree Phylogenetic Analysis
3.7.3. Concentration Percentages of Cyp1a2 Protein Fractions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Narayan, S.; Liew, Z.; Paul, K.; Lee, P.C.; Sinsheimer, J.S.; Bronstein, J.M.; Ritz, B. Household organophosphorus pesticide use and Parkinson’s disease. Int. J. Epidemiol. 2013, 42, 1476–1485. [Google Scholar] [CrossRef] [PubMed]
- Tudi, M.; Daniel Ruan, H.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D.; Chu, C.; Phung, D.T. Agriculture Development, Pesticide Application and Its Impact on the Environment. Int. J. Environ. Res. Public Health 2021, 18, 1112. [Google Scholar] [CrossRef] [PubMed]
- Paul, B.T.; Anita, K.P.; Clement, G.Y.; Pamela, D.M. Environmental Exposure and Health Effects Associated with Malathion Toxicity. In Toxicity and Hazard of Agrochemicals; Marcelo, L.L., Sonia, S., Eds.; IntechOpen: Rijeka, Croatia, 2015; Chapter 3. [Google Scholar]
- Al-Saeed, F.A.; Abd-Elghfar, S.S.; Ali, M.E. Efficiency of Thyme and Oregano Essential Oils in Counteracting the Hazardous Effects of Malathion in Rats. Animals 2024, 14, 2497. [Google Scholar] [CrossRef]
- Guberman VerPloeg, S.L.; Yoon, S.; Alvarez, S.L.; Flynn, J.H.; Collins, D.; Griffin, R.J.; Sheesley, R.J.; Usenko, S. Atmospheric Transport of Adulticides Used to Control Mosquito Populations across an Urban Metropolitan Area. Atmosphere 2023, 14, 1495. [Google Scholar] [CrossRef]
- Lumsden, E.W.; McCowan, L.; Pescrille, J.D.; Fawcett, W.P.; Chen, H.; Albuquerque, E.X.; Mamczarz, J.; Pereira, E.F.R. Learning and memory retention deficits in prepubertal guinea pigs prenatally exposed to low levels of the organophosphorus insecticide malathion. Neurotoxicol. Teratol. 2020, 81, 106914. [Google Scholar] [CrossRef]
- Jensen, I.M.; Whatling, P. Malathion: A review of toxicology. In Hayes’ Handbook of Pesticide Toxicology; Academic Press: Cambridge, MA, USA, 2010; pp. 1527–1542. [Google Scholar]
- Abstracts of Scientific Presentations 2019 AALAS National Meeting. J. Am. Assoc. Lab Anim. Sci. 2019, 58, 607–726.
- Corrias, F.; Atzei, A.; Taddeo, R.; Arru, N.; Casula, M.; Salghi, R.; Russo, M.; Angioni, A. Fipronil and Fipronil Sulfone Distribution in Chicken Feathers and Eggs after Oral and Dermal Exposure. Foods 2021, 10, 3077. [Google Scholar] [CrossRef]
- Ji, X.; Yang, H.; Lyu, W.; Wang, J.; Wang, X.; Wang, X.; Qian, M. Evaluation of cyromazine transferred from feed to chicken products and subsequent assessment of dietary risks to Chinese consumers. J. Food Sci. 2020, 85, 4396–4406. [Google Scholar] [CrossRef] [PubMed]
- Mahugija, J.A.M.; Chibura, P.E.; Lugwisha, E.H.J. Residues of pesticides and metabolites in chicken kidney, liver and muscle samples from poultry farms in Dar es Salaam and Pwani, Tanzania. Chemosphere 2018, 193, 869–874. [Google Scholar] [CrossRef]
- Zhao, M.; Ma, J.; Li, M.; Zhang, Y.; Jiang, B.; Zhao, X.; Huai, C.; Shen, L.; Zhang, N.; He, L. Cytochrome P450 enzymes and drug metabolism in humans. Int. J. Mol. Sci. 2021, 22, 12808. [Google Scholar] [CrossRef]
- Esteves, F.; Rueff, J.; Kranendonk, M. The central role of cytochrome P450 in xenobiotic metabolism—A brief review on a fascinating enzyme family. J. Xenobiotics 2021, 11, 94–114. [Google Scholar] [CrossRef] [PubMed]
- Konstandi, M.; Johnson, E.O. Age-related modifications in CYP-dependent drug metabolism: Role of stress. Front. Endocrinol. 2023, 14, 1143835. [Google Scholar] [CrossRef]
- Stefanaki, A.; van Andel, T. Mediterranean aromatic herbs and their culinary use. In Aromatic Herbs in Food; Elsevier: Amsterdam, The Netherlands, 2021; pp. 93–121. [Google Scholar]
- Hao, Y.; Li, J.; Shi, L. A carvacrol-rich essential oil extracted from oregano (Origanum vulgare “hot & Spicy”) exerts potent antibacterial effects against Staphylococcus aureus. Front. Microbiol. 2021, 12, 741861. [Google Scholar]
- Lü, J.M.; Lin, P.H.; Yao, Q.; Chen, C. Chemical and molecular mechanisms of antioxidants: Experimental approaches and model systems. J. Cell. Mol. Med. 2010, 14, 840–860. [Google Scholar] [CrossRef]
- Aristatile, B.; Al-Assafa, A.H.; Pugalendi, K.V. Carvacrol ameliorates the PPAR-α and cytochrome P450 expression on d-galactosamine induced hepatotoxicity rats. Afr. J. Tradit. Complement. Altern. Med. 2014, 11, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Zehetner, P.; Höferl, M.; Buchbauer, G. Essential oil components and cytochrome P450 enzymes: A review. Flavour Fragr. J. 2019, 34, 223–240. [Google Scholar] [CrossRef]
- Low, C.; Adams, B.G. Spectrophotometric determination of urea-ammonia in the urea degradation pathway of Saccharomyces cerevisiae. J. Microbiol. Methods 1990, 11, 229–239. [Google Scholar] [CrossRef]
- Young, D.S. Effects of drugs on clinical laboratory tests. Ann. Clin. Biochem. 1997, 34, 579–581. [Google Scholar] [CrossRef]
- Schumann, G.; Klauke, R. New IFCC reference procedures for the determination of catalytic activity concentrations of five enzymes in serum: Preliminary upper reference limits obtained in hospitalized subjects. Clin. Chim. Acta 2003, 327, 69–79. [Google Scholar] [CrossRef]
- Paglia, D.E.; Valentine, W.N. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 1967, 70, 158–169. [Google Scholar]
- Abdel Ghfar, S.S.; Ali, M.E.; Momenah, M.A.; Al-Saeed, F.A.; Al-Doaiss, A.A.; Mostafa, Y.S.; Ahmed, A.E.; Abdelrahman, M. Corrigendum: Effect of Allium sativum and Nigella sativa on alleviating aluminum toxicity state in the albino rats. Front. Vet. Sci. 2023, 10, 1160163. [Google Scholar] [CrossRef] [PubMed]
- György, É.; Laslo, É.; Kuzman, I.H.; Dezső András, C. The effect of essential oils and their combinations on bacteria from the surface of fresh vegetables. Food Sci. Nutr. 2020, 8, 5601–5611. [Google Scholar] [CrossRef] [PubMed]
- Burt, S.A.; Reinders, R.D. Antibacterial activity of selected plant essential oils against Escherichia coli O157: H7. Lett. Appl. Microbiol. 2003, 36, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Moore, P.D.; Patlolla, A.K.; Tchounwou, P.B. Cytogenetic evaluation of malathion-induced toxicity in Sprague-Dawley rats. Mutat. Res./Genet. Toxicol. Environ. Mutagen. 2011, 725, 78–82. [Google Scholar] [CrossRef] [PubMed]
- Selmi, S.; Rtibi, K.; Grami, D.; Sebai, H.; Marzouki, L. Malathion, an organophosphate insecticide, provokes metabolic, histopathologic and molecular disorders in liver and kidney in prepubertal male mice. Toxicol. Rep. 2018, 5, 189–195. [Google Scholar] [CrossRef]
- Sakkas, H.; Papadopoulou, C. Antimicrobial activity of basil, oregano, and thyme essential oils. J. Microbiol. Biotechnol. 2017, 27, 429–438. [Google Scholar] [CrossRef]
- Zaazaa, A.; Mudalal, S.; Alzuheir, I.; Samara, M.; Jalboush, N.; Fayyad, A.; Petracci, M. The impact of thyme and oregano essential oils dietary supplementation on broiler health, growth performance, and prevalence of growth-related breast muscle abnormalities. Animals 2022, 12, 3065. [Google Scholar] [CrossRef]
- Kong, A.S.-Y.; Maran, S.; Yap, P.S.-X.; Lim, S.-H.E.; Yang, S.-K.; Cheng, W.-H.; Tan, Y.-H.; Lai, K.-S. Anti-and pro-oxidant properties of essential oils against antimicrobial resistance. Antioxidants 2022, 11, 1819. [Google Scholar] [CrossRef]
- Ali, M.E.; Abd-Elkariem, M.F.A.; Fahmy, S.; Hussein, H.A.; Abdelrahman, M.; Ahmed, A.E. Dietary supplementation with different nano and organic selenium doses improves ovarian activity, fertility rate, and progesterone level in Ossimi ewes. Ital. J. Anim. Sci. 2023, 22, 651–659. [Google Scholar] [CrossRef]
- Syaad, K.M.A.; Al-Doaiss, A.A.; Ahmed, A.E.; El-Mekkawy, H.; Abdelrahman, M.; El-Mansi, A.A.; Kulyar, M.F.-e.-A.; Ali, M.E. The abrogative effect of propolis on acrylamide-induced toxicity in male albino rats: Histological study. Open Chem. 2023, 21, 20220321. [Google Scholar] [CrossRef]
- Salahshoor, M.R.; Roshankhah, S.; Hosseni, P.; Jalili, C. Genistein improves liver damage in male mice exposed to morphine. Chin. Med. J. 2018, 131, 1598–1604. [Google Scholar] [CrossRef] [PubMed]
- Husain, R.; Husain, R.; Adhami, V.M.; Seth, P. Behavioral, neurochemical, and neuromorphological effects of deltamethrin in adult rats. J. Toxicol. Environ. Health Part A 1996, 48, 515–516. [Google Scholar]
- Hritcu, L.; Bagci, E.; Aydin, E.; Mihasan, M. Antiamnesic and antioxidants effects of Ferulago angulata essential oil against scopolamine-induced memory impairment in laboratory rats. Neurochem. Res. 2015, 40, 1799–1809. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.-L.; Zeng, T.; Zhao, X.-L.; Xie, K.-Q. Garlic oil attenuated nitrosodiethylamine-induced hepatocarcinogenesis by modulating the metabolic activation and detoxification enzymes. Int. J. Biol. Sci. 2013, 9, 237. [Google Scholar] [CrossRef]
Items | Analysis | |
---|---|---|
TEO | OEO | |
Batch No. | TO/CAL/5021/21-22 | |
Country of origin | India | |
Appearance | Yellow to pale yellow liquid | Yellow- to amber-colored liquid |
Odor | The characteristic odor of thyme and sharp, burning taste | Pungent odor, spicy aroma |
Solubility in water | Insoluble | Insoluble |
Specific gravity | 0.919 (0.900–0.930) | 0.9370–0.9380 |
Refraction index at 25 °C | 1.4998 (1.4900–1.5100) | 1.510–1.520 |
Content | 50.21% (50.00% minimum) | 50.85% (50.00% minimum) |
Primers | Sequences (5′ → 3′) | Product Length (bp) | Tm (°C) | GC% |
---|---|---|---|---|
1 | GCTGTGGACTTCTTTCCGGT TTTCCCAAGCCGAAGAGCAT | 659 | 60.25 59.96 | 55.00 50.00 |
4 | CTGAACACCATCAAGCAGGC AGAAGTCCACAGCATTCCCTG | 445 | 59.48 60.00 | 55.00 52.38 |
Items | Initial Weight (0 Day) | BW at 7 Day | BW at 14 Day | Final Weight (21 Day) | BWG |
---|---|---|---|---|---|
C − MOP | 132.67 | 148.83 b | 165.00 b | 190.00 b | 57.33 b |
C + MOP | 134.33 | 142.33 c | 151.33 c | 161.67 c | 27.34 c |
OEO | 138.33 | 155.83 a | 173.33 a | 196.67 a | 58.34 a |
TEO | 133.67 | 154.83 a | 176.00 a | 200.00 a | 66.33 a |
MOP + OEO | 136.33 | 146.00 b | 155.67 bc | 166.67 b | 30.34 bc |
MOP + TEO | 133.33 | 147.17 b | 160.01 b | 181.67 b | 48.34 b |
SEM | 0.64 | 1.28 | 2.35 | 3.82 | 1.21 |
p-value | 0.063 | 0.001 | 0.001 | 0.001 | 0.001 |
Items | ALT (U/L) | AST (U/L) | ALK-Ph (U/L) | Creatinine (mg/dL) | Total Protein (g/dL) |
---|---|---|---|---|---|
C − MOP | 46.00 b | 156.50 bc | 107.50 cd | 0.57 c | 6.90 b |
C + MOP | 72.00 a | 185.50 a | 198.00 a | 0.93 a | 5.20 a |
OEO | 48.50 b | 149.50 d | 112.00b cd | 0.73 bc | 6.30 b |
TEO | 42.00 b | 114.50 a | 103.00 d | 0.60 bc | 6.40 b |
MOP + OEO | 40.50 b | 165.50 b | 123.50 b | 0.60 bc | 6.50 b |
MOP + TEO | 44.50 b | 126.50 d | 118.00 bc | 0.73 b | 6.80 b |
SEM | 0.59 | 0.18 | 0.09 | 1.02 | 0.02 |
p-value | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
Items | Butyryl Cholinesterase (U/L) | SOD (U/mL) | MDA (nmol/mL) | GPx (mU/mL) | TAC (mM/L) |
---|---|---|---|---|---|
C − MOP | 118.87 c | 14.07 b | 7.10 b | 3.20 c | 7.53 b |
C + MOP | 175.00 a | 17.90 a | 33.30 a | 2.80 ab | 2.20 c |
OEO | 120.00 c | 11.17 c | 3.67 c | 7.30 b | 13.33 a |
TEO | 106.00 c | 11.80 c | 3.20 c | 16.70 a | 8.00 b |
MOP + OEO | 139.50 b | 12.90 bc | 2.97 c | 12.43 a | 6.83 b |
MOP + TEO | 104.00 c | 12.47 c | 3.87 c | 14.90 b | 7.83 b |
SEM | 0.01 | 0.05 | 2.78 | 1.04 | 0.12 |
p-value | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
Items | Band No. | Lane % | MW (Da) | RF |
---|---|---|---|---|
C − MOP | 1 | 16.16 | 630.622 | 0.200 |
2 | 63.93 | 417.039 | 0.390 | |
C + MOP | 1 | 0.38 | 645.509 | 0.193 |
2 | 0.19 | 441.637 | 0.360 | |
OEO | 1 | 0.63 | 621.370 | 0.205 |
2 | 63.88 | 412.966 | 0.395 | |
TEO | 1 | 0.56 | 650.781 | 0.190 |
2 | 63.98 | 439.812 | 0.362 | |
MOP + OEO | 1 | 0.53 | 640.390 | 0.195 |
2 | 64.10 | 437.983 | 0.364 | |
MOP + TEO | 1 | 0.62 | 667.669 | 0.183 |
2 | 63.98 | 437.986 | 0.364 |
Items | MOP + TEO | C + MOP | MOP + OEO | TEO | OEO | ref | C − MOP |
---|---|---|---|---|---|---|---|
MOP + TEO | 100.00 | 92.99 | 93.77 | 93.82 | 94.90 | 96.79 | 96.98 |
C + MOP | 92.99 | 100.00 | 94.67 | 95.60 | 97.00 | 95.88 | 95.88 |
MOP + OEO | 93.77 | 94.67 | 100.00 | 96.00 | 97.72 | 95.62 | 95.62 |
TEO | 93.82 | 95.60 | 96.00 | 100.00 | 98.12 | 96.38 | 96.38 |
OEO | 94.90 | 97.00 | 97.72 | 98.12 | 100.00 | 97.75 | 97.72 |
ref | 96.79 | 95.88 | 95.62 | 96.38 | 97.75 | 100.00 | 99.72 |
C − MOP | 96.98 | 95.88 | 95.62 | 96.38 | 97.75 | 99.72 | 100.00 |
Band No | MW (kDa) | C − MOP | C + MOP | OEO | TEO | MOP + OEO | MOP + TEO |
---|---|---|---|---|---|---|---|
1 | 19.299 | 0 | 0 | 0 | 0 | 1 | 1 |
2 | 83.144 | 1 | 0 | 0 | 0 | 0 | 0 |
3 | 76.173 | 1 | 0 | 0 | 0 | 1 | 0 |
4 | 70.107 | 0 | 0 | 0 | 0 | 1 | 1 |
5 | 61.582 | 1 | 0 | 1 | 1 | 0 | 1 |
6 | 46.572 | 0 | 0 | 0 | 0 | 1 | 1 |
7 | 42.039 | 0 | 0 | 0 | 0 | 1 | 1 |
8 | 34.683 | 0 | 0 | 1 | 1 | 0 | 0 |
9 | 33.436 | 1 | 1 | 1 | 1 | 1 | 1 |
10 | 31.850 | 1 | 0 | 0 | 0 | 1 | 1 |
11 | 30.242 | 1 | 1 | 1 | 1 | 1 | 1 |
12 | 25.564 | 1 | 1 | 1 | 1 | 1 | 1 |
13 | 24.523 | 1 | 0 | 0 | 0 | 0 | 0 |
14 | 21.852 | 1 | 0 | 1 | 1 | 0 | 0 |
15 | 18.362 | 0 | 0 | 1 | 1 | 0 | 1 |
16 | 16.694 | 0 | 1 | 0 | 0 | 1 | 1 |
17 | 16.095 | 0 | 1 | 1 | 1 | 0 | 0 |
18 | 11.907 | 0 | 0 | 1 | 0 | 0 | 0 |
19 | 11.589 | 1 | 1 | 1 | 1 | 1 | 1 |
20 | 10.747 | 0 | 0 | 1 | 1 | 0 | 1 |
21 | 10.580 | 1 | 1 | 0 | 0 | 0 | 0 |
22 | 10.363 | 1 | 1 | 1 | 1 | 1 | 1 |
23 | 10.067 | 1 | 1 | 1 | 1 | 0 | 1 |
Fractions | C − MOP | C + MOP | OEO | TEO | MOP + OEO | MOP + TEO |
---|---|---|---|---|---|---|
Cytochrome P450 1A (Cyp1a2) | 9.51 | - | 2.32 | 7.15 | 11.11 | 14.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Saeed, F.A.; Ali, M.E. Thyme and Oregano Oil Potential Therapeutics against Malathion Toxicity through Biochemical, Histological, and Cytochrome P450 1A2 Activities in Male Wistar Rats. Animals 2024, 14, 2914. https://doi.org/10.3390/ani14192914
Al-Saeed FA, Ali ME. Thyme and Oregano Oil Potential Therapeutics against Malathion Toxicity through Biochemical, Histological, and Cytochrome P450 1A2 Activities in Male Wistar Rats. Animals. 2024; 14(19):2914. https://doi.org/10.3390/ani14192914
Chicago/Turabian StyleAl-Saeed, Fatimah A., and Montaser Elsayed Ali. 2024. "Thyme and Oregano Oil Potential Therapeutics against Malathion Toxicity through Biochemical, Histological, and Cytochrome P450 1A2 Activities in Male Wistar Rats" Animals 14, no. 19: 2914. https://doi.org/10.3390/ani14192914
APA StyleAl-Saeed, F. A., & Ali, M. E. (2024). Thyme and Oregano Oil Potential Therapeutics against Malathion Toxicity through Biochemical, Histological, and Cytochrome P450 1A2 Activities in Male Wistar Rats. Animals, 14(19), 2914. https://doi.org/10.3390/ani14192914