Breed-Specific Skull Morphology Reveals Insights into Canine Optic Chiasm Positioning and Orbital Structure through 3D CT Scan Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Preparation
2.3. Sedation and Anesthesia Induction
2.4. CT Scanning Techniques
2.5. Image Analysis and Measurement Methods of Angles, Lengths, and Vertical Lengths
2.6. Statistics
3. Results
3.1. Skull Characteristics
3.2. Optic Chiasm Position
3.3. Angle Measurements
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Landmarks and Abbreviations of Anatomical Descriptions in the Skull
Landmarks of the Skull | Abbreviations Indicated in Figure 1 | Anatomical Descriptions |
Prosthion, front | Pf | Most anterior (front) point on the alveolar process of the maxilla |
Prosthion, back | Pb | Most anterior (back) point on the alveolar process of the maxilla |
Nasion | N | Midpoint of the frontonasal suture and the nasofrontal suture |
Inion | I | Most prominent point at the external occipital protuberance |
Basion | Ba | Anterior margin of the foramen magnum |
Zygomaticomaxillary point | 1l, 1r | Widest points of the left or right zygomatic arch |
Frontozygomatic process | 2l, 2r | Left or right zygomatic process of the frontal bone |
Orbital rim of the frontolacrimal junction | 3l, 3r | Orbital rim of the frontal–lacrimal junction on the left or right side |
Orbital rim of the lacrimal-zygomatic junction | 4l, 3r | Orbital rim of the lacrimal–zygomatic junction on the left or right side |
Zygomatic frontal process | 5l, 5r | Frontal process of the zygomatic bone on the left or right side |
Optic chiasmatic sulcus | OCS | Groove on the upper surface of the sphenoid bone where the optic chiasm lies |
Optic chiasm | OC | Point where the two optic nerves cross |
Optic canal | OCl, OCr | Bony passage located in the sphenoid bone that serves as a conduit for the optic nerve on the left or right side |
Orbital horizontal points | A and B | Rostral (A) and caudal (B) margins of the orbital rim to measure the orbital horizontal width; the caudal margin (B) is in the same position as the zygomatic frontal process. |
Orbital vertical points | C and D | Supraorbital (C) and infraorbital (D) margins of the orbit rim to measure the orbital vertical length |
Appendix B. Automated Calculation Tools for Calculating Distances, Horizontal Distances, and Angles for 3D Skull Models Obtained from Computed Tomography
- (1)
- Length Calculation
- (2)
- Horizontal Length Calculation
- (3)
- Angle Calculation
Appendix C. Skull Measurements and Anatomical Descriptions
Skull Measurement Items | Anatomical Descriptions |
Skull length | Length between the front prosthion and inion |
Skull width | Length between the widest point of the zygomatic arches |
Skull base length | Length between the back prosthion and basion |
Skull index (SI) | Skull width/skull length × 100 |
Face length | Horizontal length between the front prosthion and nasion |
Neurocranial length | Horizontal length between the nasion and inion |
Horizontal skull length | Horizontal length between the front prosthion and inion |
Horizontal optic chiasm-inion length | Horizontal length between the optic chiasm and inion |
Frontal length | Distance from the tip of the zygomatic process of the frontal bone to the frontolacrimal sutures |
Lacrimal length | Distance from frontolacrimal sutures to the junction between the lacrimal and zygomatic bones |
Malar length | Distance from the junction between the lacrimal and zygomatic bones to the tip of the frontal process of the zygomatic bones |
Orbital vertical length | Perpendicular distance between the supraorbital and infraorbital margins of the orbit |
Orbital horizontal width | Horizontal distance between the rostral and caudal margins of the orbital rim |
Orbital depth | Distance between the optic foramen and midpoint of the rostral and caudal margins of the orbital rim |
Orbital index | Orbital width/orbital length × 100 |
Orbital area | 22/7 ab, where a and b are half the orbital length and width, respectively |
Zygomatic process angle | Angle between the left and right zygomatic processes of the frontal bones with optic chiasm as the vertex |
Frontal–lacrimal angle | Angle between the left and right orbital rims of the frontal-lacrimal junction with optic chiasm as the vertex |
Lacrimal–zygomatic angle | Angle between the left and right orbital rims of the lacrimal–zygomatic junction with optic chiasm as the vertex |
Frontal process angle | Angle between the left and right frontal processes of the zygomatic bones with optic chiasm as the vertex |
Optic chiasm angle | Angle between the left and right optic canals |
References
- Hermanson, J.W.; DeLahunta, A.; Evans, H.E.; Miller, M.E. Miller and Evans’ Anatomy of the Dog, 5th ed.; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Wayne, R.K. Cranial morphology of domestic and wild canids: The influence of development on morphological change. Evolution 1986, 40, 243–261. [Google Scholar] [CrossRef] [PubMed]
- Drake, A.G.; Klingenberg, C.P. Large-Scale Diversification of Skull Shape in Domestic Dogs: Disparity and Modularity. Am. Nat. 2010, 175, 289–301. [Google Scholar] [CrossRef] [PubMed]
- Haworth, K.E.; Islam, I.; Breen, M.; Putt, W.; Makrinou, E.; Binns, M.; Hopkinson, D.; Edwards, Y. Canine TCOF1; cloning, chromosome assignment and genetic analysis in dogs with different head types. Mamm. Genome 2001, 12, 622–629. [Google Scholar] [CrossRef] [PubMed]
- Niskanen, J.E.; Reunanen, V.; Salonen, M.; Bannasch, D.; Lappalainen, A.K.; Lohi, H.; Hytönen, M.K. Canine DVL2 variant contributes to brachycephalic phenotype and caudal vertebral anomalies. Hum. Genet. 2021, 140, 1535–1545. [Google Scholar] [CrossRef] [PubMed]
- Schoenebeck, J.J.; Ostrander, E.A. The genetics of canine skull shape variation. Genetics 2013, 193, 317–325. [Google Scholar] [CrossRef]
- McGreevy, P.; Grassi, T.D.; Harman, A.M. A Strong Correlation Exists between the Distribution of Retinal Ganglion Cells and Nose Length in the Dog. Brain Behav. Evol. 2003, 63, 13–22. [Google Scholar] [CrossRef]
- Gácsi, M.; McGreevy, P.; Kara, E.; Miklósi, Á. Effects of selection for cooperation and attention in dogs. Behav. Brain Funct. 2009, 5, 31. [Google Scholar] [CrossRef]
- Bognár, Z.; Iotchev, I.B.; Kubinyi, E. Sex, Skull Length, Breed, and Age Predict How Dogs Look at Faces of Humans and Conspecifics. Anim. Cogn. 2018, 21, 447–456. [Google Scholar] [CrossRef]
- Sokołowski, W.; Barszcz, K.; Kupczyńska, M.; Czopowicz, M.; Czubaj, N.; Kinda, W.; Kiełbowicz, Z. Morphometry and morphology of rostral cranial fossa in brachycephalic dogs–CT studies. PLoS ONE 2020, 15, e0240091. [Google Scholar] [CrossRef]
- Bird, D.J.; Jacquemetton, C.; Buelow, S.A.; Evans, A.W.; Van Valkenburgh, B. Domesticating olfaction: Dog breeds, including scent hounds, have reduced cribriform plate morphology relative to wolves. Anat. Rec. 2021, 304, 139–153. [Google Scholar] [CrossRef]
- Greco, A.; Costanza, D.; Senatore, A.; Bruzzese, D.; Micieli, F.; Chiavaccini, L.; Di Giancamillo, M.; Della Valle, G.; Vesce, G.; Brunetti, A.; et al. A computed tomography–based method for the assessment of canine retrobulbar cone volume for ophthalmic anaesthesia. Vet. Anaesth. Analg. 2021, 48, 759–766. [Google Scholar] [CrossRef] [PubMed]
- Mielke, B.; Lam, R.; Ter Haar, G. Computed tomographic morphometry of tympanic bulla shape and position in brachycephalic and mesaticephalic dog breeds. Vet. Radiol. Ultrasound 2017, 58, 552–558. [Google Scholar] [CrossRef] [PubMed]
- Hussein, A.K.; Sullivan, M.; Penderis, J. Effect of brachycephalic, mesaticephalic, and dolichocephalic head conformations on olfactory bulb angle and orientation in dogs as determined by use of in vivo magnetic resonance imaging. Am. J. Vet. Res. 2012, 73, 946–951. [Google Scholar] [CrossRef] [PubMed]
- Curtis, A.A.; Valkenburgh, B.V. Beyond the sniffer: Frontal sinuses in carnivora. Anat. Rec. 2014, 297, 2047–2064. [Google Scholar] [CrossRef] [PubMed]
- Greco, A.; Meomartino, L.; Gnudi, G.; Brunetti, A.; Di Giancamillo, M. Imaging techniques in veterinary medicine. Part II: Computed tomography, magnetic resonance imaging, nuclear medicine. Eur. J. Radiol. Open 2023, 10, 100467. [Google Scholar] [CrossRef] [PubMed]
- Wolf, F.; Rohrer Bley, C.; Besserer, J.; Meier, V. Estimation of planning organ at risk volumes for ocular structures in dogs undergoing three-dimensional image-guided periocular radiotherapy with rigid bite block immobilization. Vet. Radiol. Ultrasound 2021, 62, 246–254. [Google Scholar] [CrossRef] [PubMed]
- Guzu, M.; Rossetti, D.; Hennet, P.R. Locoregional Flap Reconstruction Following Oromaxillofacial Oncologic Surgery in Dogs and Cats: A Review and Decisional Algorithm. Front. Vet. Sci. 2021, 8, 685036. [Google Scholar] [CrossRef] [PubMed]
- Walther, E.; Griffin, L.; Randall, E.; Sandmeyer, L.; Osinchuk, S.; Sukut, S.; Hansen, K.; Keyerleber, M.; Lawrence, J.; Parker, S.; et al. Contouring in the optic plane improves the accuracy of computed tomography-based segmentation of the optic pathway. Vet. Radiol. Ultrasound 2023, 64, 768–774. [Google Scholar] [CrossRef]
- Andrews, E.F.; Jacqmot, O.; Espinheira Gomes, F.N.C.M.; Sha, M.F.; Niogi, S.N.; Johnson, P.J. Characterizing the canine and feline optic pathways in vivo with diffusion MRI. Vet. Ophthalmol. 2022, 25, 60–71. [Google Scholar] [CrossRef]
- Jacqmot, O.; Van Thielen, B.; Michotte, A.; de Mey, J.; Provyn, S.; Tresignie, J. Neuroanatomical Reconstruction of the Canine Visual Pathway Using Diffusion Tensor Imaging. Front. Neuroanat. 2020, 14, 54. [Google Scholar] [CrossRef]
- Sokołowski, W.; Czubaj, N.; Skibniewski, M.; Barszcz, K.; Kupczyńska, M.; Kinda, W.; Kiełbowicz, Z. Rostral cranial fossa as a site for cerebrospinal fluid drainage–volumetric studies in dog breeds of different size and morphotype. BMC Vet. Res. 2018, 14, 162. [Google Scholar] [CrossRef] [PubMed]
- García-Real, I.; Kass, P.H.; Sturges, B.K.; Wisner, E.R. Morphometric analysis of the cranial cavity and caudal cranial fossa in the dog: A computerized tomographic study. Vet. Radiol. Ultrasound 2004, 45, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Kruska, D. Effects of domestication on brain structure and behavior in mammals. Hum. Evol. 1988, 3, 473–485. [Google Scholar] [CrossRef]
- Paszta, W.; Klećkowska-Nawrot, J.E.; Goździewska-Harłajczuk, K. Anatomical and morphometric evaluation of the orbit, eye tunics, eyelids and orbital glands of the captive females of the South African painted dog (Lycaon pictus pictus Temminck, 1820) (Caniformia: Canidae). PLoS ONE 2021, 16, e0249368. [Google Scholar] [CrossRef] [PubMed]
- Lantyer-Araujo, N.L.; Silva, D.N.; Estrela-Lima, A.; Muramoto, C.; Libório, F.D.A.; Silva, É.A.D.; Oriá, A. Anatomical, histological and computed tomography comparisons of the eye and adnexa of crab-eating fox (Cerdocyon thous) to domestic dogs. PLoS ONE 2019, 14, e0224245. [Google Scholar] [CrossRef] [PubMed]
- Czeibert, K.; Sommese, A.; Petneházy, Ö.; Csörgő, T.; Kubinyi, E. Digital Endocasting in Comparative Canine Brain Morphology. Front. Vet. Sci. 2020, 7, 565315. [Google Scholar] [CrossRef] [PubMed]
- Auger, M.; Alexander, K.; Beauchamp, G.; Dunn, M. Use of CT to evaluate and compare intranasal features in brachycephalic and normocephalic dogs. J. Small Anim. Pract. 2016, 57, 529–536. [Google Scholar] [CrossRef]
- Schmidt, M.J.; Biel, M.; Klumpp, S.; Schneider, M.; Kramer, M. Evaluation of the volumes of cranial cavities in Cavalier King Charles Spaniels with Chiarilike malformation and other brachycephalic dogs as measured via computed tomography. Am. J. Vet. Res. 2009, 70, 508–512. [Google Scholar] [CrossRef]
- Drake, A.G. Dispelling dog dogma: An investigation of heterochrony in dogs using 3D geometric morphometric analysis of skull shape. Evol. Develop. 2011, 13, 204–213. [Google Scholar] [CrossRef]
- Plotsky, K.; Rendall, D.; Chase, K.; Riede, T. Cranio-facial remodeling in domestic dogs is associated with changes in larynx position. J. Anat. 2016, 228, 975–983. [Google Scholar] [CrossRef]
- Selba, M.C.; Oechtering, G.U.; Heng, H.G.; DeLeon, V.B. The Impact of Selection for Facial Reduction in Dogs: Geometric Morphometric Analysis of Canine Cranial Shape. Anat. Rec. 2020, 303, 330–346. [Google Scholar] [CrossRef] [PubMed]
- Onar, V. A Morphometric Study on the Skull of the German Shepherd Dog (Alsatian). Anat. Histol. Embryol. 1999, 28, 253–256. [Google Scholar] [CrossRef]
- Mahdy, M.A.A.; Mohamed, W.F. Comparative craniometric measurements of two Canid species in Egypt: The Egyptian red fox and the Egyptian Baladi dog. BMC Vet. Res. 2022, 18, 173. [Google Scholar] [CrossRef] [PubMed]
- İlgün, R.; Özüdoğru, Z.; Karabulut, O.; Can, M. Macroanatomical and morphometric study on the skull bones of Aksaray Malakli dogs. Folia Morphol. 2022, 81, 157–163. [Google Scholar] [CrossRef]
- Onar, V.; Güneş, H. On the variability of skull shape in German shepherd (Alsatian) puppies. Anat. Rec. A Discov. Mol. Cell Evol. Biol. 2003, 272, 460–466. [Google Scholar] [CrossRef] [PubMed]
- Stone, H.R.; McGreevy, P.D.; Starling, M.J.; Forkman, B. Associations between Domestic-Dog Morphology and Behaviour Scores in the Dog Mentality Assessment. PLoS ONE 2016, 11, e0149403. [Google Scholar] [CrossRef]
- McGreevy, P.D.; Georgevsky, D.; Carrasco, J.; Valenzuela, M.; Duffy, D.L.; Serpell, J.A. Dog Behavior Co-Varies with Height, Bodyweight and Skull Shape. PLoS ONE 2013, 8, e80529. [Google Scholar] [CrossRef]
- Roberts, T.; McGreevy, P.; Valenzuela, M. Human induced rotation and reorganization of the brain of domestic dogs. PLoS ONE 2010, 5, e11946. [Google Scholar] [CrossRef]
- Schwarz, T.; Sullivan, M.; Hartung, K. Radiographic Anatomy of the Cribriform Plate (Lamina cribrosa). Vet. Radiol. Ultrasound 2000, 41, 220–225. [Google Scholar] [CrossRef]
- Iotchev, I.B.; Bognár, Z.; Tóth, K.; Reicher, V.; Kis, A.; Kubinyi, E. Sleep-physiological correlates of brachycephaly in dogs. Brain Struct. Funct. 2023, 24, 2125–2136. [Google Scholar] [CrossRef]
- Heidenreich, D.; Gradner, G.; Kneissl, S.; Dupré, G. Nasopharyngeal Dimensions From Computed Tomography of Pugs and French Bulldogs with Brachycephalic Airway Syndrome. Vet. Surg. 2016, 45, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.J.; Neumann, A.C.; Amort, K.H.; Failing, K.; Kramer, M. Cephalometric Measurements and Determination of General Skull Type of Cavalier King Charles Spaniels. Vet. Radiol. Ultrasound 2011, 52, 436–440. [Google Scholar] [CrossRef] [PubMed]
- Drake, A.G.; Klingenberg, C.P. The pace of morphological change: Historical transformation of skull shape in St Bernard dogs. Proc. Biol. Sci. 2008, 275, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Gündemir, O.; Koungoulos, L.; Szara, T.; Duro, S.; Spataru, M.C.; Michaud, M.; Onar, V. Cranial morphology of Balkan and West Asian livestock guardian dogs. J. Anat. 2023, 243, 951–959. [Google Scholar] [CrossRef] [PubMed]
- De Moura Bubadué, J.; Cáceres, N.; dos Santos Carvalho, R.; Meloro, C. Ecogeographical Variation in Skull Shape of South-American Canids: Abiotic or Biotic Processes? Evol. Biol. 2016, 43, 145–159. [Google Scholar] [CrossRef] [PubMed]
- Rovinsky, D.S.; Evans, A.R.; Adams, J.W. Functional ecological convergence between the thylacine and small prey-focused canids. BMC Ecol. Evol. 2021, 21, 58. [Google Scholar] [CrossRef] [PubMed]
- Geiger, M.; Evin, A.; Sánchez-Villagra, M.R.; Gascho, D.; Mainini, C.; Zollikofer, C.P.E. Neomorphosis and heterochrony of skull shape in dog domestication. Sci. Rep. 2017, 7, 13443. [Google Scholar] [CrossRef]
- Curth, S.; Fischer, M.S.; Kupczik, K. Patterns of integration in the canine skull: An inside view into the relationship of the skull modules of domestic dogs and wolves. Zoology 2017, 125, 1–9. [Google Scholar] [CrossRef]
- Heuzé, Y.; Kawasaki, K.; Schwarz, T.; Schoenebeck, J.J.; Richtsmeier, J.T. Developmental and Evolutionary Significance of the Zygomatic Bone. Anat. Rec. 2016, 299, 1616–1630. [Google Scholar] [CrossRef]
- Costa, J.; Steinmetz, A.; Delgado, E. Clinical signs of brachycephalic ocular syndrome in 93 dogs. Ir. Vet. J. 2021, 74, 3. [Google Scholar] [CrossRef]
- Hobi, S.; Barrs, V.R.; Bęczkowski, P.M. Dermatological Problems of Brachycephalic Dogs. Animals 2023, 13, 2016. [Google Scholar] [CrossRef] [PubMed]
- Krainer, D.; Dupré, G. Brachycephalic Obstructive Airway Syndrome. Vet. Clin. N. Am. Small Anim. Pract. 2022, 52, 749–780. [Google Scholar] [CrossRef] [PubMed]
- Döring, S.; Arzi, B.; Hatcher, D.C.; Kass, P.H.; Verstraete, F.J.M. Evaluation of the diagnostic yield of dental radiography and cone-beam computed tomography for the identification of dental disorders in small to medium-sized brachycephalic dogs. Am. J. Vet. Res. 2018, 79, 62–72. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.; Podadera, J.; Ward, M.; Goldsmid, S.; Simpson, D. The presence, morphology and clinical significance of vertebral body malformations in an Australian population of French Bulldogs and Pugs. Aust. Vet. J. 2021, 99, 378–387. [Google Scholar] [CrossRef]
- Knowler, S.P.; Galea, G.L.; Rusbridge, C. Morphogenesis of Canine Chiari Malformation and Secondary Syringomyelia: Disorders of Cerebrospinal Fluid Circulation. Front. Vet. Sci. 2018, 5, 171. [Google Scholar] [CrossRef]
- Krainer, D.; Dupré, G. Influence of computed tomographic dimensions of the nasopharynx on middle ear effusion and inflammation in pugs and French bulldogs with brachycephalic airway syndrome. Vet. Surg. 2021, 50, 517–526. [Google Scholar] [CrossRef]
Skull Index Groups 1 | ANOVA p-Value (F-Value) | |||
---|---|---|---|---|
Brachycephalic (59 ≤ Skull Index) | Mesocephalic (51 ≤ Skull Index < 59) | Dolichocephalic (Skull Index < 51) | ||
Case Number | 13 | 31 | 6 | |
Sex | Male: 7, Female: 6 | Male: 14, Female: 17 | Male: 4, Female: 2 | |
Age (year) | 8.85 ± 3.29 | 8.94 ± 2.82 | 8.50 ± 4.37 | |
Body weight (Kg) | 7.65 ± 3.58 | 10.26 ± 8.63 | 19.57 ± 23.42 | |
Skull length (cm) | 11.39 ± 1.76 ab2(A) | 15.00 ± 2.96 b | 17.96 ± 3.44 a | p < 0.001 (F = 13.454) |
Skull width (cm) | 8.64 ± 1.73 | 8.43 ± 1.66 | 8.77 ± 1.85 | |
Skull base length (cm) | 9.55 ± 1.51 ab(A) | 12.61 ± 2.45 b | 15.15 ± 3.43 a | p < 0.001 (F = 13.086) |
Skull index (SI) | 76.04 ± 11.65 ab(B) | 56.25 ± 2.23 bc | 48.72 ± 1.33 ac | p < 0.001 (F = 59.607) |
Face length (cm) | 3.63 ± 1.00 ab(B) | 6.46 ± 1.55 bc | 8.23 ± 1.03 ac | p < 0.001 (F = 28.753) |
Neurocranial length (cm) | 7.29 ± 1.00 a(A) | 8.19 ± 1.50 | 9.39 ± 2.31 a | p < 0.022 (F = 4.142) |
Horizontal skull length 3 (cm) | 10.92 ± 1.69 ab(A) | 14.65 ± 2.88 b | 17.62 ± 3.27 a | p < 0.001 (F = 15.006) |
Frontal length (cm) | 2.2 ± 0.37 ab(B) | 2.41 ± 0.30 b | 2.59 ± 0.11 a | p = 0.027 (F = 3.896) |
Lacrimal length (cm) | 1.04 ± 0.31 | 0.94 ± 0.22 | 1.12 ± 0.57 | |
Malar length (cm) | 2.55 ± 0.36 | 2.67 ± 0.36 | 2.88 ± 0.65 | |
Orbital vertical length (cm) | 2.94 ± 0.51 | 2.85 ± 0.36 | 2.99 ± 0.72 | |
Orbital horizontal width (cm) | 2.79 ± 0.29 | 2.83 ± 0.32 | 2.96 ± 0.55 | |
Orbital depth (cm) | 2.58 ± 0.42 ab(A) | 3.19 ± 0.65 b | 3.61 ± 0.77 a | p = 0.002 (F = 7.054) |
Orbital index | 96.36 ± 8.80 | 99.51 ± 5.62 | 99.98 ± 5.37 | |
Orbital area (cm2) | 6.54 ± 1.71 | 6.41 ± 1.54 | 7.21 ± 3.44 |
Skull Index Groups 1 | ANOVA p-Value (F-Value) | |||
---|---|---|---|---|
Brachycephalic (59 ≤ Skull Index) | Mesocephalic (51 ≤ Skull Index < 59) | Dolichocephalic (Skull Index < 51) | ||
Case Number | 13 | 31 | 6 | |
Zygomatic process angle (°) | 72.44 ± 10.38 | 69.61 ± 9.83 | 66.71 ± 7.87 | |
Frontal–lacrimal angle (°) | 49.56 ± 7.37 | 44.51 ± 3.73 | 44.07 ± 2.94 | |
Lacrimal–zygomatic angle (°) | 65.88 ± 8.45 ab2(A) | 57.27 ± 5.83 b | 56.26 ± 3.95 a | p < 0.001 (F = 8.967) |
Frontal process angle (°) | 138.87 ± 9.82 ab(B) | 124.3 ± 10.38 b | 116.03 ± 6.34 a | p < 0.001 (F = 14.231) |
Optic chiasm angle (°) | 93.74 ± 16.00 ab(B) | 67.87 ± 10.76 b | 61.05 ± 11.02 a | p < 0.001 (F = 23.776) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ichikawa, Y.; Kanemaki, N.; Kanai, K. Breed-Specific Skull Morphology Reveals Insights into Canine Optic Chiasm Positioning and Orbital Structure through 3D CT Scan Analysis. Animals 2024, 14, 197. https://doi.org/10.3390/ani14020197
Ichikawa Y, Kanemaki N, Kanai K. Breed-Specific Skull Morphology Reveals Insights into Canine Optic Chiasm Positioning and Orbital Structure through 3D CT Scan Analysis. Animals. 2024; 14(2):197. https://doi.org/10.3390/ani14020197
Chicago/Turabian StyleIchikawa, Yoichiro, Nobuyuki Kanemaki, and Kazutaka Kanai. 2024. "Breed-Specific Skull Morphology Reveals Insights into Canine Optic Chiasm Positioning and Orbital Structure through 3D CT Scan Analysis" Animals 14, no. 2: 197. https://doi.org/10.3390/ani14020197
APA StyleIchikawa, Y., Kanemaki, N., & Kanai, K. (2024). Breed-Specific Skull Morphology Reveals Insights into Canine Optic Chiasm Positioning and Orbital Structure through 3D CT Scan Analysis. Animals, 14(2), 197. https://doi.org/10.3390/ani14020197