Punicalagin Protects Ram Sperm from Oxidative Stress by Enhancing Antioxidant Capacity and Mitochondrial Potential during Liquid Storage at 4 °C
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Method
2.1. Animals and Semen Collection
2.2. Diluent Preparation
2.3. Semen Processing
2.4. Semen Quality Evaluation
2.4.1. Analysis of Sperm Motility Parameters
2.4.2. Analysis of Sperm Plasma Membrane Integrity
2.4.3. Analysis of Sperm Acrosome Integrity
2.4.4. Analysis of Sperm Antioxidant Capacity
2.4.5. Analysis of Sperm MMP
2.5. Statistical Analysis
3. Results
3.1. Sperm Motility Parameters
3.2. Sperm Kinematic Parameters
3.3. Sperm Plasma Membrane and Acrosome Integrity
3.4. Sperm TAC Activity, ROS Content and MDA Content
3.5. Sperm MMP, SOD Activity and CAT Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, W.; Cheng, X.; Ren, C.; Chen, J.; Zhang, Y.; Chen, Y.; Jia, X.; Wang, S.; Sun, Z.; Zhang, R.; et al. Proteomic characterization and comparison of ram (Ovis aries) and buck (Capra hircus) spermatozoa proteome using a data independent acquisition mass spectometry (DIA-MS) approach. PLoS ONE 2020, 13, e0228656. [Google Scholar] [CrossRef]
- Wu, C.; Dai, J.; Zhang, S.; Sun, L.; Liu, Y.; Zhang, D. Effect of Thawing Rates and Antioxidants on Semen Cryopreservation in Hu Sheep. Biopreserv. Biobank. 2021, 19, 204–209. [Google Scholar] [CrossRef]
- Araya-Zúñiga, I.; Sevilla, F.; Molina-Montero, R.; Roldan, R.S.E.; Barrientos-Morales, M.; Silvestre, A.M.; Valverde, A. Kinematic and Morphometric Assessment of Fresh Semen, before, during and after Mating Period in Brahman Bulls. Animals 2024, 14, 132. [Google Scholar] [CrossRef]
- García-Vázquez, F.A.; Gadea, J.; Matás, C.; Holt, W.V. Importance of sperm morphology during sperm transport and fertilization in mammals. Asian J. Androl. 2016, 18, 844–850. [Google Scholar] [CrossRef]
- Ibănescu, I.; Leiding, C.; Ciornei, Ş.G.; Roșca, P.; Sfartz, I.; Drugociu, D. Differences in CASA output according to the chamber type when analyzing frozen-thawed bull sperm. Anim. Reprod. Sci. 2016, 166, 72–79. [Google Scholar] [CrossRef]
- Zalazar, L.; Iniesta-Cuerda, M.; Sánchez-Ajofrín, I.; Garde, J.J.; Valls, A.J.S.; Cesari, A. Recombinant SPINK3 improves ram sperm quality and in vitro fertility after cryopreservation. Theriogenology 2020, 144, 45–55. [Google Scholar] [CrossRef]
- Wang, N.; Yang, K.; Guo, H.T.; Wang, J.R.; Sun, H.H.; Wang, S.W.; Sun, M.; Sun, L.Z.; Yue, S.L.; Zhou, J.B. Protective influence of rosiglitazone against time-dependent deterioration of boar spermatozoa preserved at 17 °C. Reprod. Domest. Anim. 2019, 54, 1069–1077. [Google Scholar] [CrossRef]
- Nascimento, J.M.; Shi, L.Z.; Tam, J.; Chandsawangbhuwana, C.; Durrant, B.; Botvinick, E.L.; Berns, M.W. Comparison of glycolysis and oxidative phosphorylation as energy sources for mammalian sperm motility, using the combination of fluorescence imaging, laser tweezers, and real-time automated tracking and trapping. J. Cell. Physiol. 2008, 217, 745–751. [Google Scholar] [CrossRef] [PubMed]
- Gibb, Z.; Aitken, R.J. The Impact of Sperm Metabolism during In Vitro Storage: The Stallion as a Model. Biomed. Res. Int. 2016, 2016, 9380609. [Google Scholar] [CrossRef]
- Turner, R.M. Tales from the tail: What do we really know about sperm motility? J. Androl. 2003, 24, 790–803. [Google Scholar] [CrossRef]
- Miki, K. Energy metabolism and sperm function. Soc. Reprod. Fertil. Suppl. 2007, 65, 309–325. [Google Scholar] [PubMed]
- Zhou, R.; Zhang, Y.; Du, G.; Han, L.; Zheng, S.; Liang, J.; Huang, X.; Qin, Y.; Wu, W.; Chen, M.; et al. Down-regulated let-7b-5p represses glycolysis metabolism by targeting AURKB in asthenozoospermia. Gene 2018, 15, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Koppers, A.J.; De Iuliis, G.N.; Finnie, J.M.; McLaughlin, E.A.; Aitken, R.J. Significance of mitochondrial reactive oxygen species in the generation of oxidative stress in spermatozoa. J. Clin. Endocrinol. Metab. 2008, 93, 3199–3207. [Google Scholar] [CrossRef] [PubMed]
- Gibb, Z.; Lambourne, S.R.; Aitken, R.J. The paradoxical relationship between stallion fertility and oxidative stress. Biol. Reprod. 2014, 91, 77. [Google Scholar] [CrossRef]
- Agarwal, A.; Makker, K.; Sharma, R. Clinical relevance of oxidative stress in male factor infertility: An update. Am. J. Reprod. Immunol. 2008, 59, 2–11. [Google Scholar] [CrossRef]
- Aitken, R.J.; Smith, T.B.; Jobling, M.S.; Baker, M.A.; De Iuliis, G.N. Oxidative stress and male reproductive health. Asian J. Androl. 2014, 16, 31–38. [Google Scholar] [CrossRef]
- Davila, M.P.; Muñoz, P.M.; Tapia, J.A.; Ferrusola, C.O.; da Silva, C.C.B.; Peña, F.J. Inhibition of Mitochondrial Complex I Leads to Decreased Motility and Membrane Integrity Related to Increased Hydrogen Peroxide and Reduced ATP Production, while the Inhibition of Glycolysis Has Less Impact on Sperm Motility. PLoS ONE 2015, 10, e0138777. [Google Scholar]
- Zhao, J.; Jin, Y.; Du, M.; Liu, W.; Ren, Y.; Zhang, C.; Zhang, J. The effect of dietary grape pomace supplementation on epididymal sperm quality and testicular antioxidant ability in ram lambs. Theriogenology 2017, 97, 50–56. [Google Scholar] [CrossRef]
- Sanocka, D.; Kurpisz, M. Reactive oxygen species and sperm cells. Reprod. Biol. Endocrinol. 2004, 2, 12. [Google Scholar] [CrossRef]
- Cerdá, B.; Llorach, R.; Cerón, J.J.; Espín, J.C.; Tomás-Barberán, F.A. Evaluation of the bioavailability and metabolism in the rat of punicalagin, an antioxidant polyphenol from pomegranate juice. Eur. J. Nutr. 2003, 42, 18–28. [Google Scholar] [CrossRef]
- Venusova, E.; Kolesarova, A.; Horky, P.; Slama, P. Physiological and Immune Functions of Punicalagin. Nutrients 2021, 13, 2150. [Google Scholar] [CrossRef] [PubMed]
- Bishayee, A.; Thoppil, R.J.; Darvesh, A.S.; Ohanyan, V.; Meszaros, J.G.; Bhatia, D. Pomegranate phytoconstituents blunt the inflammatory cascade in a chemically induced rodent model of hepatocellular carcinogenesis. J. Nutr. Biochem. 2013, 24, 178–187. [Google Scholar] [CrossRef] [PubMed]
- Sineh Sepehr, K.; Baradaran, B.; Mazandarani, M.; Khori, V.; Shahneh, F.Z. Studies on the Cytotoxic Activities of Punica granatum L. var. spinosa (Apple Punice) Extract on Prostate Cell Line by Induction of Apoptosis. ISRN Pharm. 2012, 2012, 547942. [Google Scholar] [CrossRef] [PubMed]
- Mohan, M.; Waghulde, H.; Kasture, S. Effect of pomegranate juice on Angiotensin II-induced hypertension in diabetic Wistar rats. Phytother. Res. 2010, 24 (Suppl. S2), S196–S203. [Google Scholar] [CrossRef] [PubMed]
- Sudheesh, S.; Vijayalakshmi, N.R. Flavonoids from Punica granatum—Potential antiperoxidative agents. Fitoterapia 2005, 76, 181–186. [Google Scholar] [CrossRef]
- Cayır, K.; Karadeniz, A.; Simşek, N.; Yıldırım, S.; Karakuş, E.; Kara, A.; Akkoyun, H.T.; Sengül, E. Pomegranate seed extract attenuates chemotherapy-induced acute nephrotoxicity and hepatotoxicity in rats. J. Med. Food. 2011, 14, 1254–1262. [Google Scholar] [CrossRef] [PubMed]
- Seeram, N.P.; Aviram, M.; Zhang, Y.; Henning, S.M.; Feng, L.; Dreher, M.; Heber, D. Comparison of antioxidant potency of commonly consumed polyphenol-rich beverages in the United States. J. Agric. Food Chem. 2008, 56, 1415–1422. [Google Scholar] [CrossRef]
- Amann, R.P.; Waberski, D. Computer-assisted sperm analysis (CASA): Capabilities and potential developments. Theriogenology 2014, 81, 5–17.e173. [Google Scholar] [CrossRef]
- Vasquez, J.; Florentini, E.A.; Camarago, L.A.; Gonzalez, J.; Valdivia, M.H. Hypoosmotic swelling test in ram (Ovis aries) spermatozoa. Livest. Sci. 2013, 157, 618–622. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, L.; Sohail, T.; Kang, Y.; Sun, X.; Li, Y. Chlorogenic Acid Improves Quality of Chilled Ram Sperm by Mitigating Oxidative Stress. Animals 2022, 12, 163. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Y.; Sohail, T.; Kang, Y.; Niu, H.; Sun, X.; Ji, D.; Li, Y. Effects of Taurine on Sperm Quality during Room Temperature Storage in Hu Sheep. Animals 2021, 11, 2725. [Google Scholar] [CrossRef] [PubMed]
- Rao, F.; Tian, H.; Li, W.; Hung, H.; Sun, F. Potential role of punicalagin against oxidative stress induced testicular damage. Asian J. Androl. 2016, 18, 627–632. [Google Scholar] [PubMed]
- Bialonska, D.; Ramnani, P.; Kasimsetty, S.G.; Muntha, K.R.; Gibson, G.R.; Ferreira, D. The influence of pomegranate by-product and punicalagins on selected groups of human intestinal microbiota. Int. J. Food Microbiol. 2010, 140, 175–182. [Google Scholar] [CrossRef]
- Zhang, X.G.; Liu, Q.; Wang, L.Q.; Yang, G.S.; Hu, J.H. Effects of glutathione on sperm quality during liquid storage in boars. Anim. Sci. J. 2016, 87, 1195–1201. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Li, Y.; Wang, L.; Zhen, L.; Yang, Q.; Li, P.; Li, X. Bovine serum albumin and skim-milk improve boar sperm motility by enhancing energy metabolism and protein modifications during liquid storage at 17 °C. Theriogenology 2017, 102, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Atessahin, A.; Bucak, M.N.; Tuncer, P.B.; Kizil, M. Effects of antioxidant additives on microscopic and oxidative parameters of Angora goat semen following the freeze-thawing process. Small Ruminant Res. 2008, 77, 38–44. [Google Scholar] [CrossRef]
- Wang, Y.; Kang, Y.; Zhang, L.; Niu, H.; Sun, X.; Li, Y. Coenzyme Q10 improves the quality of sheep sperm stored at room temperature by mitigating oxidative stress. Anim. Sci. J. 2022, 93, e13708. [Google Scholar] [CrossRef]
- Fedder, M.D.; Jakobsen, H.B.; Giversen, I.; Christensen, L.P.; Parner, E.T.; Fedder, J. An extract of pomegranate fruit and galangal rhizome increases the numbers of motile sperm: A prospective, randomised, controlled, double-blinded trial. PLoS ONE 2014, 9, e108532. [Google Scholar] [CrossRef]
- Türk, G.; Sönmez, M.; Aydin, M.; Yüce, A.; Gür, S.; Yüksel, M.; Aksu, E.H.; Aksoy, H. Effects of pomegranate juice consumption on sperm quality, spermatogenic cell density, antioxidant activity and testosterone level in male rats. Clin. Nutr. 2008, 27, 289–296. [Google Scholar] [CrossRef]
- Mansour, S.W.; Sangi, S.; Harsha, S.; Khaleel, M.A.; Ibrahim, A.R. Sensibility of male rats fertility against olive oil, Nigella sativa oil and pomegranate extract. Asian Pac. J. Trop. Biomed. 2013, 3, 563–568. [Google Scholar] [CrossRef]
- Wagner, H.; Cheng, J.W.; Ko, E.Y. Role of reactive oxygen species in male infertility: An updated review of literature. Arab. J. Urol. 2017, 16, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Sobeh, M.; Hassan, S.A.; Hassan, M.A.E.; Khalil, W.A.; Abdelfattah, M.A.O.; Wink, M.; Yasri, A. A Polyphenol-Rich Extract from Entada abyssinica Reduces Oxidative Damage in Cryopreserved Ram Semen. Front. Vet. Sci. 2020, 7, 604477. [Google Scholar] [CrossRef] [PubMed]
- Fouad, A.A.; Qutub, H.O.; Al-Melhim, W.N. Punicalagin alleviates hepatotoxicity in rats challenged with cyclophosphamide. Environ. Toxicol. Phar. 2016, 45, 158–162. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Khor, T.O.; Xu, C.; Shen, G.; Jeong, W.S.; Yu, S.; Kong, A.N. Activation of Nrf2-antioxidant signaling attenuates NFkappaB-inflammatory response and elicits apoptosis. Biochem. Pharmacol. 2008, 76, 1485–1489. [Google Scholar] [CrossRef]
- Kanner, J. Polyphenols by Generating H2O2, Affect Cell Redox Signaling, Inhibit PTPs and Activate Nrf2 Axis for Adaptation and Cell Surviving: In Vitro, In Vivo and Human Health. Antioxidants 2020, 9, 797. [Google Scholar] [CrossRef]
- Badeau, R.M.; Honka, M.J.; Lautamäki, R.; Stewart, M.; Kangas, A.J.; Soininen, P.; Ala-Korpela, M.; Nuutila, P. Systemic metabolic markers and myocardial glucose uptake in type 2 diabetic and coronary artery disease patients treated for 16 weeks with rosiglitazone, a PPARγ agonist. Ann. Med. 2014, 46, 18–23. [Google Scholar] [CrossRef]
- Zhe, H. The Effect of Punicalagin on Boar Semen Quality during Room Temperature Preservation. Master’s Thesis, Northwest A&F University, Yangling, China, 2018. [Google Scholar]
Motility Parameters | Preserved Period | Different Concentrations (μM) | ||||
---|---|---|---|---|---|---|
0 (Control) | 5 | 15 | 30 | 45 | ||
TM (%) | 0 d | 84.02 ± 1.19 A | 83.75 ± 0.44 A | 83.68 ± 0.20 A | 84.89 ± 1.08 A | 84.07 ± 1.00 A |
1 d | 81.21 ± 0.04 A | 82.35 ± 0.34 A | 81.76 ± 0.34 AB | 83.12 ± 1.36 AB | 81.90 ± 0.17 AB | |
2 d | 74.79 ± 1.37 Bc | 77.04 ± 1.15 Bbc | 80.48 ± 0.51 Ba | 81.24 ± 0.07 Ba | 79.97 ± 1.16 Bab | |
3 d | 69.25 ± 1.72 Cd | 73.42 ± 0.85 Cc | 76.82 ± 0.12 Cab | 78.46 ± 0.90 Ca | 75.19 ± 0.16 Cbc | |
4 d | 62.57 ± 1.08 Dc | 65.88 ± 1.60 Dbc | 68.27 ± 0.59 Db | 75.16 ± 0.45 Da | 68.67 ± 1.15 Db | |
5 d | 51.09 ± 0.57 Ec | 53.33 ± 0.50 Ebc | 56.93 ± 2.28 Eb | 62.52 ± 1.01 Ea | 54.56 ± 0.89 Ebc | |
PM (%) | 0 d | 81.44 ± 1.64 A | 81.06 ± 0.73 A | 80.89 ± 0.56 A | 82.58 ± 0.87 A | 81.45 ± 0.91 A |
1 d | 76.66 ± 0.32 Bc | 78.77 ± 0.36 Bb | 79.20 ± 0.31 Ab | 80.44 ± 0.03 ABa | 78.88 ± 0.56 Ab | |
2 d | 69.76 ± 0.29 Cc | 71.06 ± 0.17 Cc | 73.86 ± 0.72 Bb | 78.18 ± 0.36 BCa | 75.26 ± 0.69 Bb | |
3 d | 61.05 ± 1.35 Dd | 67.43 ± 0.77 Dc | 69.34 ± 0.50 Cbc | 76.01 ± 0.43 Ca | 70.16 ± 0.54 Cb | |
4 d | 56.02 ± 1.07 Ed | 59.61 ± 0.64 Ec | 64.77 ± 0.91 Db | 68.50 ± 0.83 Da | 61.04 ± 0.47 Dc | |
5 d | 39.22 ± 0.22 Fc | 40.84 ± 0.25 Fc | 43.96 ± 1.14 Eb | 50.24 ± 1.58 Ea | 44.01 ± 0.83 Eb |
Kinematic Parameters | Preserved Period | Different Concentrations (μM) | ||||
---|---|---|---|---|---|---|
0 (Control) | 5 | 15 | 30 | 45 | ||
VSL (µm/s) | 0 d | 61.03 ± 2.03 A | 61.49 ± 1.08 A | 59.71 ± 1.80 A | 60.25 ± 2.77 A | 61.54 ± 3.39 A |
1 d | 35.42 ± 1.27 B | 36.06 ± 0.76 B | 34.71 ± 1.44 C | 38.04 ± 1.53 C | 35.41 ± 1.44 BC | |
2 d | 32.65 ± 1.30 BCd | 34.32 ± 1.48 BCcd | 38.95 ± 1.60 Bb | 44.22 ± 1.23 Ba | 37.95 ± 1.18 Bbc | |
3 d | 32.38 ± 0.53 BC | 31.77 ± 0.48 CD | 32.52 ± 0.23 CD | 33.25 ± 0.63 D | 31.54 ± 0.69 CD | |
4 d | 28.98 ± 0.30 CDb | 29.73 ± 0.49 Db | 28.90 ± 0.37 Db | 31.03 ± 0.28 Da | 29.69 ± 0.29 Db | |
5 d | 27.78 ± 0.99 D | 28.68 ± 1.16 D | 28.82 ± 0.75 D | 30.25 ± 0.61 D | 27.71 ± 0.71 D | |
VCL (µm/s) | 0 d | 79.31 ± 1.82 A | 81.31 ± 1.33 A | 78.22 ± 1.61 A | 80.12 ± 1.92 A | 80.05 ± 2.47 A |
1 d | 73.98 ± 1.45 B | 71.51 ± 2.37 B | 71.39 ± 2.53 B | 73.75 ± 0.61 B | 72.63 ± 1.68 B | |
2 d | 71.64 ± 1.55 B | 71.61 ± 1.01 B | 72.58 ± 1.00 B | 73.95 ± 1.32 B | 70.32 ± 0.38 BC | |
3 d | 64.46 ± 0.89 Cb | 65.47 ± 1.29 Cb | 67.33 ± 2.54 BCb | 72.72 ± 1.12 Ba | 65.70 ± 0.28 CDb | |
4 d | 57.90 ± 0.85 Dc | 61.14 ± 1.35 Cbc | 65.71 ± 1.10 Ca | 66.57 ± 0.83 Ca | 65.47 ± 2.28 CDab | |
5 d | 57.77 ± 0.07 Db | 61.29 ± 1.55 Cab | 61.95 ± 0.87 Ca | 64.38 ± 1.62 Ca | 61.03 ± 0.31 Dab | |
VAP (µm/s) | 0 d | 56.08 ± 1.28 A | 57.50 ± 0.94 A | 55.31 ± 1.14 A | 56.65 ± 1.36 A | 56.60 ± 1.74 A |
1 d | 50.56 ± 1.68 B | 50.48 ± 1.79 B | 52.31 ± 1.03 AB | 52.15 ± 0.43 B | 51.36 ± 1.19 B | |
2 d | 49.72 ± 0.27 B | 50.64 ± 0.71 B | 51.32 ± 0.71 B | 52.29 ± 0.93 B | 50.65 ± 1.10 B | |
3 d | 45.58 ± 0.63 Cb | 46.30 ± 0.91 Cb | 47.61 ± 1.80 Cab | 51.42 ± 0.79 Ba | 46.29 ± 1.61 Cb | |
4 d | 40.85 ± 0.05 Dc | 43.23 ± 0.95 Cb | 46.46 ± 0.78 CDa | 47.07 ± 0.59 Ca | 46.46 ± 0.20 Ca | |
5 d | 40.94 ± 0.6 Db | 43.33 ± 1.10 Cab | 43.80 ± 0.62 Da | 45.52 ± 1.15 Ca | 43.15 ± 0.22 Cab | |
MAD (°/s) | 0 d | 251.35 ± 10.33 A | 255.93 ± 11.96 A | 264.13 ± 3.08 A | 261.05 ± 10.49 A | 258.43 ± 6.62 A |
1 d | 136.86 ± 1.62 Bc | 144.63 ± 1.88 Bc | 165.85 ± 8.75 Bb | 195.04 ± 3.77 Ba | 169.35 ± 3.76 Bb | |
2 d | 130.35 ± 1.53 Bb | 138.77 ± 8.80 Bb | 136.80 ± 5.65 Cb | 157.98 ± 0.75 Ca | 130.60 ± 0.21 Cb | |
3 d | 85.52 ± 3.88 Cc | 88.46 ± 5.24 Cc | 104.10 ± 1.85 Db | 125.97 ± 2.82 Da | 105.05 ± 5.22 Db | |
4 d | 82.39 ± 2.37 Cb | 84.83 ± 0.87 Cb | 93.85 ± 3.52 Dab | 104.65 ± 5.19 Ea | 87.67 ± 3.85 Eb | |
5 d | 45.74 ± 0.61 Dc | 54.69 ± 1.55 Db | 59.44 ± 2.46 Eb | 75.24 ± 4.80 Fa | 58.36 ± 2.78 Fb |
Parameters | Preserved Period | Different Concentrations (μM) | ||||
---|---|---|---|---|---|---|
0 (Control) | 5 | 15 | 30 | 45 | ||
Plasma membrane (%) | 0 d | 86.24 ± 0.45 A | 86.00 ± 0.66 A | 86.62 ± 1.58 A | 86.29 ± 0.61 A | 86.07 ± 0.95 A |
1 d | 80.44 ± 0.52 Bc | 81.65 ± 0.44 Bbc | 83.55 ± 0.97 Bab | 85.06 ± 0.61 ABa | 82.64 ± 0.35 Bb | |
2 d | 75.10 ± 0.91 Cd | 78.49 ± 0.25 Cc | 80.48 ± 0.43 Cb | 83.56 ± 0.63 Ba | 79.22 ± 0.35 Cbc | |
3 d | 70.35 ± 0.63 Dd | 74.46 ± 0.38 Dc | 77.32 ± 0.34 Db | 80.21 ± 0.33 Ca | 76.40 ± 0.67 Db | |
4 d | 66.10 ± 0.89 Ed | 69.52 ± 0.52 Ec | 72.42 ± 0.75 Eb | 77.02 ± 0.51 Da | 72.44 ± 1.07 Eb | |
5 d | 60.50 ± 0.75 Fd | 65.12 ± 1.05 Fc | 69.16 ± 0.42 Fb | 73.98 ± 0.63 Ea | 65.68 ± 0.94 Fc | |
Acrosome integrity (%) | 0 d | 90.17 ± 0.43 A | 89.75 ± 0.36 A | 90.15 ± 0.62 A | 91.12 ± 0.82 A | 90.63 ± 0.27 A |
1 d | 85.93 ± 0.44 Bc | 86.32 ± 0.38 Bbc | 87.99 ± 0.66 Bab | 89.70 ± 0.71 Aa | 88.29 ± 0.74 Bab | |
2 d | 83.37 ± 0.26 Cc | 83.71 ± 0.34 Cc | 86.11 ± 0.74 Cb | 87.82 ± 0.70 Ba | 85.10 ± 0.48 Cbc | |
3 d | 81.15 ± 0.70 Dc | 82.34 ± 0.71 Cbc | 83.56 ± 0.39 Db | 86.67 ± 0.55 BCa | 82.37 ± 0.69 Dbc | |
4 d | 78.69 ± 0.53 Ec | 78.65 ± 0.62 Dc | 81.00 ± 0.26 Eb | 85.35 ± 0.34 Ca | 81.80 ± 0.45 Db | |
5 d | 75.77 ± 0.41 Fd | 77.64 ± 0.78 Dc | 79.84 ± 0.27 Eb | 82.75 ± 0.22 Da | 79.09 ± 0.51 Ebc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Wang, X.; Sohail, T.; Jiang, C.; Sun, Y.; Wang, J.; Sun, X.; Li, Y. Punicalagin Protects Ram Sperm from Oxidative Stress by Enhancing Antioxidant Capacity and Mitochondrial Potential during Liquid Storage at 4 °C. Animals 2024, 14, 318. https://doi.org/10.3390/ani14020318
Zhang L, Wang X, Sohail T, Jiang C, Sun Y, Wang J, Sun X, Li Y. Punicalagin Protects Ram Sperm from Oxidative Stress by Enhancing Antioxidant Capacity and Mitochondrial Potential during Liquid Storage at 4 °C. Animals. 2024; 14(2):318. https://doi.org/10.3390/ani14020318
Chicago/Turabian StyleZhang, Liuming, Xuyang Wang, Tariq Sohail, Caiyu Jiang, Yuxuan Sun, Jian Wang, Xiaomei Sun, and Yongjun Li. 2024. "Punicalagin Protects Ram Sperm from Oxidative Stress by Enhancing Antioxidant Capacity and Mitochondrial Potential during Liquid Storage at 4 °C" Animals 14, no. 2: 318. https://doi.org/10.3390/ani14020318
APA StyleZhang, L., Wang, X., Sohail, T., Jiang, C., Sun, Y., Wang, J., Sun, X., & Li, Y. (2024). Punicalagin Protects Ram Sperm from Oxidative Stress by Enhancing Antioxidant Capacity and Mitochondrial Potential during Liquid Storage at 4 °C. Animals, 14(2), 318. https://doi.org/10.3390/ani14020318