Fatty Acids in the Eggs of Red King Crabs from the Barents Sea
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stevens, B.G.; Lovrich, G.A. King crabs of the World: Species and distributions. In King Crabs of the World: Biology and Fisheries Management; Stevens, B.G., Ed.; CRC Press: Boca Raton, FL, USA; Taylor and Francis Group: Abingdon, UK, 2014; pp. 1–29. [Google Scholar]
- Kuzmin, S.A.; Gudimova, E.N. Introduction of the Kamchatka (Red King) Crab in the Barents Sea: Peculiarities of Biology, Perspectives of Fishery; KSC RAS Press: Apatity, Russia, 2002. (In Russian) [Google Scholar]
- Dvoretsky, A.G.; Dvoretsky, V.G. Ecology and distribution of red king crab larvae in the Barents Sea: A review. Water 2022, 14, 2328. [Google Scholar] [CrossRef]
- Stesko, A.V. Distribution and status of the king crab stock in the Russian territorial waters of the Barents Sea. Probl. Fish. 2015, 16, 175–192. (In Russian) [Google Scholar] [CrossRef]
- Talberg, N.B. Comparative characteristics in the red king crab migration pattern in the shallows of the Barents and Okhotsk Sea. Coast. Hydrobiol. Investig. VNIRO Proc. 2005, 142, 91–101. (In Russian) [Google Scholar]
- Pavlova, L.V. Effect of juvenile red king crabs on zoobenthos in Kola Bay (Barents Sea). Dokl. Biol. Sci. 2008, 422, 312–315. [Google Scholar] [CrossRef] [PubMed]
- Pavlova, L.V. Ration of the red king crab on coastal shoals of the Barents Sea. Dokl. Biol. Sci. 2015, 463, 200–204. [Google Scholar] [CrossRef] [PubMed]
- Pavlova, L.V. The red king crab Paralithodes camchaticus (Tilesius, 1815) (Decapoda: Anomura): The use of species equality indicators to assess the influence on the benthos of the Barents Sea. Russ. J. Mar. Biol. 2021, 47, 508–514. [Google Scholar] [CrossRef]
- Dvoretsky, A.G.; Dvoretsky, V.G. Distribution of amphipods Ischyrocerus on the red king crab, Paralithodes camtschaticus: Possible interactions with the host in the Barents Sea. Estuar. Coast. Shelf Sci. 2009, 82, 390–396. [Google Scholar] [CrossRef]
- Dvoretsky, A.G.; Dvoretsky, V.G. Epibiotic communities of common crab species in the coastal Barents Sea: Biodiversity and infestation patterns. Diversity 2022, 14, 6. [Google Scholar] [CrossRef]
- Pereladov, M.V.; Stesko, A.V. Features of distribution and biology of juvenile red king crab in the Barents Sea. In The Red King Crab in the Barents Sea, 3rd ed.; Bizikov, V.A., Stesko, A.V., Alekseev, D.O., Buyanovsky, A.I., Dolgov, A.V., Novikov, M.A., Pereladov, M.V., Sentyabov, E.V., Sokolov, K.M., Eds.; VNIRO: Moscow, Russia, 2021; pp. 240–262. (In Russian) [Google Scholar]
- Dvoretsky, A.G.; Dvoretsky, V.G. Hemolymph molting hormone concentrations in red king crabs from the Barents Sea. Polar Biol. 2010, 33, 1293–1298. [Google Scholar] [CrossRef]
- Dvoretsky, A.G.; Tipisova, E.V.; Elfimova, A.E.; Alikina, V.A.; Dvoretsky, V.G. Sex hormones in hemolymph of red king crabs from the Barents Sea. Animals 2021, 11, 2149. [Google Scholar] [CrossRef]
- Dvoretsky, A.G.; Bichkaeva, F.A.; Baranova, N.F.; Dvoretsky, V.G. Fatty acid composition of the Barents Sea red king crab (Paralithodes camtschaticus) leg meat. J. Food Compos. Anal. 2021, 98, 103826. [Google Scholar] [CrossRef]
- Dvoretsky, A.G.; Bichkaeva, F.A.; Baranova, N.F.; Dvoretsky, V.G. Fatty acid composition in the hepatopancreas of the Barents Sea red king crab. Biol. Bull. 2020, 47, 332–338. [Google Scholar] [CrossRef]
- Yakovlev, I.A.; Lysøe, E.; Heldal, I.; Steen, H.; Hagen, S.B.; Clarke, J.L. Transcriptome profiling and in silico detection of the antimicrobial peptides of red king crab Paralithodes camtschaticus. Sci. Rep. 2020, 10, 12679. [Google Scholar] [CrossRef] [PubMed]
- Ponomareva, T.; Timchenko, M.; Filippov, M.; Lapaev, S.; Sogorin, E. Prospects of red king crab hepatopancreas processing: Fundamental and applied biochemistry. Recycling 2021, 6, 3. [Google Scholar] [CrossRef]
- Dvoretsky, A.G.; Bichkaeva, F.A.; Baranova, N.F.; Dvoretsky, V.G. Fatty acids in the circulatory system of an invasive king crab from the Barents Sea. J. Food Compos. Anal. 2022, 110, 104528. [Google Scholar] [CrossRef]
- Dvoretsky, A.G.; Bichkaeva, F.A.; Baranova, N.F.; Dvoretsky, V.G. Fatty acid profiles in the gonads of red king crab (Paralithodes camtschaticus) from the Barents Sea. Animals 2023, 13, 336. [Google Scholar] [CrossRef]
- Sundet, J.H.; Hoel, A.H. The Norwegian management of an introduced species: The Arctic red king crab fishery. Mar. Policy 2016, 72, 278–284. [Google Scholar] [CrossRef]
- Kumar, V.; Sinha, A.K.; Romano, N.; Allen, K.M.; Bowman, B.A.; Thompson, K.R.; Tidwell, J.H. Metabolism and nutritive role of cholesterol in the growth, gonadal development, and reproduction of crustaceans. Reviews in Fisheries Science. Aquaculture 2018, 26, 254–273. [Google Scholar]
- Saito, H. Characteristics of fatty acid composition of the deep-sea vent crab, Shinkaia crosnieri Baba and Williams. Lipids 2011, 46, 723–740. [Google Scholar] [CrossRef]
- Romano, N.; Safee, M.A.; Ebrahimi, M.; Arshad, A. Fatty acid compositional changes during the embryonic development of the swimming crab, Portunus pelagicus (Portunidae: Decapoda). Invert. Reprod. Develop. 2016, 60, 112–117. [Google Scholar] [CrossRef]
- Alava, V.R.; Quinitio, E.T.; De Pedro, J.B.; Priolo, F.M.P.; Orozco, Z.G.A.; Wille, M. Lipids and fatty acids in wild and pond-reared mud crab Scylla serrata (Forsskål) during ovarian maturation and spawning. Aquac. Res. 2007, 38, 1468–1477. [Google Scholar] [CrossRef]
- Chang, G.; Wu, X.; Cheng, Y.; Zeng, C.; Yu, Z. Reproductive performance, offspring quality, proximate and fatty acid composition of normal and precocious Chinese mitten crab Eriocheir sinensis. Aquaculture 2017, 469, 137–143. [Google Scholar] [CrossRef]
- Il’in, G.V.; Moiseev, D.V.; Shirokolobov, D.V.; Deryabin, A.A.; Pavlova, L.G. Long-term dynamics of hydrological conditions of the Zelenetskaya Bay, East Murman. Vestn. MSTU 2016, 19, 268–277. (In Russian) [Google Scholar]
- Dvoretsky, A.G.; Dvoretsky, V.G. Aquaculture of green sea urchin in the Barents Sea: A brief review of Russian studies. Rev. Aquac. 2020, 12, 1280–1290. [Google Scholar] [CrossRef]
- Dvoretsky, A.G.; Dvoretsky, V.G. New echinoderm-crab epibiotic associations from the coastal Barents Sea. Animals 2021, 11, 917. [Google Scholar] [CrossRef] [PubMed]
- Reppond, K.; Rugolo, L.; de Oliveira, A.C. Change in biochemical composition during development of snow crab, Chionoecetes opilio, embryos. J. Crustac. Biol. 2008, 28, 519–527. [Google Scholar] [CrossRef]
- Pochelon, P.N.; Da Silva, T.L.; Reis, A.; Dos Santos, A.; Queiroga, H.; Calado, R. Inter-individual and within-brood variability in the fatty acid profiles of Norway lobster, Nephrops norvegicus (L.) embryos. Mar. Biol. 2011, 158, 2825–2833. [Google Scholar] [CrossRef]
- Donaldson, W.E.; Byersdorfer, S.E. Biological Field Techniques for Lithodid Crabs; Alaska Sea Grant College Program, University of Alaska Fairbanks: Fairbanks, AK, USA, 2005. [Google Scholar]
- Abramoff, M.D.; Magalhães, P.J.; Ram, S.J. Image processing with Image. J. Biophotonics Int. 2004, 11, 36–41. [Google Scholar]
- Nakanishi, T. Rearing condition of eggs, larvae and post-larvae of king crab. Bull. Jpn. Sea Reg. Fish. Lab. 1987, 37, 57–161. [Google Scholar]
- Folch, J.; Less, M.; Sloane-Stanley, G.H. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Torres, P.; Penha-Lopes, G.; Narciso, L.; Macia, A.; Paula, J. Fatty acids dynamics during embryonic development in genus Uca (Brachyura: Ocypodidae), from the mangroves of Inhaca Island, Mozambique. Estuar. Coast. Shelf Sci. 2008, 80, 307–313. [Google Scholar] [CrossRef]
- Li, S.; Cheng, Y.; Zhou, B.; Hines, A.H. Changes in biochemical composition of newly spawned eggs, prehatching embryos and newly hatched larvae of the blue crab Callinectes sapidus. J. Shellfish Res. 2012, 31, 941–946. [Google Scholar] [CrossRef]
- Xu, X.; Liu, X.; Tao, J. Changes in biochemical composition and digestive enzyme activity during the embryonic development of the marine crab, Charybdis japonica (Crustadea: Decapoda). Zool. Sci. 2013, 30, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Stevens, B.G. (Ed.) Embryo development and hatching of king crabs. In King Crabs of the World: Biology and Fisheries Management; CRC Press: Boca Raton, FL, USA; Taylor and Francis Group: Abingdon, UK, 2014; pp. 211–231. [Google Scholar]
- Matyushkin, V.B. Determination of spawning periods by stages of embryo development in the red king crab Paralithodes camtschaticus female deposits. Commer. Species Their Biol. 2016, 161, 27–37. (In Russian) [Google Scholar]
- de Mello, P.H.; Araujo, B.C.; Marques, V.H.; Branco, G.S.; Honji, R.M.; Moreira, R.G.; Rombenso, A.N.; Portella, M.C. Long-Chain polyunsaturated fatty acids n−3 (n−3 LC-PUFA) as phospholipids or triglycerides influence on Epinephelus marginatus juvenile fatty acid profile and liver morphophysiology. Animals 2022, 12, 951. [Google Scholar] [CrossRef] [PubMed]
- Morado, F.J.; Shavey, C.A.; Ryazanova, T.; White, V.C. Diseases of king crabs and other anomalies. In King Crabs of the World: Biology and Fisheries Management; Stevens, B.G., Ed.; CRC Press: Boca Raton, FL, USA; Taylor and Francis Group: Abingdon, UK, 2014; pp. 139–210. [Google Scholar]
- Subramoniam, T. Sexual Biology and Reproduction in Crustaceans; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Sun, P.; Jin, M.; Jiao, L.; Monroig, Ó.; Navarro, J.C.; Tocher, D.R.; Betancor, M.B.; Wang, X.; Yuan, Y.; Zhou, Q. Effects of dietary lipid level on growth, fatty acid profiles, antioxidant capacity and expression of genes involved in lipid metabolism in juvenile swimming crab, Portunus trituberculatus. Brit. J. Nutr. 2020, 123, 149–160. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.J.; Jiang, G.Z.; Liu, W.B.; Abasubong, K.P.; Zhang, D.D.; Li, X.F.; Chi, C. Evaluation of dietary linoleic acid on growth as well as hepatopancreatic index, lipid accumulation oxidative stress and inflammation in Chinese mitten crabs (Eriocheir sinensis). Aquac. Rep. 2022, 22, 100983. [Google Scholar] [CrossRef]
- Sullivan, M.; Su, X.Q.; Li, D. Distribution on n−3 polyunsaturated fatty acids in different edible portions of the blue swimmer crab (Portunus pelagicus). Asia Pacific J. Clin. Nutr. 2001, 10, S42. [Google Scholar]
- Figueiredo, J.; Narciso, L. Egg volume, energy content and fatty acid profile of Maja brachydactyla (Crustacea: Brachyura: Majidae) during embryogenesis. J. Mar. Biol. Assoc. 2008, 88, 1401–1405. [Google Scholar] [CrossRef]
- Fischer, S.; Thatje, S.; Graeve, M.; Paschke, K.; Kattner, G. Bioenergetics of early life-history stages of the brachyuran crab Cancer setosus in response to changes in temperature. J. Exp. Mar. Biol. Ecol. 2009, 374, 160–166. [Google Scholar] [CrossRef]
- Figueiredo, J.; Penha-Lopes, G.; Anto, J.; Narciso, L.; Lin, J. Potential fertility and egg development (volume, water, lipid, and fatty acid content) through embryogenesis of Uca rapax (Decapoda: Brachyura: Ocypodidae). J. Crustac. Biol. 2008, 28, 528–533. [Google Scholar] [CrossRef]
- Figueiredo, J.; Penha-Lopes, G.; Anto, J.; Narciso, L.; Lin, J. Fecundity, brood loss and egg development through embryogenesis of Armases cinereum (Decapoda: Grapsidae). Mar. Biol. 2008, 154, 287–294. [Google Scholar] [CrossRef]
- Graeve, M.; Wehrtmann, I. Lipid and fatty acid composition of Antarctic shrimp eggs (Decapoda: Caridea). Polar Biol. 2003, 26, 55–61. [Google Scholar] [CrossRef]
- Penha-Lopes, G.; Torres, P.; Narciso, L.; Cannicci, S.; Paula, J. Comparison of fecundity, embryo loss and fatty acid composition of mangrove crab species in sewage contaminated and pristine mangrove habitats in Mozambique. J. Exp. Mar. Biol. Ecol. 2009, 381, 25–32. [Google Scholar] [CrossRef]
- Soundarapandian, P.; Singh, R.K. Biochemical composition of the eggs of commercially important crab Portunus pelagicus (Linnaeus). Int. J. Zool. Res. 2008, 4, 53–58. [Google Scholar] [CrossRef]
- Hamid, A.; Wardiatno, Y.; Batu, D.T.L.; Riani, E. Changes in proximate and fatty acids of the eggs during embryo development in the blue swimming crab, Portunus pelagicus (Linnaeus 1758) at Lasongko bay, Southeast Sulawesi, Indonesia. Indian J. Sci. Technol. 2015, 8, 501–509. [Google Scholar]
- Stevens, B.G. (Ed.) Development and biology of king crab larvae. In King Crabs of the World: Biology and Fisheries Management; CRC Press: Boca Raton, FL, USA; Taylor and Francis Group: Abingdon, UK, 2014; pp. 233–260. [Google Scholar]
- Shatsky, A.V. Sea Urchins in the Genus Strongylocentrotus in the Murmansk Coast of the Barents Sea: Biology, Distribution, Harvesting Perspectives. Ph.D. Thesis, VNIRO, Moscow, Russia, 2012. (In Russian). [Google Scholar]
- Matyushkin, V.B. Peculiarities of reproduction of the red king crab in fjord waters of the western Murman. In The Red King Crab in the Barents Sea; Berenboim, B.I., Ed.; PINRO Press: Murmansk, Russia, 2003; pp. 88–100. (In Russian) [Google Scholar]
- Matyushkin, V.B. Reproductive parameters of female red king crab (Paralithodes camtschaticus, Tilesius) in the Ura inlet of the Barents Sea. Tr. VNIRO 2005, 144, 212–221. (In Russian) [Google Scholar]
- Reppond, K.D. Biochemistry of Red King Crab (Paralithodes camtschaticus) from Different Locations in Alaskan Waters. NMFS-NWFSC-102; U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service: Washington, DC, USA, 2009. [Google Scholar]
- Spaziani, E.P.; Hinsch, G.W. Variation in selected unsaturated fatty acids during vitellogenesis in the Florida freshwater crayfish Procambarus paeninsulanus. Invert. Reprod. Develop. 1997, 32, 21–25. [Google Scholar] [CrossRef]
- Wehrtmann, I.S.; Kattner, G. Changes in volume, biomass, and fatty acids of developing eggs in Nauticaris magellanica (Decapoda: Caridea): A latitudinal comparison. J. Crustac. Biol. 1998, 18, 413–422. [Google Scholar] [CrossRef]
- Zhang, C.; Song, X.Z.; Zhang, Q.; Pang, Y.Y.; Lv, J.H.; Tang, B.P.; Cheng, Y.X.; Yang, X.Z. Changes in bud morphology, growth-related genes and nutritional status during cheliped regeneration in the Chinese mitten crab, Eriocheir sinensis. PLoS ONE 2018, 13, e0209617. [Google Scholar] [CrossRef]
- Guo, F.; Lee, S.Y.; Kainz, M.J.; Brett, M.T. Fatty acids as dietary biomarkers in mangrove ecosystems: Current status and future perspective. Sci. Total Environ. 2020, 739, 139907. [Google Scholar] [CrossRef] [PubMed]
- Tu, L.; Wu, X.; Wang, X.; Shi, W. Effects of fish oil replacement by blending vegetable oils in fattening diets on nonvolatile taste substances of swimming crab (Portunus trituberculatus). J. Food Biochem. 2020, 44, e13345. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Xu, X.; Hu, J.; Zhou, Z.; Wan, W.; Zhou, Y.; Miao, S. Effects of dietary arachidonic acid on the growth performance, feed utilization and fatty acid metabolism of Chinese mitten crab (Eriocheir sinensis). Aquac. Rep. 2022, 24, 101170. [Google Scholar] [CrossRef]
- Bakanev, S.V. Fecundity and some other reproductive parameters of red king crab in the Barents Sea. In The Red King Crab in the Barents Sea; Berenboim, B.I., Ed.; PINRO Press: Murmansk, Russia, 2003; pp. 78–88. (In Russian) [Google Scholar]
- Al Khawli, F.; Pateiro, M.; Domínguez, R.; Lorenzo, J.M.; Gullón, P.; Kousoulaki, K.; Ferrer, E.; Berrada, H.; Barba, F.J. Innovative green technologies of intensification for valorization of seafood and their by-products. Mar. Drugs 2019, 17, 689. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C. Omega-3 polyunsaturated fatty acids and inflammatory processes: Nutrition or pharmacology? Brit. J. Clin. Pharmacol. 2013, 83, 150–162. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D.; Wu, J.H.Y. Omega-3 fatty acids and cardiovascular disease: Effects on risk factors, molecular pathways, and clinical events. J. Am. Coll. Cardiol. 2011, 58, 2047–2067. [Google Scholar] [CrossRef]
- Serini, S.; Calviello, G.; Trombino, S.; Piccioni, E.; Maggiano, N. Polyunsaturated fatty acids as promoters of apoptosis: Implications for cancer. Apoptosis 2011, 16, 115–126. [Google Scholar]
- Patten, G.S.; Abeywardena, M.Y. Fish oil and colony-stimulating factor-1 improve insulin sensitivity in the obese insulin-resistant rat: Role of macrophages. J. Nutr. Biochem. 2014, 25, 1091–1098. [Google Scholar]
- Yessoufou, A.; Ple, A.; Moutairou, K.; Hichami, A. N−3 long chain polyunsaturated fatty acids in the prevention and treatment of obesity-induced metabolic disorders. Lipids Health Dis. 2011, 10, 1–14. [Google Scholar]
- Food and Agriculture Organization of the United Nations. FAO Fats and Fatty Acids in Human Nutrition. Report of an Expert Consultation; Food and Agriculture Organization of the United Nations: Rome, Italy, 2010. [Google Scholar]
Egg Stage | N | X | SD | Min | Max |
---|---|---|---|---|---|
Carapace length, mm | |||||
Nauplius | 28 | 140.2 | 9.4 | 121.5 | 162.4 |
Metanauplius | 9 | 147.0 | 6.5 | 137.0 | 157.0 |
Combined | 37 | 139.4 | 8.8 | 121.5 | 162.4 |
Weight, g | |||||
Nauplius | 28 | 1913 | 329 | 1317 | 2548 |
Metanauplius | 9 | 1773 | 401 | 934 | 2098 |
Combined | 37 | 1879 | 347 | 934 | 2548 |
Fatty Acid | Level, μg g−1 | Proportion, % | ||||||
---|---|---|---|---|---|---|---|---|
Nauplius | Metanauplius | Nauplius | Metanauplius | |||||
X ± SE | Min–Max | X ± SE | Min–Max | X ± SE | Min–Max | X ± SE | Min–Max | |
C6:0 | 1.8 ± 0.1 | 1.3–3.3 | 2.4 ± 0.4 | 1.1–4.2 | 0.002 ± 0 | 0–0.005 | 0.005 ± 0.001 | 0.002–0.008 |
C8:0 | 3.7 ± 0.2 | 2.1–5.6 | 3.4 ± 0.4 | 1.9–5.1 | 0.007 ± 0 | 0.004–0.011 | 0.007 ± 0.001 | 0.003–0.011 |
C9:0 | 3.3 ± 0.2 | 1.7–6.7 | 4.2 ± 0.4 | 1.8–5.8 | 0.006 ± 0.001 | 0.003–0.012 | 0.009 ± 0.001 | 0.003–0.013 |
C10:0 | 7.2 ± 0.4 | 4.5–11 | 7.6 ± 0.4 | 6.1–9.7 | 0.013 ± 0.001 | 0.009–0.022 | 0.015 ± 0.001 | 0.013–0.02 |
C11:0 | 3.7 ± 0.3 | 1.5–9.1 | 4.8 ± 0.6 | 2.7–8 | 0.007 ± 0.001 | 0.003–0.017 | 0.01 ± 0.001 | 0.005–0.016 |
C12:0 | 146 ± 6 | 84–207 | 147 ± 12 | 116–234 | 0.27 ± 0.01 | 0.19–0.36 | 0.29 ± 0.01 | 0.26–0.35 |
C13:0 | 21.2 ± 0.9 | 9.3–31.3 | 19.7 ± 1.4 | 13.2–25.8 | 0.039 ± 0.001 | 0.029–0.055 | 0.039 ± 0.002 | 0.029–0.049 |
C14:0 | 925 ± 37 | 480–1335 | 854 ± 60 | 534–1025 | 1.72 ± 0.04 | 1.45–2.31 | 1.71 ± 0.1 | 1.11–1.98 |
C15:0 | 491 ± 17 | 278–687 | 426 ± 13 | 364–499 | 0.92 ± 0.02 | 0.74–1.12 | 0.86 ± 0.02 | 0.74–0.94 |
C16:0 | 8119 ± 289 | 5453–12,450 | 7571 ± 338 | 6447–9969 | 15.2 ± 0.2 | 13.4–17.3 | 15.2 ± 0.4 | 14.1–17.1 |
C17:0 | 367 ± 12 | 242–478 | 329 ± 10 | 266–380 | 0.69 ± 0.01 | 0.55–0.84 | 0.66 ± 0.02 | 0.56–0.75 |
C18:0 | 2505 ± 92 | 1572–3468 | 2488 ± 91 | 2215–3081 | 4.7 ± 0.1 | 3.8–5.1 | 5 ± 0.1 | 4.5–5.3 |
C20:0 | 131 ± 7 | 51–199 | 141 ± 14 | 87–187 | 0.24 ± 0.01 | 0.16–0.35 | 0.28 ± 0.02 | 0.19–0.34 |
C21:0 | 36.8 ± 4.6 | 7.1–74.8 | 26.4 ± 7.1 | 10.7–73 | 0.065 ± 0.007 | 0.02–0.138 | 0.051 ± 0.012 | 0.024–0.112 |
C22:0 | 26.6 ± 2.5 | 5.8–59.5 | 33.6 ± 3.8 | 18.7–44.5 | 0.049 ± 0.004 | 0.012–0.104 | 0.067 ± 0.007 | 0.039–0.091 |
C23:0 | 102 ± 8 | 43–252 | 153 ± 41 | 53–448 | 0.19 ± 0.01 | 0.09–0.47 | 0.29 ± 0.06 | 0.11–0.66 |
C24:0 | 306 ± 31 | 91–697 | 185 ± 18 | 116–250 | 0.55 ± 0.05 | 0.23–1.03 | 0.37 ± 0.04 | 0.26–0.57 |
C14:1t | 15.2 ± 0 | 15.2–15.2 | 4.1 ± 0 | 4.1–4.1 | 0.001 ± 0.001 | 0–0.033 | 0.001 ± 0.001 | 0–0.008 |
C14:1C | 11.5 ± 0.9 | 3.2–28 | 11.1 ± 1.2 | 6–15.1 | 0.021 ± 0.002 | 0.006–0.06 | 0.022 ± 0.002 | 0.013–0.031 |
C15:1 | 5.2 ± 1.2 | 0.8–13.5 | 3.4 ± 0.1 | 3.1–3.6 | 0.004 ± 0.001 | 0–0.024 | 0.002 ± 0.001 | 0–0.007 |
C16:1t | 95 ± 5 | 22–139 | 102 ± 6 | 82–133 | 0.17 ± 0.01 | 0–0.28 | 0.21 ± 0.01 | 0.17–0.28 |
C16:1C | 3723 ± 155 | 2113–5142 | 3618 ± 237 | 2973–5350 | 6.9 ± 0.1 | 6.1–7.8 | 7.2 ± 0.1 | 6.6–7.9 |
C17:1 | 6.2 ± 0.7 | 2.9–14.6 | 7.9 ± 1.1 | 4.7–12.3 | 0.009 ± 0.001 | 0–0.021 | 0.014 ± 0.003 | 0–0.025 |
C18:1n9t | 288 ± 11 | 191–413 | 264 ± 18 | 138–344 | 0.541 ± 0.016 | 0.383–0.709 | 0.529 ± 0.033 | 0.286–0.615 |
C18:1n9C | 6987 ± 303 | 4266–11,360 | 6685 ± 385 | 5726–9485 | 13 ± 0.2 | 11.2–15.2 | 13.3 ± 0.3 | 12.5–15.5 |
C20:1 | 1114 ± 57 | 562–1897 | 1107 ± 82 | 784–1508 | 2.1 ± 0.1 | 1.4–3.4 | 2.2 ± 0.1 | 1.8–2.9 |
C22:1 | 105 ± 6 | 59–200 | 131 ± 15 | 83–205 | 0.2 ± 0.01 | 0.12–0.32 | 0.26 ± 0.03 | 0.18–0.42 |
C24:1 | 49.4 ± 2.8 | 24.9–83.2 | 49 ± 6 | 25.8–87 | 0.092 ± 0.005 | 0.049–0.152 | 0.096 ± 0.008 | 0.053–0.128 |
C18:2n6t | 153 ± 25 | 13–424 | 106 ± 49 | 10–366 | 0.27 ± 0.04 | 0–0.87 | 0.23 ± 0.11 | 0.02–0.8 |
C18:2n6C | 664 ± 29 | 336–995 | 574 ± 33 | 467–778 | 1.2 ± 0 | 1–1.5 | 1.1 ± 0 | 1–1.3 |
C18:3n3 | 344 ± 22 | 152–587 | 325 ± 39 | 215–605 | 0.63 ± 0.03 | 0.41–0.96 | 0.63 ± 0.04 | 0.48–0.89 |
C18:3n6 | 203 ± 14 | 86–341 | 172 ± 13 | 101–228 | 0.38 ± 0.02 | 0.18–0.62 | 0.35 ± 0.03 | 0.15–0.44 |
C20:2n6 | 620 ± 26 | 364–913 | 608 ± 37 | 472–747 | 1.2 ± 0 | 0.9–1.4 | 1.2 ± 0.1 | 1–1.5 |
C20:3n6 | 102 ± 6 | 56–216 | 108 ± 9 | 83–160 | 0.19 ± 0.01 | 0.13–0.34 | 0.22 ± 0.01 | 0.17–0.27 |
C20:4n6 | 2717 ± 129 | 1183–4251 | 2513 ± 210 | 1672–3349 | 5.1 ± 0.2 | 3.6–6.7 | 5 ± 0.4 | 3.7–6.8 |
C22:2n6 | 7 ± 0.9 | 0.9–22.6 | 5.9 ± 1.4 | 1.6–14 | 0.014 ± 0.002 | 0.002–0.042 | 0.012 ± 0.003 | 0.003–0.029 |
C20:5n3 | 13,568 ± 592 | 7530–18,394 | 12,954 ± 790 | 10,126–17,596 | 25.1 ± 0.4 | 21.2–28.7 | 25.8 ± 0.8 | 21–28 |
C22:6n3 | 8537 ± 372 | 5007–12,065 | 7007 ± 456 | 5715–9962 | 15.8 ± 0.3 | 13.1–19.1 | 14 ± 0.6 | 11.9–17 |
C20:3n3 | 178 ± 13 | 60–404 | 182 ± 22 | 98–270 | 0.33 ± 0.02 | 0.19–0.64 | 0.36 ± 0.04 | 0.22–0.49 |
C22:4n6 | 208 ± 11 | 136–415 | 177 ± 9 | 136–221 | 0.4 ± 0.02 | 0.24–0.86 | 0.36 ± 0.02 | 0.31–0.44 |
C22:3n3 | 6.3 ± 1 | 0.9–15.7 | 3.4 ± 1.2 | 1–11.1 | 0.011 ± 0.002 | 0–0.029 | 0.007 ± 0.003 | 0.002–0.025 |
C22:5n6 | 146 ± 6 | 83–215 | 122 ± 6 | 93–157 | 0.27 ± 0.01 | 0.2–0.4 | 0.24 ± 0.01 | 0.21–0.27 |
C22:5n3 | 849 ± 33 | 568–1237 | 831 ± 69 | 566–1162 | 1.6 ± 0.1 | 0.9–2.6 | 1.7 ± 0.2 | 1.3–2.5 |
∑SFA | 13,194 ± 456 | 8369–18,916 | 12,730 ± 538 | 10,919–16,217 | 24.6 ± 0.2 | 23.1–26.6 | 25.5 ± 0.7 | 23.8–30.1 |
∑MUFA | 12,377 ± 496 | 7304–18,425 | 11,976 ± 688 | 10,296–17,069 | 23 ± 0.3 | 20.5–25.7 | 23.9 ± 0.4 | 23–26.1 |
∑PUFA | 28,296 ± 1092 | 15,831–37,468 | 25,684 ± 1252 | 22,454–34,507 | 52.4 ± 0.3 | 49.4–55.4 | 51.3 ± 0.5 | 48.2–52.7 |
Total | 53,867 ± 2006 | 31,504–74,809 | 50,060 ± 2392 | 43,831–67,793 | 100 ± 0 | 100–100 | 100 ± 0 | 100–100 |
∑n-3 | 23,482 ± 936 | 13,534–32,105 | 21,301 ± 1096 | 18,908–29,395 | – | – | – | – |
∑n-6 | 4814 ± 198 | 2297–7057 | 4386 ± 245 | 3546–5316 | – | – | – | – |
∑n-9 | 8544 ± 350 | 5117–13,143 | 8236 ± 464 | 6998–11,567 | – | – | – | – |
∑n-7 | 3819 ± 157 | 2182–5268 | 3727 ± 241 | 3074–5487 | – | – | – | – |
n-3/n-6 | 4.9 ± 0.1 | 3.6–6.3 | 4.9 ± 0.2 | 3.9–5.8 | – | – | – | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dvoretsky, A.G.; Bichkaeva, F.A.; Baranova, N.F.; Dvoretsky, V.G. Fatty Acids in the Eggs of Red King Crabs from the Barents Sea. Animals 2024, 14, 348. https://doi.org/10.3390/ani14020348
Dvoretsky AG, Bichkaeva FA, Baranova NF, Dvoretsky VG. Fatty Acids in the Eggs of Red King Crabs from the Barents Sea. Animals. 2024; 14(2):348. https://doi.org/10.3390/ani14020348
Chicago/Turabian StyleDvoretsky, Alexander G., Fatima A. Bichkaeva, Nina F. Baranova, and Vladimir G. Dvoretsky. 2024. "Fatty Acids in the Eggs of Red King Crabs from the Barents Sea" Animals 14, no. 2: 348. https://doi.org/10.3390/ani14020348
APA StyleDvoretsky, A. G., Bichkaeva, F. A., Baranova, N. F., & Dvoretsky, V. G. (2024). Fatty Acids in the Eggs of Red King Crabs from the Barents Sea. Animals, 14(2), 348. https://doi.org/10.3390/ani14020348