Connecting the Dots: Livestock Animals as Missing Links in the Chain of Microplastic Contamination and Human Health
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Principal Source of MNPs
3.1. Soil Contamination
3.2. Human Health Threat
4. MPs and NPs through the Food Chain: The Role of Ruminants
4.1. An Investigation of MPs and NPs in Ruminants
Ruminant Animal | Country | Findings | Type of Plastic Particles | Source/Route | Technique | References |
---|---|---|---|---|---|---|
Sheep | Spain | Feces | PE 1 | Ingestion of plastic mulch films | Stereomicroscope | [56] |
Goat | Middle East | Meat | PE | Cutting boards | FT-IR spectroscopy | [62] |
Cattle | Switzerland/France | Milk products | PP 2, polyester, PTFE 3, PS 4 | Milking process | Micro-RAMAN | [57] |
Cattle | Mexico | Milk | PES 5, PSU 6 | Industrial process | Micro-RAMAN | [58] |
Cattle | Ecuador | Milk | PP, HDPE 7/LDPE 8, PAAm 9 | Industrial process | Stereomicroscope and FT-IR spectroscopy | [65] |
Cattle | South China | Manure | PP, PE | Compost application | Stereomicroscope and FT-IR spectroscopy | [66] |
Cattle | North China | Manure | PE, PET 10, PP | Long-term compost application | Stereomicroscope and FT-IR spectroscopy | [23] |
Cattle | Turkey | Milk | Nylon-6, PET, EVA 11, PP, PU 12 | Industrial process | Stereomicroscope and FT-IR spectroscopy | [59] |
Cattle, sheep, goat | Ethiopia | Rumen and reticulum | Plastic bag | Ingestion municipal solid waste by free grazing | Visual inspection | [67,68,69] |
Sheep | Jordan | Rumen | Plastic bag | Grazing on polluted land | Visual inspection | [70] |
Buffalo, Achai cow | Pakistan | Reticulorumen | Plastic bag | Ingestion of no dietary materials | Visual inspection | [71,72] |
Small ruminant and cattle | Nigeria | Rumen | Plastic bag | Ingestion of plastic garbage | Visual inspection | [73,74,75,76] |
Sheep and goat | Kenya, Iran | Rumen | Plastic bag | Ingestion of plastic garbage | Visual inspection | [77,78,79] |
Buffalo, Axis deer, goat | India | Rumen and reticulum | Plastic waste | Grazing on polluted land | Visual inspection | [80,81,82] |
Small ruminants | Ghana | Fore stomach | Plastic for packaging food | Supplementary feed | Visual inspection | [83] |
Cattle and sheep | Germany | Gastric tract | Agricultural waste | Ingested anthropogenic debris | Visual inspection | [55] |
Dromedary camels | United Arab Emirates | Stomach | Plastic waste, PE, PP, EVA | Ingestion municipal solid waste by free grazing | FT-IR spectroscopy | [84] |
4.2. The Role of Plastic Additives as Additional Threats along the Food Chain
4.3. Microplastics can Carry Antibiotic Resistance Genes (ARGs) and Heavy Metals (HM) along the Food Chain
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rochman, C.M.; Brookson, C.; Bikker, J.; Djuric, N.; Earn, A.; Bucci, K.; Athey, S.; Huntington, A.; McIlwraith, H.; Munno, K.; et al. Rethinking microplastics as a diverse contaminant suite. Environ. Toxicol. Chem. 2019, 38, 703–711. [Google Scholar] [CrossRef] [PubMed]
- Multisanti, C.R.; Merola, C.; Perugini, M.; Aliko, V.; Faggio, C. Sentinel species selection for monitoring microplastic pollution: A review on one health approach. Ecol. Indic. 2022, 145, 109587. [Google Scholar] [CrossRef]
- Syberg, K.; Khan, F.R.; Selck, H.; Palmqvist, A.; Banta, G.T.; Daley, J.; Sano, L.; Duhaime, M.B. Microplastics: Addressing ecological risk through lessons learned. Environ. Toxicol. Chem. 2015, 34, 945–953. [Google Scholar] [CrossRef] [PubMed]
- Prata, J.C.; da Costa, J.P.; Lopes, I.; Andrady, A.L.; Duarte, A.C.; Rocha-Santos, T. A One Health perspective of the impacts of microplastics on animal, human and environmental health. Sci. Total Environ. 2021, 777, 146094. [Google Scholar] [CrossRef] [PubMed]
- Kooi, M.; Koelmans, A.A. Simplifying Microplastic via Continuous Probability Distributions for Size, Shape, and Density. Environ. Sci. Technol. Lett. 2019, 6, 551–557. [Google Scholar] [CrossRef]
- de Oliveira, C.R.S.; da Silva Júnior, A.H.; Mulinari, J.; Ferreira, A.J.S.; da Silva, A. Fibrous microplastics released from textiles: Occurrence, fate, and remediation strategies. J. Contam. Hydrol. 2023, 256, 104169. [Google Scholar] [CrossRef]
- PlasticsEurope. Plastics—The Fast Facts 2023. Available online: https://plasticseurope.org/de/knowledge-hub/plastics-the-fast-facts-2023/ (accessed on 13 January 2024).
- Guerranti, C.; Martellini, T.; Perra, G.; Scopetani, C.; Cincinelli, A. Microplastics in cosmetics: Environmental issues and needs for global bans. Environ. Toxicol. Pharmacol. 2019, 68, 75–79. [Google Scholar] [CrossRef]
- Sorensen, R.M.; Kanwar, R.S.; Jovanovi, B. Past, present, and possible future policies on plastic use in the United States, particularly microplastics and nanoplastics: A review. Integr. Environ. Assess. Manag. 2023, 19, 474–488. [Google Scholar] [CrossRef]
- Azeem, I.; Adeel, M.; Ahmad, M.A.; Shakoor, N.; Jiangcuo, G.D.; Azeem, K.; Ishfaq, M.; Shakoor, A.; Ayaz, M.; Xu, M.; et al. Uptake and Accumulation of Nano/Microplastics in Plants: A Critical Review. Nanomaterials 2021, 11, 2935. [Google Scholar] [CrossRef]
- Auta, H.S.; Emenike, C.U.; Fauziah, S.H. Distribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutions. Environ. Int. 2017, 102, 165–176. [Google Scholar] [CrossRef]
- Ivleva, N.P.; Wiesheu, A.C.; Niessner, R. Microplastic in Aquatic Ecosystems. Angew. Chem. Int. Ed. Engl. 2017, 56, 1720–1739. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.E.; Hamann, M.; Kroon, F.J. Bioaccumulation and biomagnification of microplastics in marine organisms: A review and meta-analysis of current data. PLoS ONE 2020, 15, e0240792. [Google Scholar] [CrossRef] [PubMed]
- Pitt, J.A.; Kozal, J.S.; Jayasundara, N.; Massarsky, A.; Trevisan, R.; Geitner, N.; Wiesner, M.; Levin, E.D.; Di Giulio, R.T. Uptake, tissue distribution, and toxicity of polystyrene nanoparticles in developing zebrafish (Dainio rerio). Aquat. Toxicol. 2018, 194, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, C.; Martins, M.; Sobral, P.; Costa, P.M.; Costa, M.H. An assessment of the ability to ingest and excrete microplastics by filter-feeders: A case study with the Mediterranean mussel. Environ. Pollut. 2019, 245, 600–606. [Google Scholar] [CrossRef] [PubMed]
- Rillig, M.C.; Lehmann, A.; de Souza Machado, A.A.; Yang, G. Microplastic effects on plants. New Phytol. 2019, 223, 1066–1070. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Zhu, C.; Wang, C.; Gu, C. Occurrence and Ecological Impacts of Microplastics in Soil Systems: A Review. Bull. Environ. Contam. Toxicol. 2019, 102, 741–749. [Google Scholar] [CrossRef] [PubMed]
- Okoffo, E.D.; O’Brien, S.; Ribeiro, F.; Burrows, S.D.; Toapanta, T.; Rauert, C.; O’Brien, J.W.; Tscharke, B.J.; Wang, X.; Thomas, K.V. Plastic particles in soil: State of the knowledge on sources, occurrence and distribution, analytical methods and ecological impacts. Environ. Sci. Process Impacts 2021, 23, 240–274. [Google Scholar] [CrossRef] [PubMed]
- Wanner, P. Plastic in agricultural soils—A global risk for groundwater systems and drinking water supplies?—A review. Chemosphere 2021, 264, 128453. [Google Scholar] [CrossRef]
- Urli, S.; Corte Pause, F.; Crociati, M.; Baufeld, A.; Monaci, M.; Stradaioli, G. Impact of Microplastics and Nanoplastics on Livestock Health: An Emerging Risk for Reproductive Efficiency. Animals 2023, 13, 1132. [Google Scholar] [CrossRef]
- Prata, J.C. Microplastics and human health: Integrating pharmacokinetics. Crit. Rev. Environ. Sci. Technol. 2023, 53, 1489–1511. [Google Scholar] [CrossRef]
- Li, W.C.; Tse, H.F.; Fok, L. Plastic waste in the marine environment: A review of sources, occurrence and effects. Sci. Total Environ. 2016, 566–567, 333–349. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Z.; Zhou, X.; Ding, W.; Wang, X.; Zhao, M.; Li, H.; Zou, G.; Chen, Y. Long-term application of organic compost is the primary contributor to microplastic pollution of soils in a wheat-maize rotation. Sci. Total Environ. 2023, 866, 161123. [Google Scholar] [CrossRef] [PubMed]
- Dris, R.; Gasperi, J.; Saad, M.; Mirande, C.; Tassin, B. Synthetic fibers in atmospheric fallout: A source of microplastics in the environment? Mar. Pollut. Bull. 2016, 104, 290–293. [Google Scholar] [CrossRef] [PubMed]
- Boots, B.; Russell, C.W.; Green, D.S. Effects of Microplastics in Soil Ecosystems: Above and Below Ground. Environ. Sci. Technol. 2019, 53, 11496–11506. [Google Scholar] [CrossRef] [PubMed]
- de Souza Machado, A.A.; Lau, C.W.; Kloas, W.; Bergmann, J.; Bachelier, J.B.; Faltin, E.; Becker, R.; Görlich, A.S.; Rillig, M.C. Microplastics Can Change Soil Properties and Affect Plant Performance. Environ. Sci. Technol. 2019, 53, 6044–6052. [Google Scholar] [CrossRef]
- Bosker, T.; Bouwman, L.J.; Brun, N.R.; Behrens, P.; Vijver, M.G. Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum. Chemosphere 2019, 226, 774–781. [Google Scholar] [CrossRef]
- Jiang, X.; Chen, H.; Liao, Y.; Ye, Z.; Li, M.; Klobučar, G. Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba. Environ. Pollut. 2019, 250, 831–838. [Google Scholar] [CrossRef]
- Giorgetti, L.; Spanò, C.; Muccifora, S.; Bottega, S.; Barbieri, F.; Bellani, L.; Ruffini Castiglione, M. Exploring the interaction between polystyrene nanoplastics and Allium cepa during germination: Internalization in root cells, induction of toxicity and oxidative stress. Plant Physiol. Biochem. 2020, 149, 170–177. [Google Scholar] [CrossRef]
- Li, H.; Chang, X.; Zhang, J.; Wang, Y.; Zhong, R.; Wang, L.; Wei, J.; Wang, Y. Uptake and distribution of microplastics of different particle sizes in maize (Zea mays) seedling roots. Chemosphere 2023, 313, 137491. [Google Scholar] [CrossRef]
- Qi, Y.; Yang, X.; Pelaez, A.M.; Huerta Lwanga, E.; Beriot, N.; Gertsen, H.; Garbeva, P.; Geissen, V. Macro- and micro- plastics in soil-plant system: Effects of plastic mulch film residues on wheat (Triticum aestivum) growth. Sci. Total Environ. 2018, 645, 1048–1056. [Google Scholar] [CrossRef]
- Zhu, D.; Chen, Q.L.; An, X.L.; Yang, X.R.; Christie, P.; Ke, X.; Wu, L.H.; Zhu, Y.G. Exposure of soil collembolans to microplastics perturbs their gut microbiota and alters their isotopic composition. Soil. Biol. Biochem. 2018, 116, 302–310. [Google Scholar] [CrossRef]
- Fortin, S.; Song, B.; Burbage, C. Quantifying and identifying microplastics in the effluent of advanced wastewater treatment systems using Raman microspectroscopy. Mar. Pollut. Bull. 2019, 149, 110579. [Google Scholar] [CrossRef] [PubMed]
- Thodhal Yoganandham, S.; Hamid, N.; Junaid, M.; Duan, J.J.; Pei, D.S. Micro(nano)plastics in commercial foods: A review of their characterization and potential hazards to human health. Environ. Res. 2023, 236, 116858. [Google Scholar] [CrossRef] [PubMed]
- Perez, C.N.; Carre, F.; Hoarau-Belkhiri, A.; Joris, A.H.; Leonards, P.E.G.; Lamoree, M.H. Innovations in analytical methods to assess the occurrence of microplastics in soil. J. Environ. Chem. Eng. 2022, 10, 107421. [Google Scholar] [CrossRef]
- Wang, W.; Ge, J.; Yu, X.; Li, H. Environmental fate and impacts of microplastics in soil ecosystems: Progress and perspective. Sci. Total Environ. 2020, 708, 134841. [Google Scholar] [CrossRef]
- Woo, H.; Seo, K.; Choi, Y.; Kim, J.; Tanaka, M.; Lee, K.; Choi, J. Methods of Analyzing Microsized Plastics in the Environment. Appl. Sci. 2021, 11, 10640. [Google Scholar] [CrossRef]
- Waring, R.H.; Harris, R.M.; Mitchell, S.C. Plastic contamination of the food chain: A threat to human health? Maturitas 2018, 115, 64–68. [Google Scholar] [CrossRef]
- Dris, R.; Gasperi, J.; Rocher, V.; Saad, M.; Renault, N.; Tassin, B. Microplastic contamination in an urban area: A case study in Greater Paris. Environ. Chem. 2015, 12, 592–599. [Google Scholar] [CrossRef]
- Vianello, A.; Jensen, R.L.; Liu, L.; Vollertsen, J. Simulating human exposure to indoor airborne microplastics using a Breathing Thermal Manikin. Sci. Rep. 2019, 9, 8670. [Google Scholar] [CrossRef]
- Amato-Lourenço, L.F.; Carvalho-Oliveira, R.; Júnior, G.R.; Dos Santos Galvão, L.; Ando, R.A.; Mauad, T. Presence of airborne microplastics in human lung tissue. J. Hazard. Mater. 2021, 416, 126124. [Google Scholar] [CrossRef]
- Prata, J.C.; da Costa, J.P.; Lopes, I.; Duarte, A.C.; Rocha-Santos, T. Environmental exposure to microplastics: An overview on possible human health effects. Sci. Total Environ. 2020, 702, 134455. [Google Scholar] [CrossRef] [PubMed]
- Pontecorvi, P.; Ceccarelli, S.; Cece, F.; Camero, S.; Lotti, L.V.; Niccolai, E.; Nannini, G.; Gerini, G.; Anastasiadou, E.; Scialis, E.S.; et al. Assessing the Impact of Polyethylene Nano/Microplastic Exposure on Human Vaginal Keratinocytes. Int. J. Mol. Sci. 2023, 24, 11379. [Google Scholar] [CrossRef] [PubMed]
- Rahman, A.; Sarkar, A.; Yadav, O.P.; Achari, G.; Slobodnik, J. Potential human health risks due to environmental exposure to nano- and microplastics and knowledge gaps: A scoping review. Sci. Total Environ. 2021, 757, 143872. [Google Scholar] [CrossRef] [PubMed]
- Cox, K.D.; Covernton, G.A.; Davies, H.L.; Dower, J.F.; Juanes, F.; Dudas, S.E. Human Consumption of Microplastics. Environ. Sci. Technol. 2019, 53, 7068–7074. [Google Scholar] [CrossRef] [PubMed]
- Schwabl, P.; Köppel, S.; Königshofer, P.; Bucsics, T.; Trauner, M.; Reiberger, T.; Liebmann, B. Detection of Various Microplastics in Human Stool: A Prospective Case Series. Ann. Intern. Med. 2019, 171, 453–457. [Google Scholar] [CrossRef]
- Ragusa, A.; Svelato, A.; Santacroce, C.; Catalano, P.; Notarstefano, V.; Carnevali, O.; Papa, F.; Rongioletti, M.C.A.; Baiocco, F.; Draghi, S.; et al. Plasticenta: First evidence of microplastics in human placenta. Environ. Int. 2021, 146, 106274. [Google Scholar] [CrossRef]
- Wick, P.; Malek, A.; Manser, P.; Meili, D.; Maeder-Althaus, X.; Diener, L.; Diener, P.A.; Zisch, A.; Krug, H.F.; von Mandach, U. Barrier capacity of human placenta for nanosized materials. Environ. Health Perspect. 2010, 118, 432–436. [Google Scholar] [CrossRef]
- Monti, D.M.; Guarnieri, D.; Napolitano, G.; Piccoli, R.; Netti, P.; Fusco, S.; Arciello, A. Biocompatibility, uptake and endocytosis pathways of polystyrene nanoparticles in primary human renal epithelial cells. J. Biotechnol. 2015, 193, 3–10. [Google Scholar] [CrossRef]
- Wright, S.L.; Kelly, F.J. Plastic and Human Health: A Micro Issue? Environ. Sci. Technol. 2017, 51, 6634–6647. [Google Scholar] [CrossRef]
- Kirstein, I.V.; Kirmizi, S.; Wichels, A.; Garin-Fernandez, A.; Erler, R.; Löder, M.; Gerdts, G. Dangerous hitchhikers? Evidence for potentially pathogenic Vibrio spp. on microplastic particles. Mar. Environ. Res. 2016, 120, 1–8. [Google Scholar] [CrossRef]
- Wang, F.; Wang, B.; Duan, L.; Zhang, Y.; Zhou, Y.; Sui, Q.; Xu, D.; Qu, H.; Yu, G. Occurrence and distribution of microplastics in domestic, industrial, agricultural and aquacultural wastewater sources: A case study in Changzhou, China. Water Res. 2020, 182, 115956. [Google Scholar] [CrossRef] [PubMed]
- Oliveri Conti, G.; Ferrante, M.; Banni, M.; Favara, C.; Nicolosi, I.; Cristaldi, A.; Fiore, M.; Zuccarello, P. Micro- and nano-plastics in edible fruit and vegetables. The first diet risks assessment for the general population. Environ. Res. 2020, 187, 109677. [Google Scholar] [CrossRef] [PubMed]
- Priyanka, M.; Dey, S. Ruminal impaction due to plastic materials—An increasing threat to ruminants and its impact on human health in developing countries. Vet. World 2018, 11, 1307–1315. [Google Scholar] [CrossRef] [PubMed]
- Meyer, G.; Puig-Lozano, R.; Fernández, A. Anthropogenic litter in terrestrial flora and fauna: Is the situation as bad as in the ocean? A field study in Southern Germany on five meadows and 150 ruminants in comparison with marine debris. Environ. Pollut. 2023, 323, 121304. [Google Scholar] [CrossRef]
- Beriot, N.; Peek, J.; Zornoza, R.; Geissen, V.; Huerta Lwanga, E. Low density-microplastics detected in sheep faeces and soil: A case study from the intensive vegetable farming in Southeast Spain. Sci. Total Environ. 2021, 755, 142653. [Google Scholar] [CrossRef]
- Da Costa, P.A.; Andrey, D.; Eriksen, B.; Peixoto, R.P.; Carreres, B.M.; Ambühl, M.E.; Descarrega, J.B.; Dubascoux, S.; Zbinden, P.; Panchaud, A.; et al. Detection and characterization of small-sized microplastics (≥5 μm) in milk products. Sci. Rep. 2021, 11, 24046. [Google Scholar] [CrossRef] [PubMed]
- Kutralam-Muniasamy, G.; Pérez-Guevara, F.; Elizalde-Martínez, I.; Shruti, V.C. Branded milks—Are they immune from microplastics contamination? Sci. Total Environ. 2020, 714, 136823. [Google Scholar] [CrossRef]
- Basaran, B.; Özçifçi, Z.; Akcay, H.T.; Aytan, U. Microplastics in branded milk: Dietary exposure and risk assessment. J. Food Compos. Anal. 2023, 123, 105611. [Google Scholar] [CrossRef]
- Toussaint, B.; Raffael, B.; Angers-Loustau, A.; Gilliland, D.; Kestens, V.; Petrillo, M.; Rio-Echevarria, I.M.; Van den Eede, G. Review of micro- and nanoplastic contamination in the food chain. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2019, 36, 639–673. [Google Scholar] [CrossRef]
- Prata, J.C.; Dias-Pereira, P. Microplastics in Terrestrial Domestic Animals and Human Health: Implications for Food Security and Food Safety and Their Role as Sentinels. Animals 2023, 13, 661. [Google Scholar] [CrossRef]
- Habib, R.Z.; Poulose, V.; Alsaidi, R.; Al Kendi, R.; Iftikhar, S.H.; Mourad, A.I.; Kittaneh, W.F.; Thiemann, T. Plastic cutting boards as a source of microplastics in meat. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2022, 39, 609–619. [Google Scholar] [CrossRef]
- Kedzierski, M.; Lechat, B.; Sire, O.; Le Maguer, G.; Le Tilly, V.; Bruzaud, S. Microplastic contamination of packaged meat: Occurrence and associated risks. Food Packag. Shelf Life 2020, 24, 100489. [Google Scholar] [CrossRef]
- Dong, X.; Liu, X.; Hou, Q.; Wang, Z. From natural environment to animal tissues: A review of microplastics(nanoplastics) translocation and hazards studies. Sci. Total Environ. 2023, 855, 158686. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Basantes, M.F.; Conesa, J.A.; Fullana, A. Microplastics in Honey, Beer, Milk and Refreshments in Ecuador as Emerging Contaminants. Sustainability 2020, 12, 5514. [Google Scholar] [CrossRef]
- Wu, R.T.; Cai, Y.F.; Chen, Y.X.; Yang, Y.W.; Xing, S.C.; Liao, X.D. Occurrence of microplastic in livestock and poultry manure in South China. Environ. Pollut. 2021, 277, 116790. [Google Scholar] [CrossRef] [PubMed]
- Sheferaw, D.; Gebru, F.; Asrat, M.; Tesfaye, D.; Debela, E. Ingestion of indigestible foreign materials by free grazing ruminants in Amhara Region, Ethiopia. Trop. Anim. Health Prod. 2014, 46, 247–250. [Google Scholar] [CrossRef]
- Tiruneh, R.; Yesuwork, H. Occurrence of rumen foreign bodies in sheep and goats slaughtered at the Addis Ababa Municipality Abattoir. Ethiop. Vet. J. 2010, 14, 91–100. [Google Scholar]
- Teshome, E.; Abdela, N.; Hassan, A. Postmortem study on indigestible foreign bodies in rumen and reticulum of ruminants slaughtered at Asella Municipal Abattoir, Southeastern Ethiopia. J. Vet. Sci. Technol. 2017, 8, 436. [Google Scholar] [CrossRef]
- Hailat, N.; Nouh, S.; AlDarraji, A.; Lafi, S.; AlAni, F.; AlMajali, A. Prevalence and pathology of foreign bodies (plastics) in Awassi sheep in Jordan. Small Rumin. Res. 1997, 24, 43–48. [Google Scholar] [CrossRef]
- Khan, J.M.; Habib, G.; Siddiqui, M.M. Prevalence of foreign indigestible material in the reticulo-rumen of adult buffaloes. Pak. Vet. J. 1999, 19, 176–180. [Google Scholar]
- Anwar, K.; Khan, I.; Aslam, A.; Mujtaba, M.; Din, A.; Amin, Y.; Ali, Z. Prevalence of indigestible rumen and reticulum foreign bodies in Achai cattle at different regions of Khyber Pakhtunkhwa. ARPN J. Agric. Biol. Sci. 2013, 8, 580–586. [Google Scholar]
- Remi-Adewunmi, B.; Gyang, E.; Osinowo, A. Abattoir survey of foreign body rumen impaction small ruminants. Niger. Vet. J. 2004, 25, 32–38. [Google Scholar] [CrossRef]
- Igbokwe, I.O.; Kolo, M.Y.; Egwu, G.O. Rumen impaction in sheep with indigestible foreign bodies in the semi-arid region of Nigeria. Small Rumin. Res. 2003, 49, 141–146. [Google Scholar] [CrossRef]
- Magaji, J.; Adekiya, O. Comparative Analysis of the Effects of Indiscriminate Wastes Disposal on Ruminants Slaughtered in Gwagwalada and Minna Abattoir, in Nigeria. Eur. J. Anim. Health 2021, 2, 1–14. [Google Scholar]
- Rabana, L.J.; Bukola, Y.Z.; Mustapha, M.; Adamu, L. Indigestible Foreign Materials Impaction of Small Ruminants in Gombe State, Nigeria. Iran. J. Vet. Med. 2022, 16, 1–14. [Google Scholar]
- Otsyina, H.; Nguhiu-Mwangi, J.; Mogoa, E.; Mbuthia, P.; Ogara, W. Prevalence of Indigestible Rumen Foreign Bodies in Sheep and Goats at Dagoretti and Kiserian Abattoirs, Kenya. Int. J. Vet. Sci. 2015, 4, 75–80. [Google Scholar]
- Raoofi, A.; Namjoo, A.; Karimi, A.H.; Alizadeh Esfahani, M. A study of clinical signs, hematological changes and pathological findings of experimental ingestion of soft foreign body (plastic rope) in goats. Small Rumin. Res. 2012, 105, 351–354. [Google Scholar] [CrossRef]
- Omidi, A.; Naeemipoor, H.; Hosseini, M. Plastic debris in the digestive tract of sheep and goats: An increasing environmental contamination in Birjand, Iran. Bull. Environ. Contam. Toxicol. 2012, 88, 691–694. [Google Scholar] [CrossRef]
- Mahadappa, P.; Krishnaswamy, N.; Karunanidhi, M.; Bhanuprakash, A.G.; Bindhuja, B.V.; Dey, S. Effect of plastic foreign body impaction on rumen function and heavy metal concentrations in various body fluids and tissues of buffaloes. Ecotoxicol. Environ. Saf. 2020, 189, 109972. [Google Scholar] [CrossRef]
- Harne, R.; Rokde, A.; Jadav, K.; Chitariya, J.M.; Sengar, A. Studies on plastic bezoar ingestion in free range axis deer in summer. J. Anim. Res. 2019, 9, 383–386. [Google Scholar] [CrossRef]
- Sutaria, T.; Chauhan, P.; Sutaria, P.; Nakhashi, H.; Suthar, B. Diagnosis and retrieval of ruminal plastic foreign body in a sirohi goat. Rumin. Sci. 2013, 2, 103–105. [Google Scholar]
- Atawalna, J.; Attoh-Kotoku, V.; Ewura, S. Prevalence of indigestible foreign materials in small ruminants slaughtered at the Kumasi Abattoir of Ghana. Int. J. Livest. Res. 2015, 5, 1–7. [Google Scholar] [CrossRef]
- Eriksen, M.; Lusher, A.; Nixon, M.; Wernery, U. The plight of camels eating plastic waste. J. Arid. Environ. 2021, 185, 104374. [Google Scholar] [CrossRef]
- Fierens, T.; Van Holderbeke, M.; Willems, H.; De Henauw, S.; Sioen, I. Transfer of eight phthalates through the milk chain—A case study. Environ. Int. 2013, 51, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Santonicola, S.; Ferrante, M.C.; Murru, N.; Gallo, P.; Mercogliano, R. Hot topic: Bisphenol A in cow milk and dietary exposure at the farm level. J. Dairy Sci. 2019, 102, 1007–1013. [Google Scholar] [CrossRef] [PubMed]
- Sharman, M.; Read, W.A.; Castle, L.; Gilbert, J. Levels of di-(2-ethylhexyl)phthalate and total phthalate esters in milk, cream, butter and cheese. Food Addit. Contam. 1994, 11, 375–385. [Google Scholar] [CrossRef] [PubMed]
- The European Parliament; The Council of the European Union. Directive 2005/84/EC of the European Parliament and of the Council of 14 December 2005 amending for the 22nd time Council Directive 76/769/EEC on the approximation of the laws, regulations and administrative provisions of the Member States relating to restrictions on the marketing and use of certain dangerous substances and preparations (phthalates in toys and childcare articles). Off. J. Eur. Union 2005, L344, 40–43. Available online: http://data.europa.eu/eli/dir/2005/84/oj (accessed on 7 December 2023).
- Page, B.D.; Lacroix, G.M. The occurrence of phthalate ester and di-2-ethylhexyl adipate plasticizers in Canadian packaging and food sampled in 1985–1989: A survey. Food Addit Contam 1995, 12, 129–151. [Google Scholar] [CrossRef]
- Tsumura, Y.; Ishimitsu, S.; Kaihara, A.; Yoshii, K.; Tonogai, Y. Phthalates, adipates, citrate and some of the other plasticizers detected in Japanese retail foods: A survey. J. Health Sci. 2002, 48, 493–502. [Google Scholar] [CrossRef]
- Weber, R.; Herold, C.; Hollert, H.; Kamphues, J.; Ungemach, L.; Blepp, M.; Ballschmiter, K. Life cycle of PCBs and contamination of the environment and of food products from animal origin. Environ. Sci. Pollut. Res. Int. 2018, 25, 16325–16343. [Google Scholar] [CrossRef]
- Hembrock-Heger, A. Dioxine und PCB in Böden, Pflanzen, Futterund Lebensmitteln in Überschwemmungsgebieten in NRW. UBA Fachgespräch Belast. Terr. Umw. Mit Dioxinen PCB 2011. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/378/dokumente/02_a_hembrock_heger.pdf (accessed on 8 December 2023).
- Hoogenboom, L. Carry-over of PCBs to cows and chickens—Knowns and unknowns. Vortr. UBA Fachgespräch Belast. Von Rindfleisch Mit PCB Aus Extensiver Haltung 2013, 5. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/377/dokumente/06_carry_over_of_pcbs_to_cows_and_chickens_knowns_and_unknowns.pdf (accessed on 7 December 2023).
- EFSA. Update of the monitoring of levels of dioxins and PCBs in food and feed. EFSA J. 2012, 10, 2832. [Google Scholar] [CrossRef]
- EFSA. Scientific statement on the health-based guidance values for dioxins and dioxin-like PCBs. EFSA J. 2015, 13, 4124. [Google Scholar] [CrossRef]
- Bundesanzeiger. Bekanntmachung über Methoden und Maßstäbe für die Ableitung der Prüf- und Maßnahmenwerte nach der BundesBodenschutz- und Altlastenverordnung (BBodSchV) von 18 Juni 1999. Bundesanzeiger Nr. 161a v. 28/8/99. 1999. Available online: https://www.lfl.bayern.de/mam/cms07/iab/dateien/ableitung_der_pr__f-_und_ma__nahmenwerte.pdf (accessed on 8 December 2023).
- Basler, A. Evaluierung des Forschungsbedarfs zur Ursachenaufklärung der Kontamination Bestimmter Lebensmittel mit Dioxinen und PCB. 2009. Available online: https://docplayer.org/127123377-Evaluierung-des-forschungsbedarfs-zur-ursachenaufklaerung-der-kontamination-bestimmter-lebensmittel-mit-dioxinen-und-pcb.html (accessed on 7 December 2023).
- BfR. Dioxin- und PCB-Gehalte in Wild stellen keine Gesundheitsgefahr dar. Stellungnahme Nr. 048/2011 des BfR vom 16. Mai. 2011. Available online: https://www.bfr.bund.de/cm/343/dioxin-und-pcb-gehalte-in-wild-stellen-keine-gesundheitsgefahr-dar.pdf (accessed on 7 December 2023).
- Zhao, Y.; Gao, J.; Wang, Z.; Dai, H.; Wang, Y. Responses of bacterial communities and resistance genes on microplastics to antibiotics and heavy metals in sewage environment. J. Hazard. Mater. 2021, 402, 123550. [Google Scholar] [CrossRef] [PubMed]
- Adisasmito, W.B.; Almuhairi, S.; Behravesh, C.B.; Bilivogui, P.; Bukachi, S.A.; Casas, N.; Cediel Becerra, N.; Charron, D.F.; Chaudhary, A.; Ciacci Zanella, J.R.; et al. One Health: A new definition for a sustainable and healthy future. PLoS Pathog. 2022, 18, e1010537. [Google Scholar] [CrossRef]
- Niu, L.L.; Liu, W.P.; Juhasz, A.; Chen, J.; Ma, L.N. Emerging contaminants antibiotic resistance genes and microplastics in the environment: Introduction to 21 review articles published in CREST during 2018–2022. Crit. Rev. Environ. Sci. Technol. 2022, 52, 4135–4146. [Google Scholar] [CrossRef]
- Li, J.; Zhang, K.; Zhang, H. Adsorption of antibiotics on microplastics. Environ. Pollut. 2018, 237, 460–467. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Li, X.; Wang, M.; Chen, H.; Yang, Y.; Chen, Q.L.; Yao, M. Time-resolved spread of antibiotic resistance genes in highly polluted air. Environ. Int. 2019, 127, 333–339. [Google Scholar] [CrossRef]
- Keswani, A.; Oliver, D.M.; Gutierrez, T.; Quilliam, R.S. Microbial hitchhikers on marine plastic debris: Human exposure risks at bathing waters and beach environments. Mar. Environ. Res. 2016, 118, 10–19. [Google Scholar] [CrossRef]
- Astner, A.F.; Hayes, D.G.; Pingali, S.V.; O’Neill, H.M.; Littrell, K.C.; Evans, B.R.; Urban, V.S. Effects of soil particles and convective transport on dispersion and aggregation of nanoplastics via small-angle neutron scattering (SANS) and ultra SANS (USANS). PLoS ONE 2020, 15, e0235893. [Google Scholar] [CrossRef]
- Yan, X.; Yang, X.; Tang, Z.; Fu, J.; Chen, F.; Zhao, Y.; Ruan, L.; Yang, Y. Downward transport of naturally-aged light microplastics in natural loamy sand and the implication to the dissemination of antibiotic resistance genes. Environ. Pollut. 2020, 262, 114270. [Google Scholar] [CrossRef]
- Ma, J.; Sheng, G.D.; O’Connor, P. Microplastics combined with tetracycline in soils facilitate the formation of antibiotic resistance in the Enchytraeus crypticus microbiome. Environ. Pollut. 2020, 264, 114689. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, W.; Yang, X.; Wang, J.; Lin, H.; Yang, Y. Microplastics are a hotspot for antibiotic resistance genes: Progress and perspective. Sci. Total Environ. 2021, 773, 145643. [Google Scholar] [CrossRef]
- Qian, X.; Gu, J.; Sun, W.; Wang, X.J.; Su, J.Q.; Stedfeld, R. Diversity, abundance, and persistence of antibiotic resistance genes in various types of animal manure following industrial composting. J. Hazard. Mater. 2018, 344, 716–722. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Michel, F.C., Jr.; Hansen, G.; Wittum, T.; Morrison, M. Development and application of real-time PCR assays for quantification of genes encoding tetracycline resistance. Appl. Environ. Microbiol. 2005, 71, 6926–6933. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.; Chen, H.; Su, C.; Yan, S. Abundance and persistence of antibiotic resistance genes in livestock farms: A comprehensive investigation in eastern China. Environ. Int. 2013, 61, 1–7. [Google Scholar] [CrossRef]
- Liu, B.; Yu, D.; Ge, C.; Luo, X.; Du, L.; Zhang, X.; Hui, C. Combined effects of microplastics and chlortetracycline on the intestinal barrier, gut microbiota, and antibiotic resistome of Muscovy ducks (Cairina moschata). Sci. Total Environ. 2023, 887, 164050. [Google Scholar] [CrossRef]
- Dulo, F.; Feleke, A.; Szonyi, B.; Fries, R.; Baumann, M.P.; Grace, D. Isolation of Multidrug-Resistant Escherichia coli O157 from Goats in the Somali Region of Ethiopia: A Cross-Sectional, Abattoir-Based Study. PLoS ONE 2015, 10, e0142905. [Google Scholar] [CrossRef]
- Abbasi, S.; Moore, F.; Keshavarzi, B.; Hopke, P.K.; Naidu, R.; Rahman, M.M.; Oleszczuk, P.; Karimi, J. PET-microplastics as a vector for heavy metals in a simulated plant rhizosphere zone. Sci. Total Environ. 2020, 744, 140984. [Google Scholar] [CrossRef]
- Liao, Y.L.; Yang, J.Y. The release process of Cd on microplastics in a ruminant digestion in-vitro method. Process Saf. Environ. Prot. 2022, 157, 266–272. [Google Scholar] [CrossRef]
- Beresford, N.A.; Mayes, R.W.; Crout, N.M.J.; Maceachern, P.K.; Dodd, B.A.; Barnett, C.L.; Lamb, C.S. Transfer of cadmium and mercury to sheep tissues. Environ. Sci. Technol. 1999, 33, 2395–2402. [Google Scholar] [CrossRef]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy metal toxicity and the environment. Exp. Suppl. 2012, 101, 133–164. [Google Scholar] [CrossRef] [PubMed]
- Saad, V.; Gutschmann, B.; Grimm, T.; Widmer, T.; Neubauer, P.; Riedel, S.L. Low-quality animal by-product streams for the production of PHA-biopolymers: Fats, fat/protein-emulsions and materials with high ash content as low-cost feedstocks. Biotechnol. Lett. 2021, 43, 579–587. [Google Scholar] [CrossRef]
- Wolf, M.; van den Berg, K.; Garaba, S.P.; Gnann, N.; Sattler, K.; Stahl, F.; Zielinski, O. Machine learning for aquatic plastic litter detection, classification and quantification (APLASTIC-Q). Environ. Res. Lett. 2020, 15, 114042. [Google Scholar] [CrossRef]
- Vitali, C.; Peters, R.J.B.; Janssen, H.G.; Undas, A.K.; Munniks, S.; Ruggeri, F.S.; Nielen, M.W.F. Quantitative image analysis of microplastics in bottled water using artificial intelligence. Talanta 2024, 266, 124965. [Google Scholar] [CrossRef] [PubMed]
- Zhen, Y.; Wang, L.; Sun, H.; Liu, C. Prediction of microplastic abundance in surface water of the ocean and influencing factors based on ensemble learning. Environ. Pollut. 2023, 331, 121834. [Google Scholar] [CrossRef] [PubMed]
- Tran, H.T.; Hadi, M.; Nguyen, T.T.H.; Hoang, H.G.; Nguyen, M.K.; Nguyen, K.N.; Vo, D.N. Machine learning approaches for predicting microplastic pollution in peatland areas. Mar. Pollut. Bull. 2023, 194, 115417. [Google Scholar] [CrossRef]
- Yu, F.; Hu, X. Machine learning may accelerate the recognition and control of microplastic pollution: Future prospects. J. Hazard. Mater. 2022, 432, 128730. [Google Scholar] [CrossRef]
Method | Technique | Strength Points | Weak Points |
---|---|---|---|
Stereomicroscope | Visual sorting | Ubiquitous presence in laboratories, non-destructive, detection of specific characteristics (color, size, shape, etc.). | Difficulties in identification of particles <100 µm, misidentification of plastic from other materials, not used as single step analysis. |
FT-IR 1 | Spectroscopic technique | Simple, efficient, non-destructive. | Plastic must be free of any coating/film, spectral quality influenced by organic matter/water (extensive sample pre-treatment), limit of detection 20 µm, require more time per measurement. |
Raman spectroscopy | Spectroscopic technique | Better spectral resolution and lower interference signals than FT-IR, non-destructive, provide data on plastic characteristics (color, size, shape, etc.). | Detection limit of 1 µm, no information about mass or concentration of plastics in samples. |
Pyr-GC/MS 2 | Thermo-analytical technique | Rapid and simple, requires no pre-treatment, provides quantification of the plastic particles in the environmental samples (mass concentration), analyzes particles in low size ranges. | Destructive, no data on plastic characteristics. |
(vis-)NIR spectroscopy | Near-infrared (NIR) process-spectroscopic method combined with chemometrics | Non-destructive, rapid in situ detection, identification, and quantification of MPs on large scale, requires no sample preparation. | Able to assess only whether the soil is contaminated or not, incapable of providing quantitative, morphological, and structural information on MPs, low prediction accuracy and high detection limit. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corte Pause, F.; Urli, S.; Crociati, M.; Stradaioli, G.; Baufeld, A. Connecting the Dots: Livestock Animals as Missing Links in the Chain of Microplastic Contamination and Human Health. Animals 2024, 14, 350. https://doi.org/10.3390/ani14020350
Corte Pause F, Urli S, Crociati M, Stradaioli G, Baufeld A. Connecting the Dots: Livestock Animals as Missing Links in the Chain of Microplastic Contamination and Human Health. Animals. 2024; 14(2):350. https://doi.org/10.3390/ani14020350
Chicago/Turabian StyleCorte Pause, Francesca, Susy Urli, Martina Crociati, Giuseppe Stradaioli, and Anja Baufeld. 2024. "Connecting the Dots: Livestock Animals as Missing Links in the Chain of Microplastic Contamination and Human Health" Animals 14, no. 2: 350. https://doi.org/10.3390/ani14020350
APA StyleCorte Pause, F., Urli, S., Crociati, M., Stradaioli, G., & Baufeld, A. (2024). Connecting the Dots: Livestock Animals as Missing Links in the Chain of Microplastic Contamination and Human Health. Animals, 14(2), 350. https://doi.org/10.3390/ani14020350