A Simplified Daily Fit Model to Reduce Costs and Nutrient Intake in Growing-Finishing Pigs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection and Scenario Definition
2.2. Model Description
2.3. Formulation of Virtual Feeds
2.4. Simulation Study
- BT-2017 Model
- NRC-2012 Model
- AGPIC-2021 Model
3. Results
3.1. SID Lys Requirements
3.2. Crude Protein and Amino Acid Intake
3.3. Total Nitrogen and Phosphorus Intake
3.4. Cost Reduction
4. Discussion
4.1. Nutrient Reduction
4.2. Reduction in Total N and STTD P
4.3. Cost Reduction
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pomar, C.; Hauschild, L.; Zhang, G.-H.; Pomar, J.; Lovatto, P.A. Applying Precision Feeding Techniques in Growing-Finishing Pig Operations. R. Bras. Zootec. 2009, 38, 226–237. [Google Scholar] [CrossRef]
- McBride, W.D.; Key, N. Characteristics and Production Costs of U.S. Hog Farms, 2004. SSRN J. Economic Information Bulletin No. 32, U.S. Department of Agriculture, Economic Research Service. (December 2007). Available online: https://www.ers.usda.gov/publications/pub-details/?pubid=44214 (accessed on 7 May 2023).
- Misiura, M.M.; Filipe, J.A.N.; Brossard, L.; Kyriazakis, I. Bayesian Comparison of Models for Precision Feeding and Management in Growing-Finishing Pigs. Biosyst. Eng. 2021, 211, 205–218. [Google Scholar] [CrossRef]
- Brossard, L.; Vautier, B.; Van Milgen, J.; Salaun, Y.; Quiniou, N. Comparison of in Vivo and in Silico Growth Performance and Variability in Pigs When Applying a Feeding Strategy Designed by Simulation to Control the Variability of Slaughter Weight. Anim. Prod. Sci. 2014, 54, 1939. [Google Scholar] [CrossRef]
- Niemi, J.K.; Sevón-Aimonen, M.-L.; Pietola, K.; Stalder, K.J. The Value of Precision Feeding Technologies for Grow–Finish Swine. Livest. Sci. 2010, 129, 13–23. [Google Scholar] [CrossRef]
- Pomar, C.; Hauschild, L.; Zhang, G.H.; Pomar, J.; Lovatto, P.A. Precision Feeding Can Significantly Reduce Feeding Cost and Nutrient Excretion in Growing Animals. In Modelling Nutrient Digestion and Utilisation in Farm Animals; Sauvant, D., Van Milgen, J., Faverdin, P., Friggens, N., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2011; pp. 327–334. ISBN 978-90-8686-712-7. [Google Scholar]
- Sonea, C.; Tapaloaga, D.; Gheorghe, R.A.I.; Gurau, M.R.; Tapaloaga, P.-R. Optimizing animal nutrition and sustainability through precision feeding: A mini review of emerging strategies and technologies. Ann. “Valahia” Univ. Târgovişte. Agric. 2023, 15, 9–12. [Google Scholar] [CrossRef]
- NRC (Ed.) Nutrient Requirements of Swine, 10th ed.; Nutrient Requirements of Domestic Animals; National Academy Press: Washington, DC, USA, 1998; ISBN 978-0-309-05993-0. [Google Scholar]
- Brossard, L.; Dourmad, J.-Y.; Rivest, J.; Van Milgen, J. Modelling the Variation in Performance of a Population of Growing Pig as Affected by Lysine Supply and Feeding Strategy. Animal 2009, 3, 1114–1123. [Google Scholar] [CrossRef]
- Komlatskiy, V.; Smolkin, R. Precision Technologies in Pig Farming. E3S Web Conf. 2023, 371, 03057. [Google Scholar] [CrossRef]
- Mizik, T. How Can Precision Farming Work on a Small Scale? A Systematic Literature Review. Precis. Agric 2023, 24, 384–406. [Google Scholar] [CrossRef]
- Tekīn, K.; Yurdakök DiKmen, B.; Kanca, H.; Guatteo, R. Precision Livestock Farming Technologies: Novel Direction of Information Flow. Ank. Üniversitesi Vet. Fakültesi Derg. 2021, 68, 193–212. [Google Scholar] [CrossRef]
- Pomar, C.; Remus, A. Review: Fundamentals, Limitations and Pitfalls on the Development and Application of Precision Nutrition Techniques for Precision Livestock Farming. Animal 2023, 17, 100763. [Google Scholar] [CrossRef]
- Rodehutscord, M.; Faust, M.; Pfeffer, E. The Course of Phosphorus Excretion in Growing Pigs Fed Continuously Increasing Phosphorus Concentrations after a Phosphorus Depletion. Arch. Für Tierernaehrung 1999, 52, 323–334. [Google Scholar] [CrossRef]
- Andretta, I.; Pomar, C.; Rivest, J.; Pomar, J.; Radünz, J. Precision Feeding Can Significantly Reduce Lysine Intake and Nitrogen Excretion without Compromising the Performance of Growing Pigs. Animal 2016, 10, 1137–1147. [Google Scholar] [CrossRef]
- Pomar, C.; Pomar, J.; Dubeau, F.; Joannopoulos, E.; Dussault, J.-P. The Impact of Daily Multiphase Feeding on Animal Performance, Body Composition, Nitrogen and Phosphorus Excretions, and Feed Costs in Growing–Finishing Pigs. Animal 2014, 8, 704–713. [Google Scholar] [CrossRef] [PubMed]
- Rostagno, H.S. Tabelas Brasileiras Para Aves e Suínos: Composição de Alimentos e exigências Nutricionais; Universidade Federal de Viçosa: Viçosa, Brazil, 2017. [Google Scholar]
- NRC. Nutrient Requirements of Swine: Eleventh Revised Edition; National Academies Press: Washington, DC, USA, 2012; p. 13298. ISBN 978-0-309-22423-9. [Google Scholar]
- PIC PIC®. Nutrition and Feeding Guidelines; PIC: Hendersonville, TN, USA, 2021. [Google Scholar]
- Remus, A.; Hauschild, L.; Pomar, C. Simulated Amino Acid Requirements of Growing Pigs Differ between Current Factorial Methods. Animal 2020, 14, 725–730. [Google Scholar] [CrossRef] [PubMed]
- Möhn, S.; Gillis, A.M.; Moughan, P.J.; De Lange, C.F. Influence of Dietary Lysine and Energy Intakes on Body Protein Deposition and Lysine Utilization in the Growing Pig. J. Anim. Sci. 2000, 78, 1510. [Google Scholar] [CrossRef]
- Noblet, J.; Quiniou, N. Principaux facteurs de variation du besoin en acides aminés du porc en croissance. Tech. Porc 1999, 22, 9–16. [Google Scholar]
- Ferket, P.R.; Van Heugten, E.; Van Kempen, T.A.T.G.; Angel, R. Nutritional Strategies to Reduce Environmental Emissions from Nonruminants. J. Anim. Sci. 2002, 80, E168–E182. [Google Scholar] [CrossRef]
- Pomar, C.; Remus, A. Precision Pig Feeding: A Breakthrough toward Sustainability. Anim. Front. 2019, 9, 52–59. [Google Scholar] [CrossRef]
- Griffin, T.W.; Shockley, J.M.; Mark, T.B. Economics of Precision Farming. In ASA, CSSA, and SSSA Books; Kent Shannon, D., Clay, D.E., Kitchen, N.R., Eds.; American Society of Agronomy and Soil Science Society of America: Madison, WI, USA, 2018; pp. 221–230. ISBN 978-0-89118-367-9. [Google Scholar]
- Brossard, L.; Van Milgen, J.; Dourmad, J.-Y.; Gaillard, C. Smart Pig Nutrition in the Digital Era. In Smart Livestock Nutrition; Kyriazakis, I., Ed.; Smart Animal Production; Springer International Publishing: Cham, Switzerland, 2023; Volume 1, pp. 169–199. ISBN 978-3-031-22583-3. [Google Scholar]
- Han, Y.-G.; Lee, G.-I.; Do, S.-H.; Jang, J.-C.; Kim, Y.-Y. The Effect of Reduced Crude Protein on Growth Performance, Nutrient Digestibility, and Meat Quality in Weaning to Finishing Pigs. Animals 2023, 13, 1938. [Google Scholar] [CrossRef]
- Edmonds, M.S.; Gonyou, H.W.; Baker, D.H. Effect of Excess Levels of Methionine, Tryptophan, Arginine, Lysine or Threonine on Growth and Dietary Choice in the Pig. J. Anim. Sci. 1987, 65, 179–185. [Google Scholar] [CrossRef]
- Toue, S.; Kodama, R.; Amao, M.; Kawamata, Y.; Kimura, T.; Sakai, R. Screening of Toxicity Biomarkers for Methionine Excess in Rats. J. Nutr. 2006, 136, 1716S–1721S. [Google Scholar] [CrossRef] [PubMed]
- Van Milgen, J.; Valancogne, A.; Dubois, S.; Dourmad, J.-Y.; Sève, B.; Noblet, J. InraPorc: A Model and Decision Support Tool for the Nutrition of Growing Pigs. Anim. Feed Sci. Technol. 2008, 143, 387–405. [Google Scholar] [CrossRef]
- Gaillard, C.; Brossard, L.; Dourmad, J.-Y. Improvement of Feed and Nutrient Efficiency in Pig Production through Precision Feeding. Anim. Feed Sci. Technol. 2020, 268, 114611. [Google Scholar] [CrossRef]
- Fuller, M.F.; Reeds, P.J.; Cadenhead, A.; Seve, B.; Preston, T. Effects of the Amount and Quality of Dietary Protein on Nitrogen Metabolism and Protein Turnover of Pigs. Br. J. Nutr. 1987, 58, 287–300. [Google Scholar] [CrossRef]
- Remus, A.; Méthot, S.; Hauschild, L.; Létourneau-Montminy, M.P.; Pomar, C. Estimating Real Time Individual Lysine and Threonine Requirements in Precision-Fed Pigs. In Proceedings of the Energy and Protein Metabolism and Nutrition, Belo Horizonte, Brazil, 9 September 2019; Wageningen Academic Publishers: Wageningen, The Netherlands, 2019; pp. 451–452. [Google Scholar]
- Pasquetti, T.J.; Pozza, P.C.; Moreira, I.; Santos, T.C.; Diaz-Huepa, L.M.; Castilha, L.D.; Perondi, D.; Carvalho, P.L.O.; Kim, S.W. Simultaneous Determination of Standardized Ileal Digestible Tryptophan and Lysine for Barrows from 15 to 30kg Live Weight. Livest. Sci. 2015, 181, 114–120. [Google Scholar] [CrossRef]
- Esteves, L.A.C.; Monteiro, A.N.T.R.; Sitanaka, N.Y.; Castilha, L.D.; Paula, V.R.C.; Pozza, P.C. The Reduction of Crude Protein with the Supplementation of Amino Acids in the Diet Reduces the Environmental Impact of Growing Pigs Production Evaluated through Life Cycle Assessent. Sustainability 2021, 13, 4815. [Google Scholar] [CrossRef]
- Hong, J.S.; Lee, G.I.; Jin, X.H.; Kim, Y.Y. Effect of Dietary Energy Levels and Phase Feeding by Protein Levels on Growth Performance, Blood Profiles and Carcass Characteristics in Growing-Finishing Pigs. J. Anim. Sci. Technol. 2016, 58, 37. [Google Scholar] [CrossRef]
- Zhang, G.-H.; Pomar, C.; Yang, G.-S. The Impact of Individual Daily Feeding on Animal Performance and Excretion of Nitrogen and Phosphorous in Growing Pigs. J. Anim. Vet. Adv. 2011, 10, 2980–2985. [Google Scholar]
- Pomar, C.; Andretta, I.; Remus, A. Feeding Strategies to Reduce Nutrient Losses and Improve the Sustainability of Growing Pigs. Front. Vet. Sci. 2021, 8, 742220. [Google Scholar] [CrossRef]
- Ait-Sidhoum, A.; Guesmi, B.; Cabas-Monje, J.H.; Gil, J.M. The Impact of Alternative Feeding Strategies on Total Factor Productivity Growth of Pig Farming: Empirical Evidence from EU Countries. Span. J. Agric. Res. 2021, 19, e0106. [Google Scholar] [CrossRef]
- Fan, M.Z.; Archbold, T.; Sauer, W.C.; Lackeyram, D.; Rideout, T.; Gao, Y.; De Lange, C.F.M.; Hacker, R.R. Novel Methodology Allows Simultaneous Measurement of True Phosphorus Digestibility and the Gastrointestinal Endogenous Phosphorus Outputs in Studies with Pigs. J. Nutr. 2001, 131, 2388–2396. [Google Scholar] [CrossRef]
- Saraiva, A.; Donzele, J.L.; de Oliveira, R.F.M.; Abreu, M.L.T.; de Oliveira Silva, F.C.; Haese, D. Níveis de Fósforo Disponível Em Rações Para Suínos de Alto Potencial Genético Para Deposição de Carne Dos 30 Aos 60 Kg1. R. Bras. Zootec. 2009, 38, 1279–1285. [Google Scholar] [CrossRef]
- Poulsen, H.D.; Jongbloed, A.W.; Latimier, P.; Fernández, J.A. Phosphorus Consumption, Utilisation and Losses in Pig Production in France, The Netherlands and Denmark. Livest. Prod. Sci. 1999, 58, 251–259. [Google Scholar] [CrossRef]
- Lautrou, M.; Narcy, A.; Dourmad, J.-Y.; Pomar, C.; Schmidely, P.; Létourneau Montminy, M.-P. Dietary Phosphorus and Calcium Utilization in Growing Pigs: Requirements and Improvements. Front. Vet. Sci. 2021, 8, 734365. [Google Scholar] [CrossRef] [PubMed]
- Lautrou, M.; Cappelaere, L.; Létourneau Montminy, M.-P. Phosphorus and Nitrogen Nutrition in Swine Production. Anim. Front. 2022, 12, 23–29. [Google Scholar] [CrossRef]
- Afonso, E.R.; Nacimento, R.A.; Palhares, J.C.P.; Gameiro, A.H. How Can Nutritional Strategies and Feed Technologies in Pig Production Affect the Logistical Costs of Manure Distribution? Rev. Bras. Zootec. 2020, 49, e20190045. [Google Scholar] [CrossRef]
- Jiang, Q.; Xie, C.; Chen, L.; Xiao, H.; Xie, Z.; Zhu, X.; Ma, L.; Yan, X. Identification of Gut Microbes Associated with Feed Efficiency by Daily-Phase Feeding Strategy in Growing-Finishing Pigs. Anim. Nutr. 2023, 12, 42–53. [Google Scholar] [CrossRef]
- Kebreab, E.; Liedke, A.; Caro, D.; Deimling, S.; Binder, M.; Finkbeiner, M. Environmental Impact of Using Specialty Feed Ingredients in Swine and Poultry Production: A Life Cycle Assessment1. J. Anim. Sci. 2016, 94, 2664–2681. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, A.N.T.R.; Garcia-Launay, F.; Brossard, L.; Wilfart, A.; Dourmad, J.-Y. Effect of Feeding Strategy on Environmental Impacts of Pig Fattening in Different Contexts of Production: Evaluation through Life Cycle Assessment1. J. Anim. Sci. 2016, 94, 4832–4847. [Google Scholar] [CrossRef]
- Llorens, B.; Pomar, C.; Goyette, B.; Rajagopal, R.; Andretta, I.; Latorre, M.A.; Remus, A. Precision Feeding as a Tool to Reduce the Environmental Footprint of Pig Production Systems: A Life Cycle Assessment. J. Anim. Sci. 2024, skae225. [Google Scholar] [CrossRef]
- USDA Foreign Agricultural Service. Brazil Livestock and Products Annual; U.S. Department of Agriculture: Washington, DC, USA, 2023. Available online: https://www.fas.usda.gov/data/brazil-livestock-and-products-annual-4 (accessed on 7 May 2023)Report No. BR2023-0017.
- Dubeau, F.; Julien, P.-O.; Pomar, C. Formulating Diets for Growing Pigs: Economic and Environmental Considerations. Ann Oper Res 2011, 190, 239–269. [Google Scholar] [CrossRef]
- Monteiro, A.N.T.R.; Dourmad, J.-Y.; Pozza, P.C. Life Cycle Assessment as a Tool to Evaluate the Impact of Reducing Crude Protein in Pig Diets. Cienc. Rural 2017, 47, e20161029. [Google Scholar] [CrossRef]
Phase | Duration of the Phase (days) | Weight Range (kg) |
---|---|---|
1 | 24 | 20–35 |
2 | 29 | 35–60 |
3 | 29 | 60–90 |
4 | 16 | 90–110 |
5 | 22 | >110 |
Equation | Description |
---|---|
D | Phase duration in days |
F | Feed price |
I | Feed intake |
P | Phase |
DFI | Daily feed intake |
FP1 e FP2 | The price of feed 1 and 2 used |
AFI 1 = 100 − PD | Amount of feed 1 |
PD = (100/d) × (D − 1) | Phase duration |
d | Phase day |
D | Production day |
AFI2 = 100 − AF1 | Amount of feed 2 |
Item 1 | BT-2017 | NRC-2012 | AGPIC-2021 |
---|---|---|---|
Feed cost, $/pig—CON | 94.12 | 108.11 | 100.80 |
Feed cost, $/pig—DFM | 92.09 | 105.54 | 98.53 |
Feed cost, $/pig (reduction in %)—RED | 2.04 (2.17%) | 2.58 (2.39%) | 2.27 (2.25%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, Y.M.; Amaral, R.S.V.; Silva, B.G.V.; Moura, L.C.S.; Oliveira, D.A.; da Silva, T.E.; Hauschild, L.; Andretta, I.; Santos, L.S. A Simplified Daily Fit Model to Reduce Costs and Nutrient Intake in Growing-Finishing Pigs. Animals 2024, 14, 2922. https://doi.org/10.3390/ani14202922
Ferreira YM, Amaral RSV, Silva BGV, Moura LCS, Oliveira DA, da Silva TE, Hauschild L, Andretta I, Santos LS. A Simplified Daily Fit Model to Reduce Costs and Nutrient Intake in Growing-Finishing Pigs. Animals. 2024; 14(20):2922. https://doi.org/10.3390/ani14202922
Chicago/Turabian StyleFerreira, Yann M., Rayna S. V. Amaral, Blandina G. V. Silva, Leila C. S. Moura, Diana A. Oliveira, Tadeu E. da Silva, Luciano Hauschild, Ines Andretta, and Luan S. Santos. 2024. "A Simplified Daily Fit Model to Reduce Costs and Nutrient Intake in Growing-Finishing Pigs" Animals 14, no. 20: 2922. https://doi.org/10.3390/ani14202922
APA StyleFerreira, Y. M., Amaral, R. S. V., Silva, B. G. V., Moura, L. C. S., Oliveira, D. A., da Silva, T. E., Hauschild, L., Andretta, I., & Santos, L. S. (2024). A Simplified Daily Fit Model to Reduce Costs and Nutrient Intake in Growing-Finishing Pigs. Animals, 14(20), 2922. https://doi.org/10.3390/ani14202922