Effects of Supplementation of Different Antioxidants to Cryopreservation Extender on the Post-Thaw Quality of Rooster Semen—A Meta-Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Strategy
2.2. Data Analysis
2.2.1. Discriminant Canonical Analysis (DCA)
2.2.2. Multicollinearity Preliminary Testing
2.2.3. DCA Efficiency and Analysis Model Reliability
2.2.4. Independent Factor Discriminant Potential Evaluation
2.2.5. Correlation Matrix
2.2.6. Canonical Coefficients and Loading Interpretation and Spatial Representation
2.2.7. Discriminant Function Cross-Validation
2.2.8. Overall Descriptive Statistics
3. Results
3.1. Multicollinearity Preliminary Test
3.2. DCA Efficiency and Analysis Model Reliability
3.3. Independent Factor Discriminant Potential Evaluation
3.4. Correlation Matrix
3.5. Canonical Coefficients and Loading Interpretation and Spatial Representation
3.6. Discriminant Function Cross-Validation
3.7. Overall Descriptive Statistics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zong, Y.; Li, Y.; Sun, Y.; Mehaisen, G.M.; Ma, T.; Chen, J. Chicken sperm cryopreservation: Review of techniques, freezing damage, and freezability mechanisms. Agriculture 2023, 13, 445. [Google Scholar] [CrossRef]
- Farahi, M.; Masoudi, A.; Ehsani, A. Does the change in sperm motility during the production period differ between high and low motility groups? Livest. Sci. 2018, 216, 1–5. [Google Scholar] [CrossRef]
- Walczak-Jedrzejowska, R.; Wolski, J.; Slowikowska-Hilczer, J. The role of oxidative stress and antioxidants in male fertility. Cent. Eur. J. Urol. 2013, 66, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Bucak, M.N.; Sarıözkan, S.; Tuncer, P.B.; Sakin, F.; Ateşşahin, A.; Kulaksız, R.; Çevik, M. The effect of antioxidants on post-thawed Angora goat (Capra hircus ancryrensis) sperm parameters, lipid peroxidation and antioxidant activities. Small Rumin. Res. 2010, 89, 24–30. [Google Scholar] [CrossRef]
- Miller, J.; Brzezinska-Slebodzinska, E.; Madsen, F. Oxidative stress, antioxidants, and animal function. J. Dairy Sci. 1993, 76, 2812–2823. [Google Scholar] [CrossRef]
- Moghbeli, M.; Kohram, H.; Zare-Shahaneh, A.; Zhandi, M.; Sharafi, M.; Nabi, M.M.; Zahedi, V.; Sharideh, H. Are the optimum levels of the catalase and vitamin E in rooster semen extender after freezing-thawing influenced by sperm concentration? Cryobiology 2016, 72, 264–268. [Google Scholar] [CrossRef]
- Moghbeli, M.; Kohram, H.; Zare-Shahaneh, A.; Zhandi, M.; Sharideh, H.; Sharafi, M. Effect of sperm concentration on characteristics and fertilization capacity of rooster sperm frozen in the presence of the antioxidants catalase and vitamin E. Theriogenology 2016, 86, 1393–1398. [Google Scholar] [CrossRef]
- Amini, M.R.; Kohram, H.; Zare-Shahaneh, A.; Zhandi, M.; Sharideh, H.; Nabi, M.M. The effects of different levels of catalase and superoxide dismutase in modified Beltsville extender on rooster post-thawed sperm quality. Cryobiology 2015, 70, 226–232. [Google Scholar] [CrossRef]
- Safa, S.; Moghaddam, G.; Jozani, R.J.; Kia, H.D.; Janmohammadi, H. Effect of vitamin E and selenium nanoparticles on post-thaw variables and oxidative status of rooster semen. Anim. Reprod. Sci. 2016, 174, 100–106. [Google Scholar] [CrossRef]
- Amini, M.R.; Kohram, H.; Zare Shahaneh, A.; Zhandi, M.; Sharideh, H.; Nabi, M.M. The effects of different levels of vitamin E and vitamin C in modified Beltsville extender on rooster post-thawed sperm quality. Cell Tissue Bank. 2015, 16, 587–592. [Google Scholar] [CrossRef]
- Thananurak, P.; Chuaychu-Noo, N.; Thélie, A.; Phasuk, Y.; Vongpralub, T.; Blesbois, E. Different concentrations of cysteamine, ergothioneine, and serine modulate quality and fertilizing ability of cryopreserved chicken sperm. Poult. Sci. 2020, 99, 1185–1198. [Google Scholar] [CrossRef] [PubMed]
- Nazari, M.; Daghigh, K.H.; Emami, J. Evaluation of the effect of adding cysteamine on Ros 308 sperm quality parameters and reduction of lipid peroxidation rate during freezing-thawing process. Anim. Sci. Res. 2021, 31, 113–124. [Google Scholar]
- Daghigh Kia, H.; Nazari, M.; Emami, J. Effect of cysteamine amino acid supplementation on reduced lipid peroxidation rate of rooster sperm during freezing-thawing. Anim. Sci. Res. 2021, 31, 113–124. [Google Scholar]
- Salih, S.A.; Daghigh-Kia, H.; Mehdipour, M.; Najafi, A. Does ergothioneine and thawing temperatures improve rooster semen post-thawed quality? Poult. Sci. 2021, 100, 101405. [Google Scholar] [CrossRef]
- Chankitisakul, V.; Boonkum, W.; Kaewkanha, T.; Pimprasert, M.; Ratchamak, R.; Authaida, S.; Thananurak, P. Fertilizing ability and survivability of rooster sperm diluted with a novel semen extender supplemented with serine for practical use on smallholder farms. Poult. Sci. 2022, 101, 102188. [Google Scholar] [CrossRef]
- West, B.; Zhou, B.-X. Did chickens go north? New evidence for domestication. Worlds Poult. Sci. J. 1989, 45, 205–218. [Google Scholar] [CrossRef]
- Shariatmadari, F. Poultry production and the industry in Iran. Worlds Poult. Sci. J. 2000, 56, 55–65. [Google Scholar] [CrossRef]
- Machado, L.C.; Oliveira, V.C.; Paraventi, M.D.; Cardoso, R.N.; Martins, D.S.; Ambrósio, C.E. Maintenance of Brazilian Biodiversity by germplasm bank. Pesqui. Vet. Bras. 2016, 36, 62–66. [Google Scholar] [CrossRef]
- Partyka, A.; Łukaszewicz, E.; Niżański, W. Effect of cryopreservation on sperm parameters, lipid peroxidation and antioxidant enzymes activity in fowl semen. Theriogenology 2012, 77, 1497–1504. [Google Scholar] [CrossRef] [PubMed]
- Roca, J.; Rodríguez, M.J.; Gil, M.A.; Carvajal, G.; Garcia, E.M.; Cuello, C.; Vazquez, J.M.; Martinez, E.A. Survival and in vitro fertility of boar spermatozoa frozen in the presence of superoxide dismutase and/or catalase. J. Androl. 2005, 26, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Arslan, H.O.; Herrera, C.; Malama, E.; Siuda, M.; Leiding, C.; Bollwein, H. Effect of the addition of different catalase concentrations to a TRIS-egg yolk extender on quality and in vitro fertilization rate of frozen-thawed bull sperm. Cryobiology 2019, 91, 40–52. [Google Scholar] [CrossRef] [PubMed]
- Thiangtum, K.; Pinyopummin, A.; Hori, T.; Kawakami, E.; Tsutsui, T. Effect of catalase and superoxide dismutase on motility, viability and acrosomal integrity of frozen-thawed cat spermatozoa. Reprod. Domest. Anim. 2009, 44, 369–372. [Google Scholar] [CrossRef] [PubMed]
- Berean, D.I.; Bogdan, L.M.; Cimpean, R. Advancements in Understanding and Enhancing Antioxidant-Mediated Sperm Cryopreservation in Small Ruminants: Challenges and Perspectives. Antioxidants 2024, 13, 624. [Google Scholar] [CrossRef] [PubMed]
- Lenzi, A.; Picardo, M.; Gandini, L.; Dondero, F. Lipids of the sperm plasma membrane: From polyunsaturated fatty acids considered as markers of sperm function to possible scavenger therapy. Hum. Reprod. Update 1996, 2, 246–256. [Google Scholar] [CrossRef] [PubMed]
- Surai, P.; Fujihara, N.; Speake, B.; BrilIard, J.; Wishart, G.; Sparks, N. Polyunsaturated fatty acids, lipid peroxidation and antioxidant protection in avian semen-Review. Asian-Australas. J. Anim. Sci. 2001, 14, 1024–1050. [Google Scholar] [CrossRef]
- Thuwanut, P.; Chatdarong, K.; Techakumphu, M.; Axner, E. The effect of antioxidants on motility, viability, acrosome integrity and DNA integrity of frozen-thawed epididymal cat spermatozoa. Theriogenology 2008, 70, 233–240. [Google Scholar] [CrossRef]
- Ishii, T.; Bannai, S.; Sugita, Y. Mechanism of growth stimulation of L1210 cells by 2-mercaptoethanol in vitro. Role of the mixed disulfide of 2-mercaptoethanol and cysteine. J. Biol. Chem. 1981, 256, 12387–12392. [Google Scholar] [CrossRef]
- Issels, R.D.; Nagele, A.; Eckert, K.-G.; Wllmanns, W. Promotion of cystine uptake and its utilization for glutathione biosynthesis induced by cysteamine and N-acetylcysteine. Biochem. Pharmacol. 1988, 37, 881–888. [Google Scholar] [CrossRef]
- Guerin, P.; El Mouatassim, S.; Menezo, Y. Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Hum. Reprod. Update 2001, 7, 175–189. [Google Scholar] [CrossRef]
- Bucak, M.N.; Ateşşahin, A.; Varışlı, Ö.; Yüce, A.; Tekin, N.; Akçay, A. The influence of trehalose, taurine, cysteamine and hyaluronan on ram semen: Microscopic and oxidative stress parameters after freeze–thawing process. Theriogenology 2007, 67, 1060–1067. [Google Scholar] [CrossRef]
- Bucak, M.N.; Sarıözkan, S.; Tuncer, P.B.; Ulutaş, P.A.; Akçadağ, H.İ. Effect of antioxidants on microscopic semen parameters, lipid peroxidation and antioxidant activities in Angora goat semen following cryopreservation. Small Rumin. Res. 2009, 81, 90–95. [Google Scholar] [CrossRef]
- Franzoni, F.; Colognato, R.; Galetta, F.; Laurenza, I.; Barsotti, M.; Di Stefano, R.; Bocchetti, R.; Regoli, F.; Carpi, A.; Balbarini, A. An in vitro study on the free radical scavenging capacity of ergothioneine: Comparison with reduced glutathione, uric acid and trolox. Biomed. Pharmacother. 2006, 60, 453–457. [Google Scholar] [CrossRef] [PubMed]
- Mann, T.; Leone, E. Studies on the metabolism of semen. 8. Ergothioneine as a normal constituent of boar seminal plasma. Purification and crystallization. Site of formation and function. Biochem. J. 1953, 53, 140. [Google Scholar] [CrossRef] [PubMed]
- Çoyan, K.; Bucak, M.N.; Başpınar, N.; Taşpınar, M.; Aydos, S. Ergothioneine attenuates the DNA damage of post-thawed Merino ram sperm. Small Rumin. Res. 2012, 106, 165–167. [Google Scholar] [CrossRef]
- Najafi, A.; Kia, H.D.; Mohammadi, H.; Najafi, M.H.; Zanganeh, Z.; Sharafi, M.; Martinez-Pastor, F.; Adeldust, H. Different concentrations of cysteamine and ergothioneine improve microscopic and oxidative parameters in ram semen frozen with a soybean lecithin extender. Cryobiology 2014, 69, 68–73. [Google Scholar] [CrossRef]
- Usuga, A.; Tejera, I.; Gómez, J.; Restrepo, O.; Rojano, B.; Restrepo, G. Cryoprotective effects of ergothioneine and isoespintanol on canine semen. Animals 2021, 11, 2757. [Google Scholar] [CrossRef]
- Kaewma, S.; Namula, Z.; Nguyen, S.T.; Lin, Q.; Torigoe, N.; Liu, B.; Nagahara, M.; Nii, M.; Taniguchi, M.; Otoi, T. Effects of ergothioneine supplementation on the quality of liquid-preserved and frozen-thawed boar semen. Acta Vet. Hung. 2024, 71, 219–222. [Google Scholar] [CrossRef]
- Santiago-Moreno, J.; Bernal, B.; Pérez-Cerezales, S.; Castaño, C.; Toledano-Díaz, A.; Esteso, M.C.; Gutiérrez-Adán, A.; López-Sebastián, A.; Gil, M.G.; Woelders, H. Seminal plasma amino acid profile in different breeds of chicken: Role of seminal plasma on sperm cryoresistance. PLoS ONE 2019, 14, e0209910. [Google Scholar] [CrossRef]
- Zhou, X.; He, L.; Wu, C.; Zhang, Y.; Wu, X.; Yin, Y. Serine alleviates oxidative stress via supporting glutathione synthesis and methionine cycle in mice. Mol. Nutr. Food Res. 2017, 61, 1700262. [Google Scholar] [CrossRef]
- González Ariza, A.; Navas González, F.J.; Arando Arbulu, A.; León Jurado, J.M.; Delgado Bermejo, J.V.; Camacho Vallejo, M.E. Variability of meat and carcass quality from worldwide native chicken breeds. Foods 2022, 11, 1700. [Google Scholar] [CrossRef]
- González Ariza, A.; Navas González, F.J.; León Jurado, J.M.; Arando Arbulu, A.; Delgado Bermejo, J.V.; Camacho Vallejo, M.E. Data mining as a tool to infer chicken carcass and meat cut quality from autochthonous genotypes. Animals 2022, 12, 2702. [Google Scholar] [CrossRef] [PubMed]
- Salgado Pardo, J.I.; González Ariza, A.; Navas González, F.J.; León Jurado, J.M.; Díaz Ruiz, E.; Delgado Bermejo, J.V.; Camacho Vallejo, M.E. Discriminant canonical analysis as a tool for genotype traceability testing based on turkey meat and carcass traits. Front. Vet. Sci. 2024, 11, 1326519. [Google Scholar] [CrossRef] [PubMed]
- Díaz Ruiz, E.; Navas González, F.J.; Arando Arbulu, A.; León Jurado, J.M.; Delgado Bermejo, J.V.; González Ariza, A. Developing a tool to optimize research on antioxidants for rooster semen cryopreservation. Ital. J. Anim. Sci. 2024, 23, 373–387. [Google Scholar] [CrossRef]
- Tai, F.; Pan, W. Incorporating prior knowledge of gene functional groups into regularized discriminant analysis of microarray data. Bioinformatics 2007, 23, 3170–3177. [Google Scholar] [CrossRef] [PubMed]
- González Ariza, A.; Arando Arbulu, A.; Navas González, F.J.; Delgado Bermejo, J.V.; Camacho Vallejo, M.E. Discriminant canonical analysis as a validation tool for multivariety native breed egg commercial quality classification. Foods 2021, 10, 632. [Google Scholar] [CrossRef]
- Poulsen, J.; French, A. Discriminant Function Analysis; San Francisco State University: San Francisco, CA, USA, 2008. [Google Scholar]
- Rogerson, P.A. Data reduction: Factor analysis and cluster analysis. In Statistical Methods for Geography, 1st ed.; SAGE Publications Ltd.: London, UK, 2001; pp. 192–197. [Google Scholar]
- Nanda, M.A.; Seminar, K.B.; Nandika, D.; Maddu, A. Discriminant analysis as a tool for detecting the acoustic signals of termites Coptotermes curvignathus (Isoptera: Rhinotermitidae). Int. J. Technol. 2018, 9, 840–851. [Google Scholar] [CrossRef]
- Zhang, Q.; Hu, J.; Bai, Z. Modified Pillai’s trace statistics for two high-dimensional sample covariance matrices. J. Stat. Plan. Inference 2020, 207, 255–275. [Google Scholar] [CrossRef]
- Longobardi, V.; Zullo, G.; Salzano, A.; De Canditiis, C.; Cammarano, A.; De Luise, L.; Puzio, M.V.; Neglia, G.; Gasparrini, B. Resveratrol prevents capacitation-like changes and improves in vitro fertilizing capability of buffalo frozen-thawed sperm. Theriogenology 2017, 88, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Froman, D.; Feltmann, A. Sperm mobility: Phenotype in roosters (Gallus domesticus) determinedby concentration of motile sperm and straight line velocity. Biol. Reprod. 2000, 62, 303–309. [Google Scholar] [CrossRef]
- Tesfay, H.H.; Sun, Y.; Li, Y.; Shi, L.; Fan, J.; Wang, P.; Zong, Y.; Ni, A.; Ma, H.; Mani, A.I. Comparative studies of semen quality traits and sperm kinematic parameters in relation to fertility rate between 2 genetic groups of breed lines. Poult. Sci. 2020, 99, 6139–6146. [Google Scholar] [CrossRef]
- Díaz Ruiz, E.; González Ariza, A.; León Jurado, J.M.; Arando Arbulu, A.; Bermúdez Oria, A.; Fernández Prior, Á.; Delgado Bermejo, J.V.; Navas González, F.J. Discriminant Analysis and Data Mining CHAID Decision Tree as Tools to Evaluate the Buffering Effect of Hydroxytyrosol on Reactive Oxygen Species in Rooster Sperm Cryopreservation. Animals 2023, 13, 3079. [Google Scholar] [CrossRef] [PubMed]
- Díaz Ruiz, E.; González Ariza, A.; León Jurado, J.M.; Arando Arbulu, A.; Fernández-Bolaños Guzmán, J.; Bermúdez Oria, A.; Delgado Bermejo, J.V.; Navas González, F.J. Evaluation of the effect of the addition of an olive oil-derived antioxidant (Pectoliv-80A) in the extender for cryopreservation of rooster sperm through the use of a discriminant statistical tool. Poult. Sci. 2024, 103, 103630. [Google Scholar] [CrossRef]
- Flesch, F.M.; Gadella, B.M. Dynamics of the mammalian sperm plasma membrane in the process of fertilization. BBA-Rev. Biomembr. 2000, 1469, 197–235. [Google Scholar] [CrossRef]
- Ladha, S. Lipid heterogeneity and membrane fluidity in a highly polarized cell, the mammalian spermatozoon. J. Membr. Biol. 1998, 165, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Long, J. Avian semen cryopreservation: What are the biological challenges? Poult. Sci. 2006, 85, 232–236. [Google Scholar] [CrossRef]
- Parks, J.E.; Lynch, D.V. Lipid composition and thermotropic phase behavior of boar, bull, stallion, and rooster sperm membranes. Cryobiology 1992, 29, 255–266. [Google Scholar] [CrossRef]
- Jeyendran, R.; Van der Ven, H.; Perez-Pelaez, M.; Crabo, B.; Zaneveld, L. Development of an assay to assess the functional integrity of the human sperm membrane and its relationship to other semen characteristics. Reproduction 1984, 70, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Kanno, C.; Oshima, E.; Kuzuma, Y.; Kim, S.W.; Bai, H.; Takahashi, M.; Yanagawa, Y.; Nagano, M.; Wakamatsu, J.-i. Enhancement of sperm motility and viability by turmeric by-product dietary supplementation in roosters. Anim. Reprod. Sci. 2017, 185, 195–204. [Google Scholar] [CrossRef]
- Ayeneshet, B.; Taye, M.; Esatu, W.; Tsefa, A. Comparative analysis of semen quality and fertility in diverse rooster breeds: A systematic review. Worlds Poult. Sci. J. 2024, 80, 947–975. [Google Scholar] [CrossRef]
- Askarianzadeh, Z.; Sharafi, M.; Torshizi, M.A.K. Sperm quality characteristics and fertilization capacity after cryopreservation of rooster semen in extender exposed to a magnetic field. Anim. Reprod. Sci. 2018, 198, 37–46. [Google Scholar] [CrossRef]
- Garner, D.L.; Johnson, L.A. Viability assessment of mammalian sperm using SYBR-14 and propidium iodide. Biol. Reprod. 1995, 53, 276–284. [Google Scholar] [CrossRef] [PubMed]
- Watson, P.F. The causes of reduced fertility with cryopreserved semen. Anim. Reprod. Sci. 2000, 60, 481–492. [Google Scholar] [CrossRef]
- Ruiz-Pesini, E.; Díez-Sánchez, C.; López-Pérez, M.J.; Enríquez, J.A. The role of the mitochondrion in sperm function: Is there a place for oxidative phosphorylation or is this a purely glycolytic process? Curr. Top. Dev. Biol. 2007, 77, 3–19. [Google Scholar]
- Karimi-Sabet, M.J.; Khodaei-Motlagh, M.; Masoudi, R.; Sharafi, M. Zinc oxide nanoparticles preserve the quality and fertility potential of rooster sperm during the cryopreservation process. Reprod. Domest. Anim. 2024, 59, e14568. [Google Scholar] [CrossRef] [PubMed]
- Banaszewska, D.; Andraszek, K.; Biesiada-Drzazga, B.; Przyborski, M. Identification of chromatin proteins in semen of roosters from breeding flocks. Eur. Poult. Sci. 2015, 79, 101. [Google Scholar] [CrossRef]
- Amann, R.P.; Waberski, D. Computer-assisted sperm analysis (CASA): Capabilities and potential developments. Theriogenology 2014, 81, 5–17.e13. [Google Scholar] [CrossRef]
- Sayed, M.; Abouelezz, F.; Abdel-Wahab, A.A. Analysis of sperm motility, velocity and morphometry of three Egyptian indigenous chicken strains. Egypt. Poult. Sci. 2017, 37, 1173. [Google Scholar]
- Sloter, E.; Schmid, T.; Marchetti, F.; Eskenazi, B.; Nath, J.; Wyrobek, A. Quantitative effects of male age on sperm motion. Hum. Reprod. 2006, 21, 2868–2875. [Google Scholar] [CrossRef]
- Froman, D.P. Sperm motility in birds: Insights from fowl sperm. Soc. Reprod. Fertil. Suppl. 2007, 65, 293–308. [Google Scholar]
- Long, J.; Bongalhardo, D.; Pelaez, J.; Saxena, S.; Settar, P.; O’Sullivan, N.; Fulton, J. Rooster semen cryopreservation: Effect of pedigree line and male age on postthaw sperm function. Poult. Sci. 2010, 89, 966–973. [Google Scholar] [CrossRef]
- Torres-Ruda, F.; Manjarrez, C.I.; Carvajal-Serna, M.; Grajales-Lombana, H.A. Efecto de la adición de antioxidantes en los diluyentes para la preservación de semen ovino. Rev. Med. Vet. 2019, 38, 101–109. [Google Scholar] [CrossRef]
- Michael, A.; Alexopoulos, C.; Pontiki, E.; Hadjipavlou-Litina, D.; Saratsis, P.; Boscos, C. Effect of antioxidant supplementation on semen quality and reactive oxygen species of frozen-thawed canine spermatozoa. Theriogenology 2007, 68, 204–212. [Google Scholar] [CrossRef]
- Griveau, J.; Lannou, D.L. Reactive oxygen species and human spermatozoa: Physiology and pathology. Int. J. Androl. 1997, 20, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Inaba, K. Molecular architecture of the sperm flagella: Molecules for motility and signaling. Zool. Sci. 2003, 20, 1043–1056. [Google Scholar] [CrossRef]
- Pereira, R.; Sá, R.; Barros, A.; Sousa, M. Major regulatory mechanisms involved in sperm motility. Asian J. Androl. 2017, 19, 5–14. [Google Scholar]
- Swami, D.S.; Kumar, P.; Malik, R.; Saini, M.; Kumar, D.; Jan, M. Cysteamine supplementation revealed detrimental effect on cryosurvival of buffalo sperm based on computer-assisted semen analysis and oxidative parameters. Anim. Reprod. Sci. 2017, 177, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Büyükleblebici, O.; Büyükleblebici, S.; Taşdemir, U.; Tuncer, P.B. The effects of different antioxidants on post-thaw microscopic and oxidative stress parameters in the cryopreservation of Brown-Swiss bull semen. Kafkas Univ. Vet. Fak. Derg. 2016, 22, 101–107. [Google Scholar]
- Pranay Kumar, K.; Swathi, B.; Shanmugam, M. Effect of supplementing vitamin E analogues on post-thaw semen parameters and fertility in chicken. Br. Poult. Sci. 2019, 60, 340–345. [Google Scholar] [CrossRef]
- Ghafarizadeh, A.A.; Malmir, M.; Naderi Noreini, S.; Faraji, T.; Ebrahimi, Z. The effect of vitamin E on sperm motility and viability in asthenoteratozoospermic men: In vitro study. Andrologia 2021, 53, e13891. [Google Scholar] [CrossRef]
- Hu, J.-H.; Zhao, X.-L.; Tian, W.-Q.; Zan, L.-S.; Li, Q.-W. Effects of vitamin E supplementation in the extender on frozen-thawed bovine semen preservation. Animal 2011, 5, 107–112. [Google Scholar] [CrossRef]
- Kurmi, D.; Sinha, M.; Kumar, R.; Hazarika, S.; Dewry, R.; Gohain, S. Effect of vitamin E on the quality of frozen ram semen. Theriogenol. Insight 2018, 8, 39–43. [Google Scholar]
- Silva, S.V.; Soares, A.T.; Batista, A.M.; Almeida, F.C.; Nunes, J.F.; Peixoto, C.A.; Guerra, M.M.P. Vitamin E (Trolox) addition to Tris-egg yolk extender preserves ram spermatozoon structure and kinematics after cryopreservation. Anim. Reprod. Sci. 2013, 137, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Almeida, J.; Ball, B.A. Effect of α-tocopherol and tocopherol succinate on lipid peroxidation in equine spermatozoa. Anim. Reprod. Sci. 2005, 87, 321–337. [Google Scholar] [CrossRef] [PubMed]
Tolerance (1 − R2) | VIF | |
---|---|---|
VCL (µm/s) | 0.212 | 4.727 |
TM (%) | 0.240 | 4.162 |
VSL (µm/s) | 0.323 | 3.095 |
Viability (%) | 0.330 | 3.030 |
LIN (%) | 0.355 | 2.814 |
HOST (%) | 0.357 | 2.801 |
STR (%) | 0.383 | 2.609 |
PM (%) | 0.570 | 1.755 |
Trace | F (Observed Value) | F (Critical Value) | DF1 | DF2 | p-Value | Alpha |
---|---|---|---|---|---|---|
0.987 | 6.025 | 1.407 | 40 | 980 | <0.0001 | 0.05 |
Variable | Rank | Wilks’ Lambda | F | DF1 | DF2 | p-Value |
---|---|---|---|---|---|---|
HOST (%) | 1 | 0.514 | 37.624 | 5 | 199 | <0.0001 |
Viability (%) | 2 | 0.622 | 24.176 | 5 | 199 | <0.0001 |
TM (%) | 3 | 0.719 | 15.535 | 5 | 199 | <0.0001 |
LIN (%) | 4 | 0.805 | 9.648 | 5 | 199 | <0.0001 |
VCL (µm/s) | 5 | 0.821 | 8.653 | 5 | 199 | <0.0001 |
STR (%) | 6 | 0.850 | 7.020 | 5 | 199 | <0.0001 |
VSL (µm/s) | 7 | 0.901 | 4.374 | 5 | 199 | 0.001 |
PM (%) | 8 | 0.962 | 1.572 | 5 | 199 | 0.170 |
From\To | Catalase | Cysteamine | Ergothioneine | No Antioxidant | Serine | Vitamin E | Total | % Correct |
---|---|---|---|---|---|---|---|---|
Catalase | 10 | 0 | 0 | 0 | 0 | 0 | 10 | 100.00 |
Cysteamine | 0 | 12 | 0 | 0 | 0 | 0 | 12 | 100.00 |
Ergothioneine | 0 | 2 | 14 | 0 | 0 | 0 | 16 | 87.50 |
No antioxidant | 0 | 1 | 0 | 134 | 0 | 4 | 139 | 96.40 |
Serine | 0 | 0 | 0 | 0 | 12 | 0 | 12 | 100.00 |
Vitamin E | 0 | 0 | 0 | 0 | 0 | 16 | 16 | 100.00 |
Total | 10 | 15 | 14 | 134 | 12 | 20 | 205 | 96.59 |
Catalase | Cysteamine | Ergothioneine | Serine | Vitamin E | No Antioxidant | |
---|---|---|---|---|---|---|
TM (%) | 72.641 | 45.957 | 54.404 | 59.625 | 72.158 | 40.295 |
PM (%) | 15.149 | 14.762 | 21.813 | 25.658 | 15.209 | 16.485 |
VCL (µm/s) | 55.952 | 77.302 | 85.253 | 109.351 | 56.919 | 59.416 |
VSL (µm/s) | 18.207 | 31.735 | 35.856 | 46.902 | 17.531 | 29.493 |
LIN (%) | 31.872 | 45.783 | 48.983 | 56.241 | 31.196 | 38.445 |
STR (%) | 56.380 | 70.117 | 72.396 | 90.666 | 58.216 | 64.801 |
Viability (%) | 76.641 | 46.288 | 53.651 | 43.077 | 74.726 | 38.226 |
HOST (%) | 79.910 | 27.625 | 40.295 | 39.093 | 73.288 | 37.352 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz Ruiz, E.; Navas González, F.J.; León Jurado, J.M.; Arando Arbulu, A.; Delgado Bermejo, J.V.; González Ariza, A. Effects of Supplementation of Different Antioxidants to Cryopreservation Extender on the Post-Thaw Quality of Rooster Semen—A Meta-Analysis. Animals 2024, 14, 2936. https://doi.org/10.3390/ani14202936
Díaz Ruiz E, Navas González FJ, León Jurado JM, Arando Arbulu A, Delgado Bermejo JV, González Ariza A. Effects of Supplementation of Different Antioxidants to Cryopreservation Extender on the Post-Thaw Quality of Rooster Semen—A Meta-Analysis. Animals. 2024; 14(20):2936. https://doi.org/10.3390/ani14202936
Chicago/Turabian StyleDíaz Ruiz, Esther, Francisco Javier Navas González, José Manuel León Jurado, Ander Arando Arbulu, Juan Vicente Delgado Bermejo, and Antonio González Ariza. 2024. "Effects of Supplementation of Different Antioxidants to Cryopreservation Extender on the Post-Thaw Quality of Rooster Semen—A Meta-Analysis" Animals 14, no. 20: 2936. https://doi.org/10.3390/ani14202936
APA StyleDíaz Ruiz, E., Navas González, F. J., León Jurado, J. M., Arando Arbulu, A., Delgado Bermejo, J. V., & González Ariza, A. (2024). Effects of Supplementation of Different Antioxidants to Cryopreservation Extender on the Post-Thaw Quality of Rooster Semen—A Meta-Analysis. Animals, 14(20), 2936. https://doi.org/10.3390/ani14202936