Conventionally Reared Wallon Meat Lambs Carry Transiently Multi-Drug-Resistant Escherichia coli with Reduced Sensitivity to Colistin Before Slaughter
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling In Vivo and Ex Vivo
2.2. Bacterial Isolation and Identification
2.3. Antimicrobial Susceptibility Testing
2.4. DNA Extraction and Sequencing
3. Results
3.1. Presumptive Colistin-Resistant E. coli
3.2. Presumptive ESBL-Producing E. coli
4. Discussion
4.1. Transient Fecal Carriage of Multi-Resistant E. coli with Reduced Sensitivity to Colistin
4.2. Ovine Slaughter Hygiene Prevents Carcass Contamination with MDR E. coli
4.3. Influence of Husbandry Conditions on AMR Bacteria Carriage
4.4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- Serna, C.; Gonzalez-Zorn, B. Antimicrobial Resistance and One Health. Rev. Esp. Quimioter. 2022, 35, 37–40. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed Ahmed, M.A.E.-G.; Zhong, L.-L.; Shen, C.; Yang, Y.; Doi, Y.; Tian, G.-B. Colistin and Its Role in the Era of Antibiotic Resistance: An Extended Review (2000–2019). Emerg. Microbes Infect. 2020, 9, 868–885. [Google Scholar] [CrossRef] [PubMed]
- Binsker, U.; Käsbohrer, A.; Hammerl, J.A. Global Colistin Use: A Review of the Emergence of Resistant Enterobacterales and the Impact on Their Genetic Basis. FEMS Microbiol. Rev. 2022, 46, fuab049. [Google Scholar] [CrossRef]
- Jansen, W.; Van Hout, J.; Wiegel, J.; Iatridou, D.; Chantziaras, I.; De Briyne, N. Colistin Use in European Livestock: Veterinary Field Data on Trends and Perspectives for Further Reduction. Vet. Sci. 2022, 9, 650. [Google Scholar] [CrossRef]
- Liu, Y.-Y.; Wang, Y.; Walsh, T.R.; Yi, L.-X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X. Emergence of Plasmid-Mediated Colistin Resistance Mechanism MCR-1 in Animals and Human Beings in China: A Microbiological and Molecular Biological Study. Lancet 2016, 16, 161–168. [Google Scholar] [CrossRef]
- Hussein, N.H.; AL-Kadmy, I.M.S.; Taha, B.M.; Hussein, J.D. Mobilized Colistin Resistance (mcr) Genes from 1 to 10: A Comprehensive Review. Mol. Biol. Rep. 2021, 48, 2897–2907. [Google Scholar] [CrossRef]
- European Commission. 2013/652/EU: Commission Implementing Decision of 12 November 2013 on the Monitoring and Reporting of Antimicrobial Resistance in Zoonotic and Commensal Bacteria (Notified under Document C(2013) 7145) Text with EEA Relevance. 2013, p. 39. Available online: https://eur-lex.europa.eu/eli/dec_impl/2013/652/oj (accessed on 25 August 2024).
- ECDC; EFSA; EMA. Third Joint Inter-agency Report on Integrated Analysis of Consumption of Antimicrobial Agents and Occurrence of Antimicrobial Resistance in Bacteria from Humans and Food-producing Animals in the EU/EEA: JIACRA III 2016–2018. EFSA J. 2021, 19, e06712. [Google Scholar] [CrossRef]
- EEFSA (European Food Safety Authority); Brocca, D.; Salvatore, S. Report for 2020 on the Results from the Monitoring of Veterinary Medicinal Product Residues and Other Substances in Live Animals and Animal Products; EFSA Supporting Publications: Parma, Italy, 2022; Volume 19, 91p. [Google Scholar] [CrossRef]
- Cargnel, M.; Dispas, M. Antimicrobial Resistance in Commensal Escherichia Coli from Livestock in Belgium: Trend Analysis 2011–2018. Sciensano Report. 2018. Available online: https://www.amcra.be/swfiles/files/20190605-Rapport_AMR_2011-2018_trend_AMR_Ecoli.pdf (accessed on 24 August 2024).
- AMCRA (AntiMicrobial Consumption and Resistance in Animals). Activités et realizations—Utilisation et la résistance d’antibiotiques chez les animaux en Belgique 2021. Report 2022. Available online: https://www.amcra.be/swfiles/files/Publiek-rapport-2023_finaal_FR.pdf (accessed on 25 August 2024).
- BELMAP One Health Report on Antibiotic Use and Resistance in Belgium 2022. Report. Available online: https://www.health.belgium.be/sites/default/files/uploads/fields/fpshealth_theme_file/rapport_annuel_amr_2021.pdf (accessed on 25 August 2024).
- European Commission. Commission Regulation (EC) No 2073/2005 of 15 November 2005 on Microbiological Criteria for Foodstuffs. 2005. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02005R2073-20200308 (accessed on 25 August 2024).
- Société Française de Microbiologie. CA-SFM, (Comité de l’antibiogramme de la Société Française de Microbiologie) Recommandations Vétérinaires 2021. Report 2021. Available online: https://www.sfm-microbiologie.org/wp-content/uploads/2021/12/CASFM_VET2021.pdf (accessed on 25 August 2024).
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 14.0. 2024. Available online: http://www.eucast.org (accessed on 25 August 2024).
- Société Française de; Microbiologie CA-SFM, (Comité de l’antibiogramme de la Société Française de Microbiologie) Recommandations Vétérinaires 2013; Société Française de Microbiologie. 2013. Available online: https://www.sfm-microbiologie.org/wp-content/uploads/2020/07/CASFM_2013.pdf (accessed on 25 August 2024).
- Gennart, I.; Petit, A.; Wiggers, L.; Pejaković, S.; Dauchot, N.; Laurent, S.; Coupeau, D.; Muylkens, B. Epigenetic Silencing of MicroRNA-126 Promotes Cell Growth in Marek’s Disease. Microorganisms 2021, 9, 1339. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An Ultra-Fast All-in-One FASTQ Preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Wick, R.R.; Judd, L.M.; Gorrie, C.L.; Holt, K.E. Unicycler: Resolving Bacterial Genome Assemblies from Short and Long Sequencing Reads. PLOS Computat Biol. 2017, 13, e1005595. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Alikhan, N.-F.; Mohamed, K.; Fan, Y.; The Agama Study Group; Achtman, M. The EnteroBase User’s Guide, with Case Studies on Salmonella Transmissions, Yersinia pestis Phylogeny, and Escherichia Core Genomic Diversity. Genome Res. 2020, 30, 138–152. [Google Scholar] [CrossRef] [PubMed]
- Feldgarden, M.; Brover, V.; Gonzalez-Escalona, N.; Frye, J.G.; Haendiges, J.; Haft, D.H.; Hoffmann, M.; Pettengill, J.B.; Prasad, A.B.; Tillman, G.E.; et al. AMRFinderPlus and the Reference Gene Catalog Facilitate Examination of the Genomic Links among Antimicrobial Resistance, Stress Response, and Virulence. Sci. Rep. 2021, 11, 12728. [Google Scholar] [CrossRef] [PubMed]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Seni, J.; Falgenhauer, L.; Simeo, N.; Mirambo, M.M.; Imirzalioglu, C.; Matee, M.; Rweyemamu, M.; Chakraborty, T.; Mshana, S.E. Multiple ESBL-Producing Escherichia Coli Sequence Types Carrying Quinolone and Aminoglycoside Resistance Genes Circulating in Companion and Domestic Farm Animals in Mwanza, Tanzania, Harbor Commonly Occurring Plasmids. Front. Microbiol. 2016, 7, 142. [Google Scholar] [CrossRef]
- Dantas Palmeira, J.; Haenni, M.; Madec, J.-Y.; Ferreira, H.M. First Global Report of Plasmid-Mediated mcr-1 and Extended-Spectrum Beta-Lactamase-Producing Escherichia Coli from Sheep in Portugal. Antibiotics 2021, 10, 1403. [Google Scholar] [CrossRef]
- Geser, N.; Stephan, R.; Hächler, H. Occurrence and Characteristics of Extended-Spectrum β-Lactamase (ESBL) Producing Enterobacteriaceae in Food Producing Animals, Minced Meat and Raw Milk. BMC Vet. Res. 2012, 8, 21. [Google Scholar] [CrossRef]
- Snow, L.C.; Wearing, H.; Stephenson, B.; Teale, C.J.; Coldham, N.G. Investigation of the Presence of ESBL-producing Escherichia Coli in the North Wales and West Midlands Areas of the UK in 2007 to 2008 Using Scanning Surveillance. Vet. Rec. 2011, 169, 656. [Google Scholar] [CrossRef]
- Benavides, J.A.; Salgado-Caxito, M.; Opazo-Capurro, A.; Gonzalez Munoz, P.; Piñeiro, A.; Otto Medina, M.; Rivas, L.; Munita, J.; Millán, J. ESBL-Producing Escherichia Coli Carrying CTX-m Genes Circulating among Livestock, Dogs, and Wild Mammals in Small-Scale Farms of Central Chile. Antibiotics 2021, 10, 510. [Google Scholar] [CrossRef]
- Pehlivanoglu, F.; Turutoglu, H.; Ozturk, D.; Yardimci, H. Molecular Characterization of ESBL-Producing Escherichia Coli Isolated from Healthy Cattle and Sheep. Acta Vet. 2016, 66, 520–533. [Google Scholar] [CrossRef]
- İlknur, A.; La Ragione Roberto, M.; Woodward Martin, J. Colonization, Persistence, and Tissue Tropism of Escherichia coli O26 in Conventionally Reared Weaned Lambs. Appl. Environ. Microbiol. 2007, 73, 691–698. [Google Scholar] [CrossRef]
- Brown, C.A.; Harmon, B.G.; Zhao, T.; Doyle, M.P. Experimental Escherichia coli O157:H7 Carriage in Calves. Appl. Environ. Microbiol. 1997, 63, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Chen, Y.; Xu, H.; Qiao, J.; Ge, H.; Liu, R.; Zheng, B. Genomic Epidemiology and Transmission Characteristics of mcr1-oositive Colistin-Resistant Escherichia coli Strains Circulating at Natural Environment. Sci. Total Environ. 2023, 882, 163600. [Google Scholar] [CrossRef] [PubMed]
- Hamame, A.; Davoust, B.; Hasnaoui, B.; Mwenebitu, D.L.; Rolain, J.-M.; Diene, S.M. Screening of Colistin-Resistant Bacteria in Livestock Animals from France. Vet. Res. 2022, 53, 96. [Google Scholar] [CrossRef]
- Rhouma, M.; Madec, J.-Y.; Laxminarayan, R. Colistin: From the Shadows to a One Health Approach for Addressing Antimicrobial Resistance. Int. J. Antimicrob. Agents 2023, 61, 106713. [Google Scholar] [CrossRef]
- Chen, H.D.; Groisman, E.A. The Biology of the PmrA/PmrB Two-Component System: The Major Regulator of Lipopolysaccharide Modifications. Annu. Rev. Microbiol. 2013, 67, 83–112. [Google Scholar] [CrossRef]
- Quesada, A.; Porrero, M.C.; Téllez, S.; Palomo, G.; García, M.; Domínguez, L. Polymorphism of Genes Encoding PmrAB in Colistin-Resistant Strains of Escherichia coli and Salmonella enterica Isolated from Poultry and Swine. J. Antimicro Chemothera 2015, 70, 71–74. [Google Scholar] [CrossRef]
- Wong, T.L.; Nicol, C.; Cook, R.; Macdiarmid, S. Salmonella in Uncooked Retail Meats in New Zealand. J. Food Prot. 2007, 70, 1360–1365. [Google Scholar] [CrossRef]
- Chinnam, B.K.; Nelapati, S.; Tumati, S.R.; Bobbadi, S.; Chaitanya Peddada, V.; Bodempudi, B. Detection of β-Lactamase–Producing Proteus mirabilis Strains of Animal Origin in Andhra Pradesh, India and Their Genetic Diversity. J. Food Prot. 2021, 84, 1374–1379. [Google Scholar] [CrossRef]
- Kalchayanand, N.; Arthur, T.M.; Bosilevac, J.M.; Brichta-Harhay, D.M.; Guerini, M.N.; Shackelford, S.D.; Wheeler, T.L.; Koohmaraie, M. Microbiological Characterization of Lamb Carcasses at Commercial Processing Plants in the United States. J. Food Prot. 2007, 70, 1811–1819. [Google Scholar] [CrossRef]
- Nobili, G.; La Bella, G.; Basanisi, M.G.; Damato, A.M.; Coppola, R.; Migliorelli, R.; Rondinone, V.; Leekitcharoenphon, P.; Bortolaia, V.; La Salandra, G. Occurrence and Characterisation of Colistin-Resistant Escherichia coli in Raw Meat in Southern Italy in 2018–2020. Microorganisms 2022, 10, 1805. [Google Scholar] [CrossRef] [PubMed]
- Ghafur, A.; Shankar, C.; GnanaSoundari, P.; Venkatesan, M.; Mani, D.; Thirunarayanan, M.A.; Veeraraghavan, B. Detection of Chromosomal and Plasmid-Mediated Mechanisms of Colistin Resistance in Escherichia coli and Klebsiella pneumoniae from Indian Food Samples. J. Glob. Antimicrob. Resist. 2019, 16, 48–52. [Google Scholar] [CrossRef] [PubMed]
- Schimmer, B.; Nygard, K.; Eriksen, H.-M.; Lassen, J.; Lindstedt, B.-A.; Brandal, L.T.; Kapperud, G.; Aavitsland, P. Outbreak of Haemolytic Uraemic Syndrome in Norway Caused by Stx2-Positive Escherichia coli O103:H25 Traced to Cured Mutton Sausages. BMC Infect. Dis. 2008, 8, 41. [Google Scholar] [CrossRef] [PubMed]
- Obaidat, M.M.; Tarazi, Y.H.; AlSmadi, W.M. Sheep and Goats Are Reservoirs of Colistin Resistant Escherichia coli That Co-resist Critically Important Antimicrobials: First Study from Jordan. J. Food Saf. 2023, 43, e13023. [Google Scholar] [CrossRef]
- Hammad, A.M.; Hoffmann, M.; Gonzalez-Escalona, N.; Abbas, N.H.; Yao, K.; Koenig, S.; Allué-Guardia, A.; Eppinger, M. Genomic Features of Colistin Resistant Escherichia coli ST69 Strain Harboring mcr-1 on IncHI2 Plasmid from Raw Milk Cheese in Egypt. Infect. Genet. Evol. 2019, 73, 126–131. [Google Scholar] [CrossRef]
- Imre, K.; Ban-Cucerzan, A.; Herman, V.; Sallam, K.I.; Cristina, R.T.; Abd-Elghany, S.M.; Morar, D.; Popa, S.A.; Imre, M.; Morar, A. Occurrence, Pathogenic Potential and Antimicrobial Resistance of Escherichia coli Isolated from Raw Milk Cheese Commercialized in Banat Region, Romania. Antibiotics 2022, 11, 721. [Google Scholar] [CrossRef]
- Rodrigues da Costa, M.; Diana, A. A Systematic Review on the Link between Animal Welfare and Antimicrobial Use in Captive Animals. Animals 2022, 12, 1025. [Google Scholar] [CrossRef]
- Österberg, J.; Wingstrand, A.; Nygaard Jensen, A.; Kerouanton, A.; Cibin, V.; Barco, L.; Denis, M.; Aabo, S.; Bengtsson, B. Antibiotic Resistance in Escherichia coli from Pigs in Organic and Conventional Farming in Four European Countries. PLoS ONE 2016, 11, e0157049. [Google Scholar] [CrossRef]
- Kempf, I.; Kerouanton, A.; Bougeard, S.; Nagard, B.; Rose, V.; Mourand, G.; Osterberg, J.; Denis, M.; Bengtsson, B.O. Campylobacter coli in Organic and Conventional Pig Production in France and Sweden: Prevalence and Antimicrobial Resistance. Front. Microbiol. 2017, 8, 955. [Google Scholar] [CrossRef]
- Tenhagen, B.-A.; Flor, M.; Alt, K.; Knüver, M.-T.; Buhler, C.; Käsbohrer, A.; Stingl, K. Association of Antimicrobial Resistance in Campylobacter spp. in Broilers and Turkeys with Antimicrobial Use. Antibiotics 2021, 10, 673. [Google Scholar] [CrossRef]
- Von Borell, E.; Sørensen, J.T. Organic Livestock Production in Europe: Aims, Rules and Trends with Special Emphasis on Animal Health and Welfare. Livest. Prod. Sci. 2004, 90, 3–9. [Google Scholar] [CrossRef]
- Xiao, H.; Yan, H.; Tian, P.; Ji, S.; Zhao, W.; Lu, C.; Zhang, Y.; Liu, Y. The Effect of Early Colonized Gut Microbiota on the Growth Performance of Suckling Lambs. Front. Microbiol. 2023, 14, 1273444. [Google Scholar] [CrossRef] [PubMed]
- Prache, S.; Schreurs, N.; Guillier, L. Review: Factors Affecting Sheep Carcass and Meat Quality Attributes. Animal 2022, 16, 100330. [Google Scholar] [CrossRef] [PubMed]
- García-Fernández, S.; García-Castillo, M.; Ruiz-Garbajosa, P.; Morosini, M.-I.; Bala, Y.; Zambardi, G.; Cantón, R. Performance of CHROMID® Colistin R Agar, a New Chromogenic Medium for Screening of Colistin-Resistant Enterobacterales. Diagn. Microbiol. Infect. Dis. 2019, 93, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Leshaba, T.M.S.; Mbelle, N.M.; Osei Sekyere, J. Current and Emerging Polymyxin Resistance Diagnostics: A Systematic Review of Established and Novel Detection Methods. J. Appl. Microbiol. 2022, 132, 8–30. [Google Scholar] [CrossRef]
- Thiry, D.; Berrah, A.; Evrard, J.; Duprez, J.-N.; Mainil, J.G.; Saulmont, M. Assessment of Two Selective Agar Media to Isolate Colistin-Resistant Bovine Escherichia coli: Correlation with Minimal Inhibitory Concentration and Presence of mcr Genes. J. Microbiol. Meth 2019, 159, 174–178. [Google Scholar] [CrossRef]
- Bastidas-Caldes, C.; de Waard, J.H.; Salgado, M.S.; Villacís, M.J.; Coral-Almeida, M.; Yamamoto, Y.; Calvopiña, M. Worldwide Prevalence of mcr-Mediated Colistin-Resistance Escherichia coli in Isolates of Clinical Samples, Healthy Humans, and Livestock—A Systematic Review and Meta-Analysis. Pathogens 2022, 11, 659. [Google Scholar] [CrossRef]
- Matuschek, E.; Åhman, J.; Webster, C.; Kahlmeter, G. Antimicrobial Susceptibility Testing of Colistin—Evaluation of Seven Commercial MIC Products against Standard Broth Microdilution for Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter spp. Clin. Microbiol. Infect. 2018, 24, 865–870. [Google Scholar] [CrossRef]
- Feldgarden, M.; Vyacheslav, B.; Haft Daniel, H.; Prasad Arjun, B.; Slotta Douglas, J.; Igor, T.; Tyson Gregory, H.; Zhao, S.; Hsu, C.-H.; McDermott Patrick, F.; et al. Validating the AMRFinder Tool and Resistance Gene Database by Using Antimicrobial Resistance Genotype-Phenotype Correlations in a Collection of Isolates. Antimicrob. Agents Chemother. 2019, 63, e00483-19. [Google Scholar] [CrossRef]
- Tyson, G.H.; Li, C.; Ayers, S.; McDermott, P.F.; Zhao, S. Using Whole-Genome Sequencing to Determine Appropriate Streptomycin Epidemiological Cutoffs for Salmonella and Escherichia coli. FEMS Microbiol. Lett. 2016, 363, fnw009. [Google Scholar] [CrossRef]
- Tyson, G.H.; Zhao, S.; Li, C.; Ayers, S.; Sabo, J.L.; Lam, C.; Miller, R.A.; McDermott, P.F. Establishing Genotypic Cutoff Values to Measure Antimicrobial Resistance in Salmonella. Antimicrob. Agents Chemother. 2017, 61, 10–1128. [Google Scholar] [CrossRef]
Animal ID | Isolate | Pathovar | ST/ST Complex | Genes Conferring Colistin Resistance | Genes Conferring Fosfomycin Resistance |
---|---|---|---|---|---|
A2 | 6530-126 | E. coli—STEC (stx1 and stx2) | 33/NA | pmrB_Y358N | glpT_E448K |
A5 | 7632-127 | NA | 1246/NA | pmrB_Y358N | glpT_E448K |
A6 | 7639-125 | E. coli—EPEC (eae) | 17/ST20 Cplx | pmrB_Y358N | glpT_E448K |
A8 | 7674-128 | E. coli—EPEC (eae) | 17/ST20 Cplx | pmrB_Y358N | glpT_E448K |
A9 | 7676-129 | E. coli—EPEC (eae) | 642/ST278 Cplx | NA | glpT_E448K |
A16 | 7553-111 | NA | 345/ST23 Cplx | pmrB_Y358N | glpT_E448K |
A20 | 7548-112 | NA | 761/ST10 Cplx | NA | NA |
Animal ID | Isolate | Ampicillin S-R MIC | Ceftiofur S-R MIC | Colistin S-R MIC | Gentamicin S-R MIC | Tetracycline S-R MIC | Sulfadi- Methoxine S-R MIC |
---|---|---|---|---|---|---|---|
A4 | 7579-39 | R >16 mg/mL | S 1 mg/mL | S 0.5 mg/mL | S =<1 mg/mL | R >8 mg/mL | R >256 mg/mL |
7579-5 | R >16 mg/mL | S 2 mg/mL | S 0.5 mg/mL | S 2 mg/mL | S 4 mg/mL | R >256 mg/mL | |
A9 | 7573-23 | R >16 mg/mL | S 2 mg/mL | S 0.5 mg/mL | S =<1 mg/mL | S 4 mg/mL | R >256 mg/mL |
A10 | 7572-8 | R >16 mg/mL | R 8 mg/mL | S 0.5 mg/mL | S =<1 mg/mL | S 8 mg/mL | R >256 mg/mL |
A11 | 7570-9 | R >16 mg/mL | S 2 mg/mL | S 0.5 mg/mL | S 4 mg/mL | S 4 mg/mL | R >256 mg/mL |
A14 | 7544-10 | R >16 mg/mL | S 2 mg/mL | S 0.5 mg/mL | S =<1 mg/mL | S 4 mg/mL | R >256 mg/mL |
A17 | 7575-12 | R >16 mg/mL | S 2 mg/mL | S 0.5 mg/mL | S =<1 mg/mL | S 4 mg/mL | R >256 mg/mL |
A20 | 7548-19 | R >16 mg/mL | S 0.5 mg/mL | S 0.5 mg/mL | R >8 mg/mL | S 4 mg/mL | R >256 mg/mL |
7548-11 | R >16 mg/mL | S 2 mg/mL | S 0.5 mg/mL | S =<1 mg/mL | S 4 mg/mL | R >256 mg/mL |
Animal ID | Isolate | ST | ST Complex | Lineage | fimH (fimTyper) | Aminoglycoside | BL Inhibitor | Carbapenemase | Colistin | ESBL | Fosfomycin | Macrolide | Penicillin | Phenicol | Quinolone | Sulfonamide | Tetracycline | Trimethoprim | Lincosamide |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A4 | 7579-39 | 10 | ST10 Cplx | A | fimH54 | aadA1, aadA2 | - | - | - | - | - | - | blaCARB-2 | cmlA1 | - | sul3 | tet(A) | dfrA16 | - |
A4 | 7579-5 | 3594 | ST469 Cplx | AxB1 | fimH31 | aadA2 | - | - | pmrB_Y358N | blaTEM-52 | glpT_E448K | - | - | - | - | - | - | - | lnu(F) |
A9 | 7573-23 | 3594 | ST469 Cplx | AxB1 | fimH31 | aadA2 | - | - | pmrB_Y358N | blaTEM-52 | glpT_E448K | - | - | - | - | - | - | - | lnu(F) |
A10 | 7572-8 | 3594 | ST469 Cplx | AxB1 | fimH31 | aadA2 | - | - | pmrB_Y358N | blaTEM-52 | glpT_E448K | - | - | - | - | - | - | - | lnu(F) |
A11 | 7570-9 | 3594 | ST469 Cplx | AxB1 | fimH31 | aadA2 | - | - | pmrB_Y358N | blaTEM-52 | glpT_E448K | - | - | - | - | - | - | - | lnu(F) |
A14 | 7544-10 | 3594 | ST469 Cplx | AxB1 | fimH31 | aadA2 | - | - | pmrB_Y358N | blaTEM-52 | glpT_E448K | - | - | - | - | - | - | - | lnu(F) |
A17 | 7575-12 | 3594 | ST469 Cplx | AxB1 | fimH31 | aadA2 | - | - | pmrB_Y358N | blaTEM-52 | glpT_E448K | - | - | - | - | - | - | - | lnu(F) |
A20 | 7548-19 | 301 | ST165 Cplx | fimH902 | aadA2, aac(3)-IId | - | - | - | - | glpT_E448K | mph(A) | blaTEM-1 | - | - | sul1 | - | dfrA12 | - | |
A20 | 7548-11 | 3594 | ST469 Cplx | AxB1 | fimH31 | aadA2 | - | - | pmrB_Y358N | blaTEM-52 | glpT_E448K | - | - | - | - | - | - | - | lnu(F) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dragon, D.; Jansen, W.; Dumont, H.; Wiggers, L.; Coupeau, D.; Saulmont, M.; Taminiau, B.; Muylkens, B.; Daube, G. Conventionally Reared Wallon Meat Lambs Carry Transiently Multi-Drug-Resistant Escherichia coli with Reduced Sensitivity to Colistin Before Slaughter. Animals 2024, 14, 3038. https://doi.org/10.3390/ani14203038
Dragon D, Jansen W, Dumont H, Wiggers L, Coupeau D, Saulmont M, Taminiau B, Muylkens B, Daube G. Conventionally Reared Wallon Meat Lambs Carry Transiently Multi-Drug-Resistant Escherichia coli with Reduced Sensitivity to Colistin Before Slaughter. Animals. 2024; 14(20):3038. https://doi.org/10.3390/ani14203038
Chicago/Turabian StyleDragon, Delphine, Wiebke Jansen, Helene Dumont, Laetitia Wiggers, Damien Coupeau, Marc Saulmont, Bernard Taminiau, Benoit Muylkens, and Georges Daube. 2024. "Conventionally Reared Wallon Meat Lambs Carry Transiently Multi-Drug-Resistant Escherichia coli with Reduced Sensitivity to Colistin Before Slaughter" Animals 14, no. 20: 3038. https://doi.org/10.3390/ani14203038
APA StyleDragon, D., Jansen, W., Dumont, H., Wiggers, L., Coupeau, D., Saulmont, M., Taminiau, B., Muylkens, B., & Daube, G. (2024). Conventionally Reared Wallon Meat Lambs Carry Transiently Multi-Drug-Resistant Escherichia coli with Reduced Sensitivity to Colistin Before Slaughter. Animals, 14(20), 3038. https://doi.org/10.3390/ani14203038