Antimicrobial Resistance and Pathotypes of Escherichia coli Isolates from Yellow-Legged Seagulls (Larus michahellis) in Central Italy
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Escherichia coli Isolation
2.3. Antimicrobial Susceptibility Tests
2.4. Molecular Analyses
2.4.1. Identification of E. coli Strains
2.4.2. Genotypic Resistance
2.4.3. Virulence Factors
3. Results
3.1. Escherichia coli Isolation
3.2. Agar Disk Diffusion Method
3.3. Genotypic Resistance
3.4. Virulence Factors
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wasiński, B. Extra-intestinal pathogenic Escherichia coli-threat connected with food-borne infections. Ann. Agric. Environ. Med. 2019, 26, 532–537. [Google Scholar] [CrossRef] [PubMed]
- Sanches, L.A.; Gomes, M.D.S.; Teixeira, R.H.F.; Cunha, M.P.V.; Oliveira, M.G.X.; Vieira, M.A.M.; Gomes, T.A.T.; Knobl, T. Captive wild birds as reservoirs of enteropathogenic E. coli (EPEC) and Shiga-toxin producing E. coli (STEC). Braz. J. Microbiol. 2017, 48, 760–763. [Google Scholar] [CrossRef] [PubMed]
- Arenas-Hernandez, M.M.; Martınez-Laguna, Y.; Torres, A.G. Clinical implications of enteroadherent Escherichia coli. Curr. Gastroenterol. Rep. 2012, 14, 386–394. [Google Scholar] [CrossRef] [PubMed]
- Müller, D.; Greune, L.; Heusipp, G.; Karch, H.; Fruth, A.; Tschäpe, H.; Schmidt, M.A. Identification of unconventional intestinal pathogenic Escherichia coli isolates expressing intermediate virulence factor profiles by using a novel single-step multiplex PCR. Appl. Environ. Microbiol. 2007, 73, 3380–3390. [Google Scholar] [CrossRef] [PubMed]
- Tozzoli, R.; Grande, L.; Michelacci, V.; Ranieri, P.; Maugliani, A.; Caprioli, A.; Morabito, S. Shiga toxin-converting phages and the emergence of new pathogenic Escherichia coli: A world in motion. Front. Cell. Infect. Microbiol. 2014, 4, 80. [Google Scholar] [CrossRef]
- Tahamtan, Y.; Hayati, M.; Namavari, M. Prevalence and distribution of the stx1, stx2 genes in Shiga toxin producing E. coli (STEC) isolates from cattle. Iran. J. Microbiol. 2010, 2, 8–13. [Google Scholar]
- Melton-Celsa, A.R. Shiga Toxin (Stx) Classification, Structure, and Function. Microbiol. Spectr. 2014, 2, 4. [Google Scholar] [CrossRef]
- Bielaszewska, M.; Rüter, C.; Kunsmann, L.; Greune, L.; Bauwens, A.; Zhang, W.; Kuczius, T.; Sik Kim, K.; Mellmann, A.; Schmidt, M.A.; et al. Enterohemorrhagic Escherichia coli Hemolysin Employs Outer Membrane Vesicles to Target Mitochondria and Cause Endothelial and Epithelial Apoptosis. PLoS Pathog. 2013, 9, e1003797. [Google Scholar] [CrossRef]
- Bruyand, M.; Mariani-Kurkdjian, P.; Gouali, M.; de Valk, H.; King, L.A.; Le Hello, S.; Bonacorsi, S.; Loirat, C. Hemolytic uremic syndrome due to Shiga toxin-producing Escherichia coli infection. Med. Mal. Infect. 2018, 48, 167–174. [Google Scholar] [CrossRef]
- Scuron, M.D.; Boesze-Battaglia, K.; Dlakic, M.; Shenker, B.J. The cytolethal distending toxin contributes to microbial virulence and disease pathogenesis by acting as a tri-perditious toxin. Front. Cell. Infect. Microbiol. 2016, 6, 168. [Google Scholar] [CrossRef]
- Sobhy, N.M.; Yousef, S.G.A.; Aboubakr, H.A.; Nisar, M.; Nagaraja, K.V.; Mor, S.K.; Valeris-Chacin, R.J.; Goyal, S.M. Virulence factors and antibiograms of Escherichia coli isolated from diarrheic calves of Egyptian cattle and water buffaloes. PLoS ONE 2020, 15, e0232890. [Google Scholar] [CrossRef] [PubMed]
- Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655, Erratum in Lancet 2022, 400, 1102. [Google Scholar] [CrossRef] [PubMed]
- Fuentes-Castillo, D.; Castro-Tardón, D.; Esposito, F.; Neves, I.; Rodrigues, L.; Fontana, H.; Fuga, B.; Catão-Dias, J.L.; Lincopan, N. Genomic evidences of gulls as reservoirs of critical priority CTX-M-producing Escherichia coli in Corcovado Gulf, Patagonia. Sci. Total Environ. 2023, 874, 162564. [Google Scholar] [CrossRef]
- Bonnedahl, J.; Drobni, M.; Gauthier-Clerc, M.; Hernandez, J.; Granholm, S.; Kayser, Y.; Melhus, A.; Kahlmeter, G.; Waldenström, J.; Johansson, A.; et al. Dissemination of Escherichia coli with CTX-M type ESBL between humans and yellow-legged gulls in the south of France. PLoS ONE 2009, 4, e5958. [Google Scholar] [CrossRef]
- Dolejská, M.; Bierosová, B.; Kohoutová, L.; Literák, I.; Cízek, A. Antibiotic-resistant Salmonella and Escherichia coli isolates with integrons and extended-spectrum beta-lactamases in surface water and sympatric black-headed gulls. J. Appl. Microbiol. 2009, 106, 1941–1950. [Google Scholar] [CrossRef]
- Ebani, V.V.; Guardone, L.; Bertelloni, F.; Perrucci, S.; Poli, A.; Mancianti, F. Survey on the Presence of Bacterial and Parasitic Zoonotic Agents in the Feces of Wild Birds. Vet. Sci. 2021, 8, 171. [Google Scholar] [CrossRef]
- Cagnoli, G.; Bertelloni, F.; Interrante, P.; Ceccherelli, R.; Marzoni, M.; Ebani, V.V. Antimicrobial-Resistant Enterococcus spp. in Wild Avifauna from Central Italy. Antibiotics 2022, 11, 852. [Google Scholar] [CrossRef]
- Martín-Maldonado, B.; Rodríguez-Alcázar, P.; Fernández-Novo, A.; González, F.; Pastor, N.; López, I.; Suárez, L.; Moraleda, V.; Aranaz, A. Urban Birds as Antimicrobial Resistance Sentinels: White Storks Showed Higher Multidrug-Resistant Escherichia coli Levels Than Seagulls in Central Spain. Animals 2022, 12, 2714. [Google Scholar] [CrossRef]
- Alm, E.W.; Daniels-Witt, Q.R.; Learman, D.R.; Ryu, H.; Jordan, D.W.; Gehring, T.M.; Santo Domingo, J. Potential for gulls to transport bacteria from human waste sites to beaches. Sci. Total Environ. 2018, 615, 123–130. [Google Scholar] [CrossRef]
- Simões, R.R.; Poirel, L.; Da Costa, P.M.; Nordmann, P. Seagulls and beaches as reservoirs for multidrug-resistant Escherichia coli. Emerg. Infect. Dis. 2010, 16, 110–112. [Google Scholar] [CrossRef]
- Ahmed, N.A.; Gulhan, T. Determination of antibiotic resistance patterns and genotypes of Escherichia coli isolated from wild birds. Microbiome 2024, 12, 8. [Google Scholar] [CrossRef]
- Erika, E.; Scarpellini, R.; Celli, G.; Marliani, G.; Zaghini, A.; Mondo, E.; Rossi, G.; Piva, S. Wild birds as potential bioindicators of environmental antimicrobial resistance: A preliminary investigation. Res. Vet. Sci. 2024, 180, 105424. [Google Scholar] [CrossRef] [PubMed]
- CLSI (Clinical and Laboratory Standards Institute). M02-A12—Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard—Twelfth Edition; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2015; pp. 1–96. [Google Scholar]
- CLSI (Clinical and Laboratory Standards Institute). Performance Standards for Antimicrobial Susceptibility Testing, 33rd ed.Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2023; CLSI Supplement M100. [Google Scholar]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Griffiths, M.W. PCR differentiation of Escherichia coli from other gram-negative bacteria using primers derived from the nucleotide sequences flanking the gene encoding the universal stress protein. Lett. Appl. Microbiol. 1998, 27, 369–371. [Google Scholar] [CrossRef] [PubMed]
- Poirel, L.; Walsh, T.R.; Cuvillier, V.; Nordmann, P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn. Microbiol. Infect. Dis. 2011, 70, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Dahshan, H.; Shahada, F.; Chuma, T.; Moriki, H.; Okamoto, K. Genetic analysis of multidrug-resistant Salmonella enterica serovars Stanley and Typhimurium from cattle. Vet. Microbiol. 2010, 145, 76–83. [Google Scholar] [CrossRef]
- Hasman, H.; Mevius, D.; Veldman, K.; Olesen, I.; Aarestrup, F.M. β-Lactamases among extended-spectrum β-lactamase (ESBL)-resistant Salmonella from poultry, poultry products and human patients in The Netherlands. J. Antimicrob. Chemother. 2005, 56, 115–121. [Google Scholar] [CrossRef]
- Paton, A.W.; Paton, J.C. Direct detection and characterization of Shiga toxigenic Escherichia coli by multiplex PCR for stx1, stx2, eae, ehxA, and saa. J. Clin. Microbiol. 2002, 40, 271–274. [Google Scholar] [CrossRef]
- Borriello, G.; Lucibelli, M.G.; De Carlo, E.; Auriemma, C.; Cozza, D.; Ascione, G.; Scognamiglio, F.; Iovane, G.; Galiero, G. Characterization of enterotoxigenic E. coli (ETEC), Shiga-toxin producing E. coli (STEC) and necrotoxigenic E. coli (NTEC) isolated from diarrhoeic Mediterranean water buffalo calves (Bubalus bubalis). Res. Vet. Sci. 2012, 93, 18–22. [Google Scholar] [CrossRef]
- Cardoso, M.D.; Gonçalves, V.D.; Grael, A.S.; Pedroso, V.M.; Pires, J.R.; Travassos, C.E.P.F.; Domit, C.; Vieira-Da-Motta, O.; Dos Prazeres Rodrigues, D.; Siciliano, S. Detection of Escherichia coli and other Enterobacteriales members in seabirds sampled along the Brazilian coast. Prev. Vet. Med. 2023, 218, 105978. [Google Scholar] [CrossRef]
- Steele, C.M.; Brown, R.N.; Botzler, R.G. Prevalences of zoonotic bacteria among seabirds in rehabilitation centers along the Pacific Coast of California and Washington, USA. J. Wildl. Dis. 2005, 41, 735–744. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, H.; Kanazaki, M.; Hata, E.; Kubo, M. Prevalence and characteristics of eae- and stx-positive strains of Escherichia coli from wild birds in the immediate environment of Tokyo Bay. Appl. Environ. Microbiol. 2009, 75, 292–295. [Google Scholar] [CrossRef] [PubMed]
- Bertelloni, F.; Lunardo, E.; Rocchigiani, G.; Ceccherelli, R.; Ebani, V.V. Occurrence of Escherichia coli virulence genes in feces of wild birds from Central Italy. Asian Pac. J. Trop. Med. 2019, 12, 142–146. [Google Scholar] [CrossRef]
- Borges, C.A.; Cardozo, M.V.; Beraldo, L.G.; Oliveira, E.S.; Maluta, R.P.; Barboza, K.B.; Werther, K.; Ávila, F.A. Wild birds and urban pigeons as reservoirs for diarrheagenic Escherichia coli with zoonotic potential. J. Microbiol. 2017, 5, 344–348. [Google Scholar] [CrossRef]
- Wani, S.A.; Samanta, I.; Bhat, M.A.; Nishikawa, Y. Investigation of shiga toxin-producing Escherichia coli in avian species in India. Lett. Appl. Microbiol. 2004, 39, 389–394. [Google Scholar] [CrossRef]
- Silva, V.L.; Nicoli, J.R.; Nascimento, T.C.; Diniz, C.G. Diarrheagenic Escherichia coli strains recovered from urban pigeons (Columba livia) in Brazil and their antimicrobial susceptibility patterns. Curr. Microbiol. 2009, 59, 302–308. [Google Scholar] [CrossRef]
- Hughes, L.A.; Bennett, M.; Coffey, P.; Elliott, J.; Jones, T.R.; Jones, R.C.; Lahuerta-Marin, A.; McNiffe, K.; Norman, D.; Williams, N.J.; et al. Risk factors for the occurrence of Escherichia coli virulence genes eae, stx1 and stx2 in wild bird populations. Epidemiol. Infect. 2009, 137, 1574–1582. [Google Scholar] [CrossRef]
- Caballero, M.; Rivera, I.; Jara, L.M.; Ulloa-Stanojlovic, F.M.; Shiva, C. Isolation and molecular identification of potentially pathogenic Escherichia coli and Campylobacter jejuni in feral pigeons from an urban area in the city of lima, Peru. Rev. Inst. Med. Trop. Sao Paulo 2015, 57, 393–396. [Google Scholar] [CrossRef]
- Koochakzadeh, A.; Askari Badouei, M.; Zahraei Salehi, T.; Aghasharif, S.; Soltani, M.; Ehsan, M. Prevalence of shiga toxin-producing and enteropathogenic Escherichia coli in wild and pet birds in Iran. Rev. Bras. Cienc. Avic. 2015, 17, 445–450. [Google Scholar] [CrossRef]
- Kobuszewska, A.; Wysok, B. Pathogenic Bacteria in Free-Living Birds, and Its Public Health Significance. Animals 2024, 14, 968. [Google Scholar] [CrossRef]
- Rajan, A.; Robertson, M.J.; Carter, H.E.; Poole, N.M.; Clark, J.R.; Green, S.I.; Criss, Z.K.; Zhao, B.; Karandikar, U.; Xing, Y.; et al. Enteroaggregative E. coli Adherence to Human Heparan Sulfate Proteoglycans Drives Segment and Host Specific Responses to Infection. PLoS Pathog. 2020, 16, e1008851. [Google Scholar] [CrossRef] [PubMed]
- Caprioli, A.; Falbo, V.; Roda, L.G.; Ruggeri, F.M.; Zona, C. Partial purification and characterization of an Escherichia coli toxic factor that induces morphological cell alterations. Infect. Immun. 1983, 39, 1300–1306. [Google Scholar] [CrossRef] [PubMed]
- Rahman, H.; Deka, M. Detection & characterization of necrotoxin producing Escherichia coli (NTEC) from patients with urinary tract infection (UTI). Indian J. Med. Res. 2014, 139, 632–637. [Google Scholar] [PubMed]
- Starcic, M.; Johnson, J.R.; Stell, A.L.; van der Goot, J.; Hendriks, H.G.; van Vorstenbosch, C.; van Dijk, L.; Gaastra, W. Haemolytic Escherichia coli isolated from dogs with diarrhea have characteristics of both uropathogenic and necrotoxigenic strains. Vet. Microbiol. 2002, 85, 361–377. [Google Scholar] [CrossRef]
- Sura, R.; Van Kruiningen, H.J.; DebRoy, C.; Hinckley, L.S.; Greenberg, K.J.; Gordon, Z.; French, R.A. Extraintestinal pathogenic Escherichia coli-induced acute necrotizing pneumonia in cats. Zoonoses Public Health 2007, 54, 307–313. [Google Scholar] [CrossRef]
- Cid, D.; Blanco, M.; Blanco, J.E.; Ruiz Santa Quiteria, J.A.; De La Fuente, R.; Blanco, J. Serogroups, toxins and antibiotic resistance of Escherichia coli strains isolated from diarrheic goat kids in Spain. Vet. Microbiol. 1996, 53, 349–353. [Google Scholar] [CrossRef]
- Blanco, J.E.; Blanco, M.; Blanco, J.; Mora, A.; Balaguer, L.; Mourino, M.; Juarez, A.; Jansen, W.H. O serogroups, biotypes and eae genes in Escherichia coli strains isolated from diarrheic and healthy rabbits. J. Clin. Microbiol. 1996, 34, 3101–3107. [Google Scholar] [CrossRef]
- Pohl, P.; Imberechts, H.; Marin, M.; Schlicker, C.; Stockmans, F. Prévalence des gènes codant pour les cytotoxines nécrosantes (CNF1 et CNF2) chez des Escherichia coli isolées de bovins malades ou asymptomatiques. Ann. Med. Vet. 1997, 141, 161–164. [Google Scholar]
- Van Bost, S.; Roles, S.; Mainil, J. Necrotoxigenic Escherichia coli type-2 invade and cause diarrhoea during experimental infection in colostrum-restricted newborn calves. Vet. Microbiol. 2001, 81, 315–329. [Google Scholar] [CrossRef]
- Khawaskar, D.P.; Sinha, D.K.; Lalrinzuala, M.V.; Athira, V.; Kumar, M.; Chhakchhuak, L.; Mohanapriya, K.; Sophia, I.; Abhishek; Kumar, O.R.V. Pathotyping and antimicrobial susceptibility testing of Escherichia coli isolates from neonatal calves. Vet. Res. Commun. 2022, 46, 353–362. [Google Scholar] [CrossRef]
- Atterby, C.; Ramey, A.M.; Hall, G.G.; Järhult, J.; Börjesson, S.; Bonnedahl, J. Increased prevalence of antibiotic-resistant E. coli in gulls sampled in Southcentral Alaska is associated with urban environments. Infect. Ecol. Epidemiol. 2016, 6, 32334. [Google Scholar] [CrossRef] [PubMed]
- Dolejska, M.; Cizek, A.; Literak, I. High prevalence of antimicrobial-resistant genes and integrons in Escherichia coli isolates from Black-headed Gulls in the Czech Republic. J. Appl. Microbiol. 2007, 103, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Alves, M.S.; Pereira, A.; Araújo, S.M.; Castro, B.B.; Correia, A.C.; Henriques, I. Seawater is a reservoir of multi-resistant Escherichia coli, including strains hosting plasmid-mediated quinolones resistance and extended-spectrum beta-lactamases genes. Front. Microbiol. 2014, 5, 426. [Google Scholar] [CrossRef]
- Zendri, F.; Maciuca, I.E.; Moon, S.; Jones, P.H.; Wattret, A.; Jenkins, R.; Baxter, A.; Timofte, D. Occurrence of ESBL-Producing Escherichia coli ST131, Including the H30-Rx and C1-M27 Subclones, Among Urban Seagulls from the United Kingdom. Microb. Drug Resist. 2020, 26, 697–708. [Google Scholar] [CrossRef]
- Stedt, J.; Bonnedahl, J.; Hernandez, J.; McMahon, B.J.; Hasan, B.; Olsen, B.; Drobni, M.; Waldenström, J. Antibiotic resistance patterns in Escherichia coli from gulls in nine European countries. Infect. Ecol. Epidemiol. 2014, 4, 21565. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control (ECDC). Surveillance of Antimicrobial Resistance in Europe 2020. 2021. Available online: https://www.ecdc.europa.eu/en/publications-data/surveillance-antimicrobial-resistance-europe-2020 (accessed on 25 March 2024).
- European Medicines Agency (EMA). Sales of Veterinary Antimicrobial Agents in 31 European Countries 2022 Trends (2010–2022). 2022. Available online: https://www.ema.europa.eu/en/documents/report/sales-veterinary-antimicrobial-agents-31-european-countries-2022-trends-2010-2022-thirteenth-esvac-report_en.pdf (accessed on 25 March 2024).
- Grabowski, Ł.; Gaffke, L.; Pierzynowska, K.; Cyske, Z.; Choszcz, M.; Węgrzyn, G.; Węgrzyn, A. Enrofloxacin-The Ruthless Killer of Eukaryotic Cells or the Last Hope in the Fight against Bacterial Infections? Int. J. Mol. Sci. 2022, 23, 3648. [Google Scholar] [CrossRef]
- Caneschi, A.; Bardhi, A.; Barbarossa, A.; Zaghini, A. The Use of Antibiotics and Antimicrobial Resistance in Veterinary Medicine, a Complex Phenomenon: A Narrative Review. Antibiotics 2023, 12, 487. [Google Scholar] [CrossRef]
- Poeta, P.; Radhouani, H.; Igrejas, G.; Gonçalves, A.; Carvalho, C.; Rodrigues, J.; Vinué, L.; Somalo, S.; Torres, C. Seagulls of the Berlengas natural reserve of Portugal as carriers of fecal Escherichia coli harboring CTX-M and TEM extended-spectrum beta-lactamases. Appl. Environ. Microbiol. 2008, 74, 7439–7441. [Google Scholar] [CrossRef]
- Paterson, D.L.; Bonomo, R.A. Extended-spectrum beta-lactamases: A clinical update. Clin. Microbiol. Rev. 2005, 18, 657–686. [Google Scholar] [CrossRef]
- Pfeifer, Y.; Cullik, A.; Witte, W. Resistance to cephalosporins and carbapenems in Gram-negative bacterial pathogens. Int. J. Med. Microbiol. 2010, 300, 371–379. [Google Scholar] [CrossRef]
- Vergara, A.; Pitart, C.; Montalvo, T.; Roca, I.; Sabaté, S.; Hurtado, J.C.; Planell, R.; Marco, F.; Ramírez, B.; Peracho, V.; et al. Prevalence of Extended-Spectrum-β-Lactamase- and/or Carbapenemase-Producing Escherichia coli Isolated from Yellow-Legged Gulls from Barcelona, Spain. Antimicrob. Agents Chemother. 2017, 61, e02071-16. [Google Scholar] [CrossRef] [PubMed]
- Denisuik, A.J.; Lagacé-Wiens, P.R.; Pitout, J.D.; Mulvey, M.R.; Simner, P.J.; Tailor, F.; Karlowsky, J.A.; Hoban, D.J.; Adam, H.J.; Zhanel, G.G.; et al. Molecular epidemiology of extended-spectrum β-lactamase-, AmpC β-lactamase- and carbapenemase-producing Escherichia coli and Klebsiella pneumoniae isolated from Canadian hospitals over a 5 year period: CANWARD 2007-11. J. Antimicrob. Chemother. 2013, 68 (Suppl. 1), i57–i65. [Google Scholar] [CrossRef] [PubMed]
- Meini, S.; Tascini, C.; Cei, M.; Sozio, E.; Rossolini, G.M. AmpC β-lactamase-producing Enterobacterales: What a clinician should know. Infection 2019, 47, 363–375. [Google Scholar] [CrossRef] [PubMed]
- Poirel, L.; Potron, A.; De La Cuesta, C.; Cleary, T.; Nordmann, P.; Munoz-Price, L.S. Wild coastline birds as reservoirs of broad-spectrum-β-lactamase-producing Enterobacteriaceae in Miami Beach, Florida. Antimicrob. Agents Chemother. 2012, 56, 2756–2758. [Google Scholar] [CrossRef]
- Liakopoulos, A.; Mevius, D.; Ceccarelli, D. A Review of SHV Extended-Spectrum β-Lactamases: Neglected Yet Ubiquitous. Front. Microbiol. 2016, 7, 1374. [Google Scholar] [CrossRef]
- Meletis, G. Carbapenem resistance: Overview of the problem and future perspectives. Ther. Adv. Infect. Dis. 2016, 3, 15–21. [Google Scholar] [CrossRef]
Target Gene | Primers Sequence (5′-3′) | Annealing Temp. (°C) | Amplicons Size (bp) | References |
---|---|---|---|---|
blaNDM | GGTTTGGCGATCTGGTTTTC CGGAATGGCTCATCACGATC | 52 | 621 | [27] |
blaKPC | CGTCTAGTTCTGCTGTCTTG CTTGTCATCCTTGTTAGGCG | 52 | 798 | [27] |
blaOXA-48 | GCGTGGTTAAGGATGAACAC CATCAAGTTCAACCCAACCG | 52 | 438 | [27] |
blaIMP | GGAATAGAGTGGCTTAAYTCTC GGTTTAAYAAAACAACCACC | 52 | 232 | [27] |
blaVIM | GATGGTGTTTGGTCGCATA CGAATGCGCAGCACCAG | 52 | 390 | [27] |
blaTEM | GCACGAGTGGGTTACATCGA GGTCCTCCGATCGTTGTCAG | 60 | 310 | [28] |
blaSHV | TTCGCCTGTGTATTATCTCCCTG TTAGCGTTGCCAGTGYTCG | 50 | 854 | [29] |
blaCTX-M | ATGTGCAGYACCAGTAARGTKATGGC TGGGTRAARTARGTSACCAGAAYCAGCGG | 60 | 593 | [29] |
blaCMY-1 | GTGGTGGATGCCAGCATCC GGTCGAGCCGGTCTTGTTGAA | 58 | 915 | [29] |
blaCMY-2 | GCACTTAGCCACCTATACGGCAG GCTTTTCAAGAATGCGCCAGG | 58 | 758 | [29] |
Pathotype | Target Gene | Primers Sequence (5′-3′) | Annealing Temp. (°C) | Amplicon Size (bp) | Reference |
---|---|---|---|---|---|
STEC/ EHEC | stx1 | ATAAATCGCCATTCGTTGACTAC AGAACGCCCACTGAGATCATC | 60 | 180 | [30] |
stx2 | GGCACTGTCTGAAACTGCTCC TCGCCAGTTATCTGACATTCTG | 60 | 255 | [30] | |
hylA | GCATCATCAAGCGTACGTTCC AATGAGCCAAGCTGGTTAAGCT | 60 | 534 | [30] | |
EHEC/ EPEC | eaeA | GACCCGGCACAAGCATAAGC CCACCTGCAGCAACAAGAGG | 60 | 384 | [30] |
EPEC | escV | ATTCTGGCTCTCTTCTTCTTTATGGCTG CGTCCCCTTTTACAAACTTCATCGC | 53 | 544 | [4] |
bfpB | GACACCTCATTGCTGAAGTCG CCAGAACACCTCCGTTATGC | 53 | 910 | [4] | |
ent | TGGGCTAAAAGAAGACACACTG CAAGCATCCTGATTATCTCACC | 53 | 629 | [4] | |
ETEC | LT | GAACAGGAGGTTTCTGCGTTAGGTG CTTTCAATGGCTTTTTTTTGGGAGTC | 53 | 655 | [4] |
STIa | CCTCTTTTAGYCAGACARCTGAATCASTTG CAGGCAGGATTACAACAAAGTTCACAG | 53 | 157 | [4] | |
STI | TGTCTTTTTCACCTTTCGCTC CGGTACAAGCAGGATTACAACAC | 53 | 171 | [4] | |
EIEC | invE | CGATAGATGGCGAGAAATTATATCCCG CGATCAAGAATCCCTAACAGAAGAATCAC | 53 | 766 | [4] |
EAEC | astA | TGCCATCAACACAGTATATCCG ACGGCTTTGTAGTCCTTCCAT | 53 | 102 | [4] |
aggR | ACGCAGAGTTGCCTGATAAAG AATACAGAATCGTCAGCATCAGC | 53 | 400 | [4] | |
pic | AGCCGTTTCCGCAGAAGCC AAATGTCAGTGAACCGACGATTGG | 53 | 1111 | [4] | |
NTEC | CNF1 | GGGGGAAGTACAGAAGAATTA TTGCCGTCCACTCTCTCACCAGT | 55 | 1111 | [31] |
CNF2 | TATCATACGGCAGGAGGAAGCACC GTCACAATAGACAATAATTTTCCG | 55 | 1240 | [31] | |
cdt-I | CAATAGTCGCCCACAGGA ATAATCAAGAACACCACCAC | 56 | 411 | [31] | |
cdt-II | GAAAATAAATGGAATATAAATGTCCG TTTGTGTTGCCGCCGCTGGTGAAA | 56 | 556 | [31] | |
cdt-III | GAAAATAAATGGAATATAAATGTCCG TTTGTGTCGGTGCAGCAGGGAAAA | 56 | 555 | [31] | |
cdt-IV | CCTGATGGTTCAGGAGGCTGGTTC TTGCTCCAGAATCTATACCT | 56 | 350 | [31] |
Antimicrobial Pattern | N. of Strains |
---|---|
Susceptible to all antimicrobials | 91 |
CTX | 12 |
AMP | 8 |
IMP | 8 |
ENR | 4 |
AMP, AMC | 3 |
AK | 2 |
ETP | 2 |
SXT | 2 |
IMP, ETP | 1 |
TE | 1 |
AMP, AMC, FOX, CTX | 2 |
AMP, ENR | 2 |
AMP, ENR, CIP | 2 |
AMP, TE | 2 |
AMP, AMC, ETP | 1 |
AMP, CTX | 1 |
AMP, CTX, EFT | 1 |
AMP, ETP | 1 |
AMP, IMP | 1 |
CTX, ENR, CIP | 1 |
CTX, IMP, ETP | 1 |
TE, ENR, CIP | 1 |
Antimicrobial Pattern | N. of Strains |
---|---|
AMP, AMC, CTX, EFT, ETP, ATM, ENR, CIP, AK | 1 |
AMP, AMC, CTX, IMP, ETP, ATM, ENR, AK | 1 |
AMP, AMC, CTX, IMP, C, TE, ENR, CIP | 1 |
AMP, CTX, EFT, IMP, ETP, ATM, ENR, CIP, AK | 1 |
AMP, CTX, IMP, C, TE, SXT | 1 |
AMC, FOX, CTX, EFT, TE, ENR, SXT | 1 |
AMP, AMC, C, TE, ENR, CIP, SXT | 4 |
AMP, AMC, CTX, EFT, ATM, C, TE | 1 |
AMP, AMC, ETP, C, ENR, CIP, SXT | 2 |
AMP, AMC, FOX, CTX, TE, AK, SXT | 1 |
AMP, C, TE, ENR, CIP, SXT | 2 |
AMP, C, TE, ENR, SXT | 1 |
C, TE, ENR, CIP, CN, SXT | 3 |
AMP, AMC, C, ENR, CIP, SXT | 1 |
AMP, AMC, C, TE, ENR, CIP | 1 |
AMP, AMC, C, TE, SXT | 1 |
AMP, AMC, CTX, EFT, IMP, SXT | 1 |
AMP, AMC, CTX, EFT, TE, SXT | 1 |
AMP, AMC, CTX, IMP, ENR | 1 |
AMP, AMC, FOX, CTX, EFT, ATM, TE | 1 |
AMP, AMC, TE, ENR, CIP, SXT | 2 |
AMP, C, TE, ENR | 1 |
AMP, C, TE, ENR, CIP | 4 * |
AMP, C, TE, SXT | 6 * |
AMP, CTX, EFT, IMP, AK | 2 ** |
AMP, CTX, IMP, AK | 1 |
FOX, CTX, EFT, ETP, ATM, CN, AK | 1 |
FOX, CTX, ETP, ATM, CN, AK | 1 |
FOX, ETP, ATM, CN, AK | 1 |
AMP, AMC, CN, SXT | 1 |
AMP, AMC, FOX, SXT | 1 ** |
AMP, AMC, TE, ENR, CIP | 1 |
AMP, C, TE | 4 |
AMP, CTX, ETP | 2 |
AMP, CTX, TE | 1 |
AMP, ENR, CIP, SXT | 1 |
AMP, TE, ENR | 1 |
AMP, TE, SXT | 3 |
FOX, CTX, IMP, ETP, AK | 1 |
Antimicrobial Pattern | N. of Strains |
---|---|
AMP, FOX, CTX, EFT, ETP, ATM, C, TE, ENR, CIP, CN, AK, SXT | 1 |
AMP, FOX, CTX, IMP, ETP, C, TE, ENR, CIP, AK, SXT | 1 |
AMP, AMC, FOX, C, TE, ENR, CIP, CN, SXT | 1 |
AMP, AMC, FOX, CTX, ETP, C, TE, ENR, CIP, SXT | 1 |
AMP, CTX, EFT, C, TE, ENR, CIP, CN, SXT | 2 |
Genes | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
blaNDM | blaKPC | blaOXA-48 | blaVIM | blaIMP | blaCMY1 | blaCMY2 | blaSHV | blaCTX | blaTEM | |
No. positive isolates | 0 | 0 | 9 (24.32%) | 0 | 0 | 0 | 12 (11.65%) | 1 (0.97%) | 3 (2.91%) | 52 (50.49%) |
No. tested isolates | 37 | 37 | 37 | 37 | 37 | 103 | 103 | 103 | 103 | 103 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cagnoli, G.; Bertelloni, F.; Ceccherelli, R.; Ebani, V.V. Antimicrobial Resistance and Pathotypes of Escherichia coli Isolates from Yellow-Legged Seagulls (Larus michahellis) in Central Italy. Animals 2024, 14, 3048. https://doi.org/10.3390/ani14213048
Cagnoli G, Bertelloni F, Ceccherelli R, Ebani VV. Antimicrobial Resistance and Pathotypes of Escherichia coli Isolates from Yellow-Legged Seagulls (Larus michahellis) in Central Italy. Animals. 2024; 14(21):3048. https://doi.org/10.3390/ani14213048
Chicago/Turabian StyleCagnoli, Giulia, Fabrizio Bertelloni, Renato Ceccherelli, and Valentina Virginia Ebani. 2024. "Antimicrobial Resistance and Pathotypes of Escherichia coli Isolates from Yellow-Legged Seagulls (Larus michahellis) in Central Italy" Animals 14, no. 21: 3048. https://doi.org/10.3390/ani14213048
APA StyleCagnoli, G., Bertelloni, F., Ceccherelli, R., & Ebani, V. V. (2024). Antimicrobial Resistance and Pathotypes of Escherichia coli Isolates from Yellow-Legged Seagulls (Larus michahellis) in Central Italy. Animals, 14(21), 3048. https://doi.org/10.3390/ani14213048