Effect of High-Tannin and -Polyphenol Plant Material Supplement on Rumen Fermentation, Nitrogen Partitioning and Nutrient Utilization in Beef Cattle
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Management and Design
2.2. Dietary Treatment Preparation
2.3. Data Collection and Chemical Analysis
2.4. Calculations
2.5. Statistical Analysis
3. Results
3.1. Chemical Analyses of TMR Silage and Plant Materials
3.2. Feed Intake and Nutrient Digestibility
3.3. Ruminal Fermentation Characteristics, Methane Production and Protozoal Population
3.4. Nitrogen Utilization and Microbial Protein Synthesis
4. Discussion
4.1. Chemical Analyses of TMR Silage and Plant Materials
4.2. Feed Intake and Nutrient Digestibility
4.3. Ruminal Fermentation Characteristics, Methane Production and Protozoal Population
4.4. Nitrogen Utilization and Microbial Protein Synthesis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The Future of Food and Agriculture—Trends and Challenges. Rome. 2017. Available online: http://www.fao.org/3/i6583e/i6583e.pdf (accessed on 20 October 2022).
- OECD/FAO. OECD-FAO Agricultural Outlook 2022–2031; OECD Publishing: Paris, France, 2022. [Google Scholar] [CrossRef]
- IPCC. 2019 refinement to the 2006 IPCC guidelines for National Greenhouse gas inventories. In Agriculture, Forestry and Other Land Use; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2019; Volume 4, Available online: https://www.ipcc-nggip.iges.or.jp/public/2019rf/vol4.html (accessed on 25 October 2022).
- Steinfeld, H.; Gerber, P.; Wassenaar, T.D.; Castel, V.; Rosales, M.; Rosales, M.; de Haan, C. Livestock’s Long Shadow: Environmental Issues and Options; Food and Agriculture Organization: Rome, Italy, 2006; ISBN 978-9251055717. [Google Scholar]
- Twine, R. Emissions from animal agriculture-6.5% is the new minimum figure. Sustainability 2021, 13, 6276. [Google Scholar] [CrossRef]
- Lazarus, O.; McDermid, S.; Jacquet, J. The climate responsibilities of industrial meat and dairy producers. Clim. Change 2021, 165, 30. [Google Scholar] [CrossRef]
- Khejornsart, P.; Cherdthong, A.; Wanapat, M. In vitro screening of plant materials to reduce ruminal protozoal population and mitigate ammonia and methane emissions. Fermentation 2021, 7, 166. [Google Scholar] [CrossRef]
- Tedeschi, L.O.; Abdalla, A.L.; Álvarez, C.; Anuga, S.W.; Arango, J.; Beauchemin, K.A.; Becquet, P.; Berndt, A.; Burns, R.; Camillis, C.; et al. Quantification of methane emitted by ruminants: A review of methods. J. Anim. Sci. 2022, 100, skac197. [Google Scholar] [CrossRef] [PubMed]
- Beauchemin, K.A.; Ungerfeld, E.M.; Eckard, R.J.; Wang, M. Review: Fifty years of research on rumen methanogenesis: Lessons learned and future challenges for mitigation. Animal 2020, 14, S2–S16. [Google Scholar] [CrossRef]
- Johnson, K.A.; Johnson, D.E. Methane emissions from cattle. J. Anim. Sci. 1995, 73, 2483–2492. [Google Scholar] [CrossRef]
- Adesogan, A.T.; Arriola, K.G.; Jiang, Y.; Oyebade, A.; Paula, E.M.; Pech-Cervantes, A.A.; Romero, J.J.; Ferraretto, L.F.; Vyas, D. Symposium review: Technologies for improving fiber utilization. J. Dairy Sci. 2019, 102, 5726–5755. [Google Scholar] [CrossRef]
- Knapp, J.R.; Laur, G.L.; Vadas, P.A.; Weiss, W.P.; Tricarico, J.M. Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. J. Dairy Sci. 2014, 97, 3231–3261. [Google Scholar] [CrossRef]
- Hristov, A.N.; Oh, J.; Firkins, J.L.; Dijkstra, J.; Kebreab, E.; Waghorn, G.; Makkar, H.P.S.; Adesogan, A.T.; Yang, W.; Lee, C.; et al. Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. J. Anim. Sci. 2013, 91, 5045–5069. [Google Scholar] [CrossRef]
- Honan, M.; Feng, X.; Tricarico, J.M.; Kebreab, E. Feed additives as a strategic approach to reduce enteric methane production in cattle: Modes of action, effectiveness and safety. Anim. Prod. Sci. 2021, 62, 1303–1317. [Google Scholar] [CrossRef]
- Kholif, A.E. A review of effect of saponins on ruminal fermentation, health and performance of ruminants. Vet. Sci. 2023, 10, 450. [Google Scholar] [CrossRef] [PubMed]
- Ungerfeld, E.M. Inhibition of rumen methanogenesis and ruminant productivity: A meta-analysis. Front. Vet. Sci. 2018, 5, 113. [Google Scholar] [CrossRef] [PubMed]
- Min, B.-R.; Lee, S.; Jung, H.; Miller, D.N.; Chen, R. Enteric methane emissions and animal performance in dairy and beef cattle production: Strategies, opportunities, and impact of reducing emissions. Animals 2022, 12, 948. [Google Scholar] [CrossRef] [PubMed]
- Vargas, J.; Ungerfeld, E.; Muñoz, C.; DiLorenzo, N. Feeding strategies to Mitigate Enteric Methane Emission from ruminants in Grassland systems. Animals 2022, 12, 1132. [Google Scholar] [CrossRef] [PubMed]
- Wanapat, M. Potential uses of local feed resources for ruminants. Trop. Anim. Health Prod. 2009, 41, 1035–1049. [Google Scholar] [CrossRef]
- Khejornsart, P.; Meenongyai, W.; Juntanam, T. Cassava pulp added to fermented total mixed rations increased tropical sheep’s nutrient utilization, rumen ecology, and microbial protein synthesis. J. Adv. Vet. Anim. Res. 2022, 9, 754–760. [Google Scholar] [CrossRef]
- Patra, A.K.; Park, T.; Kim, M.; Yu, Z. Rumen methanogens and mitigation of methane emissions by anti-methanogenic compounds and substances. J. Anim. Sci. Biotechnol. 2017, 8, 13. [Google Scholar] [CrossRef]
- Aboagye, I.A.; Beauchemin, K.A. Potential of molecular weight and structure of tannins to reduce methane emissions from ruminants: A review. Animals 2019, 9, 856. [Google Scholar] [CrossRef]
- Wanapat, M.; Kang, S.; Khejornsart, P.; Wanapat, S. Effects of plant herb combination supplementation on rumen fermentation and nutrient digestibility in beef cattle. Asian-Australas J. Anim Sci. 2013, 26, 1127–1136. [Google Scholar] [CrossRef]
- Min, B.R.; Solaiman, S.; Waldrip, H.M.; Parker, D.; Todd, R.W.; Brauer, D. Dietary mitigation of enteric methane emissions from ruminants: A review of plant tannins. Anim. Nutr. 2020, 6, 231–246. [Google Scholar] [CrossRef]
- Banik, B.K.; Durmic, Z.; Erskine, W.; Ghamkhar, K.; Revell, C. In vitro ruminal fermentation characteristics and methane production differ in selected key pasture species in Australia. Crop Pasture Sci. 2013, 64, 935–942. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 19th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2012. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Makkar, H.P.S. Quantification of Tannins in Tree and Shrub Foliage: A Laboratory Manual; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2003; p. 102. [Google Scholar]
- Terril, T.H.; Rowan, A.M.; Douglas, G.B.; Barry, T.N. Determination of extractable and bound condensed tannin concentrations in forage plants, protein concentrate meals and cereal grains. J. Sci. Food Agri. 1992, 58, 321–329. [Google Scholar] [CrossRef]
- Lee, C.; Hristov, A.N. Short communication: Evaluation of acid-insoluble ash and indigestible neutral detergent fiber as total-tract digestibility markers in dairy cows fed corn silage-based diets. J. Dairy Sci. 2013, 96, 5295–5299. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.B.; Gomes, M.J. Estimation of Microbial Protein Supply to Sheep and Cattle Based on Urinary Excretion of Purine Derivatives An-Overview of the Technical Details; International Feed Resources Unit, Rowett Research Institute: Aberdeen, UK, 1992. [Google Scholar]
- Moss, A.R.; Jouany, J.P.; Newbold, J. Methane production by ruminants: Its contribution to global warming. Annales de Zootechnie. 2000, 49, 231–253. [Google Scholar] [CrossRef]
- Prusty, S.; Kundu, S.S.; Sharma, V.K. Nutrient utilization and methane emissions in Murrah buffalo calves fed on diets with different methanogenic potential. Livest. Sci. 2017, 202, 89–95. [Google Scholar] [CrossRef]
- Chizzotti, M.L.; Valadares Filho, S.C.; Valadares, R.F.D.; Chizzotti, F.H.M.; Tedeschi, L.O. Determination of creatinine excretion and evaluation of spot urine sampling in Holstein cattle. Livest. Sci. 2008, 113, 218–225. [Google Scholar] [CrossRef]
- Verbic, J.; Chen, X.B.; Macleod, N.A.; Orskov, E.R. Excretion of purine derivatives by ruminants: Effect of microbial nucleic acid infusion on purine derivative excretion by steers. J. Agri. Sci. 1990, 114, 243–248. [Google Scholar] [CrossRef]
- Statistical Analysis System (SAS). SAS/STAT-User’s Guide. 9.0.; SAS: Cary, NC, USA, 2010. [Google Scholar]
- Kim, S.H.; Alam, M.J.; Gu, M.J.; Park, K.W.; Jeon, C.O.; Ha, J.K.; Cho, K.K.; Lee, S.S. Effect of total mixed ration with fermented feed on ruminal in vitro fermentation, growth performance and blood characteristics of Hanwoo steers. Asian-Austral J. Anim. Sci. 2012, 25, 213–223. [Google Scholar] [CrossRef]
- Hao, W.; Wang, H.L.; Ning, T.T.; Yang, F.Y.; Xu, C.C. Aerobic stability and effects of yeasts during deterioration of non-fermented and fermented total mixed ration with different moisture levels. Asian-Australas J. Anim. Sci. 2015, 28, 816–826. [Google Scholar] [CrossRef]
- Kondo, M.; Shimizu, K.; Jayanegara, A.; Mishima, T.; Matsui, H.; Karita, S.; Goto, M.; Fujihara, T. Changes in nutrient composition and in vitro ruminal fermentation of total mixed ration silage stored at different temperatures and periods. J. Sci. Food Agric. 2016, 96, 1175–1180. [Google Scholar] [CrossRef] [PubMed]
- Besharati, M.; Maggiolino, A.; Palangi, V.; Kaya, A.; Jabbar, M.; Eseceli, H.; De Palo, P.; Lorenzo, J.M. Tannin in Ruminant Nutrition: Review. Molecules 2022, 27, 8273. [Google Scholar] [CrossRef] [PubMed]
- Marius, L.N.; Shipandeni, M.N.T.; Rodríguez-Campos, L.A.; Osafo, E.L.K.; Mpofu, L.D.T.; Ansah, T.; Shiningavamwe, K.L.; Attoh-Kotoku, V.; Antwi, C. Seasonal variation in chemical composition and in-vitro gas production of woody plant species of semi-arid condition of Namibia. Agrofor. Syst. 2021, 95, 1191–1204. [Google Scholar] [CrossRef]
- Ramdani, D.; Yuniarti, E.; Jayanegara, A.; Chaudhry, A.S. Roles of essential oils, polyphenols, and saponins of medicinal plants as natural additives and anthelmintics in ruminant diets: A systematic review. Animals 2023, 13, 767. [Google Scholar] [CrossRef] [PubMed]
- Mbambalala, L.; Rani, Z.T.; Mpanza, T.D.E.; Mthana, M.S.; Ncisana, L.; Mkhize, N.R. Fodder radish as a potential alternative feed source for livestock in South Africa. Agriculture 2023, 13, 1625. [Google Scholar] [CrossRef]
- Waghorn, G. Beneficial and detrimental effects of dietary condensed tannins for sustainable sheep and goat production—Progress and challenges. Anim. Feed. Sci. Technol. 2008, 147, 116–139. [Google Scholar] [CrossRef]
- Wang, B.; Ma, M.P.; Diao, Q.Y.; Tu, Y. Saponin-induced shifts in the rumen microbiome and metabolome of young cattle. Front. Microbiol. 2019, 10, 356. [Google Scholar] [CrossRef]
- Jayanegara, A.; Yogianto, Y.; Wina, E.; Sudarman, A.; Kondo, M.; Obitsu, T.; Kreuzer, M. Combination effects of plant extracts rich in tannins and saponins as feed additives for mitigating in vitro ruminal methane and ammonia formation. Animals 2020, 10, 1531. [Google Scholar] [CrossRef]
- Vázquez-Carrillo, M.F.; Zaragoza-Guerrero, R.; Corona-Gochi, L.; González-Ronquillo, M.; Castillo-Gallegos, E.; Castelán-Ortega, O.A. Effect of Cymbopogon citratus on enteric methane emission, nutrients digestibility, and energy partition in growing beef cattle. Agriculture 2023, 13, 745. [Google Scholar] [CrossRef]
- Zulfa, I.H.; Bachruddin, Z.; Kumiawati, A. Effects of lemongrass leaves as essential oil sources on rumen microbial ecology and nutrient digestibility in an in vitro system. Pak. J. Nutr. 2019, 18, 254–259. [Google Scholar] [CrossRef]
- Mandal, L. Nutritive values of tree leaves of some tropical species for goats. Small Rumin. Res. 1997, 24, 95–105. [Google Scholar] [CrossRef]
- Mako, A.A.; Ettu, R.O.; Olaleye, D.J. Studies on nutritional potentials of Anacardium occidentale (Cashew) leaf as off season feed for ruminants in the humid tropics. ADAN J Agr. 2020, 1, 139–148. [Google Scholar] [CrossRef]
- Carvalho, V.M.; Ávila, V.A.D.; Bonin, E.; Matos, A.M.; do Prado, R.M.; Castilho, R.A.; Silva, R.R.; Filho, B.A.A.; do Prado, I.N. Effect of extracts from baccharis, tamarind, cashew nut shell liquid and clove on animal performance, feed efficiency, digestibility, rumen fermentation and feeding behavior of bulls finished in feedlot. Livest. Sci. 2020, 244, 104361. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, D.; Hu, H.; Zhou, H. Effects of Piper sarmentosum extract supplementation on growth performances and rumen fermentation and microflora characteristics in goats. J. Anim. Physiol. Anim. Nutr. 2020, 104, 431–438. [Google Scholar] [CrossRef] [PubMed]
- Cieslak, A.; Zmora, P.; Pers-Kamczyc, E.; Szumacher-Strabel, M. Effects of tannins source (Vaccinium vitis idaea L.) on rumen microbial fermentation in vivo. Anim. Feed Sci. Technol. 2012, 176, 102–106. [Google Scholar] [CrossRef]
- Chen, L.; Bao, X.; Guo, G.; Huo, W.; Xu, Q.; Wang, C. Effects of hydrolysable tannin with or without condensed tannin on alfalfa silage fermentation characteristics and in vitro ruminal methane production, fermentation patterns, and microbiota. Animals 2021, 11, 1967. [Google Scholar] [CrossRef]
- Lila, Z.A.; Mohammed, N.; Kanda, S.; Kurihara, M.; Itabashi, H. Sarsaponin effects on ruminal fermentation and microbes, methane production, digestibility and blood metabolites in steers. Asian-Australas J. Anim. Sci. 2005, 18, 1746–1751. [Google Scholar] [CrossRef]
- Newbold, C.J.; De La Fuente, G.; Belanche, A.; Ramos-Morales, E.; McEwan, N.R. The role of ciliate protozoa in the rumen. Front. Microbiol. 2015, 6, 1313. [Google Scholar] [CrossRef]
- Dai, X.; Faciola, A.P. Evaluating strategies to reduce ruminal protozoa and their impacts on nutrient utilization and animal performance in ruminants—A meta-analysis. Front. Microbiol. 2019, 10, 2648. [Google Scholar] [CrossRef]
- Orzuna-Orzuna, J.F.; Dorantes-Iturbide, G.; Lara-Bueno, A.; Mendoza-Martínez, G.D.; Miranda-Romero, L.A.; Hernández-García, P.A. Effects of dietary tannins’ supplementation on growth performance, rumen fermentation, and enteric methane emissions in beef cattle: A Meta-Analysis. Sustainability 2021, 13, 7410. [Google Scholar] [CrossRef]
- Ku-Vera, J.C.; Jiménez-Ocampo, R.; Valencia-Salazar, S.S.; Montoya-Flores, M.D.; Molina-Botero, I.C.; Arango, J.; Gómez-Bravo, C.A.; Aguilar-Pérez, C.F.; Solorio-Sánchez, F.J. Role of secondary plant metabolites on enteric methane mitigation in ruminants. Front. Vet. Sci. 2020, 7, 584. [Google Scholar] [CrossRef] [PubMed]
- Aboagye, I.A.; Oba, M.; Koenig, K.M.; Zhao, G.Y.; Beauchemin, K.A. Use of gallic acid and hydrolyzable tannins to reduce methane emission and nitrogen excretion in beef cattle fed a diet containing alfalfa silage. J Anim. Sci. 2019, 97, 2230–2244. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.F.P.; Dixon, R.M.; Costa, D.F.A. Nitrogen recycling and feed efficiency of cattle fed protein-restricted diets. Anim. Prod. Sci. 2019, 59, 2093–2107. [Google Scholar] [CrossRef]
Items | Ingredients (% DM) |
---|---|
Napier grass (45 day cutting age) | 44.5 |
Rice straw | 5.5 |
Wet cassava pulp | 9.0 |
Cassava chips | 15.0 |
Rice bran | 8.4 |
Palm kernel meal | 6.8 |
Soybean meal | 4.0 |
Mineral mixed * | 0.6 |
Sulfur | 0.6 |
Urea | 1.0 |
Salt | 0.6 |
Molasses | 4.0 |
The Quality of TMR silage, % DM (n = 3) | |
pH | 4.39 |
Lactic acid | 6.13 |
Acetic acid | 0.85 |
Butyric acid | 0.62 |
Propionic acid | 1.24 |
NH3-N | 1.89 |
Variation | %DM | |||||||
---|---|---|---|---|---|---|---|---|
DM | OM | CP | EE | NDF | ADF | CT | TP | |
Piper sarmentosum Roxb., PS | 24.8 | 92.1 | 15.8 | 6.4 | 64.7 | 39.8 | 8.9 | 9.1 |
Cymbopogon citratus (DC.) Stapf, LG | 25.1 | 89.7 | 1.8 | 1.9 | 67.9 | 42.7 | 1.5 | 2.5 |
Anacardium occidentale L., CL | 23.9 | 92.3 | 9.6 | 1.2 | 45.8 | 39.5 | 14.2 | 19.4 |
Careya arborea Roxb., WL | 24.6 | 91.4 | 15.0 | 3.9 | 51.4 | 30.9 | 15.9 | 20.2 |
TMR silage | 34.9 | 91.0 | 12.2 | 9.2 | 52.4 | 31.5 | 0.3 | 0.7 |
Rice straw | 92.8 | 91.5 | 2.5 | 0.4 | 68.7 | 45.6 | - | - |
Napier grass | 17.2 | 89.7 | 8.5 | 1.9 | 62.4 | 32.8 | 0.5 | 1.2 |
Items | Control | PS | LG | CL | WL | SEM | p-Value | ||
---|---|---|---|---|---|---|---|---|---|
Trt | Period | Animal | |||||||
Feed intake | |||||||||
DM, kg/d | 6.18 | 6.02 | 6.11 | 5.98 | 5.99 | 0.268 | 0.67 | 0.21 | 0.47 |
%BW | 3.27 | 3.19 | 3.21 | 3.18 | 3.17 | 0.127 | 0.61 | 0.35 | 0.45 |
g/kg BW0.75 | 121.14 | 118.30 | 119.34 | 117.74 | 117.55 | 4.684 | 0.47 | 0.33 | 0.38 |
Nutrients intake, kg DM/d | |||||||||
OM | 5.71 | 5.56 | 5.64 | 5.53 | 5.53 | 0.268 | 0.25 | 0.18 | 0.12 |
CP | 0.77 | 0.75 | 0.76 | 0.75 | 0.75 | 0.039 | 0.23 | 0.25 | 0.34 |
EE | 0.18 | 0.17 | 0.18 | 0.17 | 0.17 | 0.185 | 0.14 | 0.15 | 0.14 |
NDF | 3.35 | 3.26 | 3.30 | 3.24 | 3.24 | 0.175 | 0.27 | 0.42 | 0.47 |
ADF | 2.13 | 2.08 | 2.11 | 2.06 | 2.07 | 0.092 | 0.28 | 0.67 | 0.48 |
CT, g/d | 0.017 c | 0.019 ab | 0.018 bc | 0.019 ab | 0.020 a | 0.0008 | 0.03 | 0.12 | 0.09 |
TP, g/d | 0.040 b | 0.043 ab | 0.043 ab | 0.044 a | 0.044 a | 0.0010 | 0.02 | 0.10 | 0.11 |
Digestibility coefficients, % | |||||||||
DM | 65.45 | 64.94 | 65.03 | 65.74 | 64.89 | 1.465 | 0.98 | 0.46 | 0.98 |
OM | 70.01 | 69.65 | 69.91 | 70.16 | 69.07 | 1.390 | 0.99 | 0.39 | 0.97 |
CP | 64.62 | 62.22 | 64.62 | 63.72 | 62.86 | 0.893 | 0.08 | 0.93 | 0.89 |
EE | 63.05 | 64.28 | 64.86 | 63.50 | 63.29 | 2.154 | 0.54 | 0.54 | 0.47 |
NDF | 58.51 | 58.12 | 58.33 | 57.71 | 57.91 | 2.073 | 0.95 | 0.73 | 0.95 |
ADF | 43.12 | 43.51 | 42.97 | 44.34 | 41.17 | 2.511 | 0.93 | 0.11 | 0.32 |
Items | Control | PS | LG | CL | WL | SEM | p-Value | ||
---|---|---|---|---|---|---|---|---|---|
Trt | Period | Animal | |||||||
pH | 6.89 | 6.78 | 6.98 | 6.90 | 6.94 | 0.060 | 0.16 | 0.11 | 0.21 |
NH3-N (mg/dL) | 15.51 | 14.86 | 13.53 | 13.50 | 12.42 | 0.131 | 0.06 | 0.23 | 0.14 |
Total VFA (mM) | 107.9 | 104.02 | 110.56 | 99.78 | 97.85 | 3.493 | 0.08 | 0.15 | 0.09 |
VFA (mol/100 mol) | |||||||||
Acetate (C2) | 68.59 | 67.29 | 67.89 | 66.98 | 65.97 | 3.023 | 0.20 | 0.57 | 0.84 |
Propionate (C3) | 20.27 | 21.77 | 21.13 | 21.04 | 22.86 | 1.087 | 0.07 | 0.19 | 0.23 |
Butyrate (C4) | 11.14 | 10.95 | 10.98 | 11.98 | 11.17 | 0.238 | 0.14 | 0.28 | 0.39 |
C2:C3 | 3.38 | 3.09 | 3.21 | 3.18 | 2.89 | 0.147 | 0.08 | 0.31 | 0.18 |
CH4, mmol/L | 29.75 | 28.67 | 29.13 | 29.15 | 27.17 | 0.951 | 0.06 | 0.10 | 0.13 |
CO2, mol | 56.07 | 55.50 | 55.69 | 56.72 | 55.46 | 0.384 | 0.17 | 0.26 | 0.34 |
Protozoal, 105 cell/mL | 5.75 a | 2.14 b | 1.95 b | 2.95 b | 2.01 b | 0.988 | 0.02 | 0.08 | 0.10 |
Items | Control | PS | LG | CL | WL | SEM | p-Value | ||
---|---|---|---|---|---|---|---|---|---|
Trt | Period | Animal | |||||||
Creatinine, mg/dL | 28.48 | 27.03 | 29.94 | 29.82 | 28.13 | 0.981 | 0.44 | 0.98 | 0.42 |
Blood Urea N, mg/dL | 13.18 | 13.54 | 13.02 | 13.05 | 12.40 | 0.154 | 0.37 | 0.94 | 0.27 |
Urinary Volume, L/d | 7.09 | 6.86 | 7.15 | 6.95 | 7.05 | 0.844 | 0.52 | 0.85 | 0.78 |
Fecal Output, kg DM/d | 2.29 | 2.28 | 2.44 | 2.38 | 2.26 | 0.241 | 0.59 | 0.39 | 0.91 |
Total N Intake, g/d | 123.88 | 120.59 | 122.34 | 119.79 | 119.99 | 2.192 | 0.48 | 0.54 | 0.46 |
Urinary N, g/d | 41.86 a | 38.16 b | 39.72 ab | 37.06 b | 37.44 b | 0.874 | 0.02 | 0.09 | 0.14 |
Fecal N, g/d | 36.37 a | 34.78 bc | 35.59 ab | 34.08 bc | 32.74 c | 0.718 | 0.03 | 0.32 | 0.17 |
Total N Excretion, g/d | 78.24 a | 72.93 bc | 75.31 ab | 71.14 c | 70.18 c | 1.045 | 0.05 | 0.13 | 0.45 |
N Retention, g/d | 45.64 a | 47.66 ab | 47.03 ab | 48.66 bc | 49.81 c | 0.947 | 0.04 | 0.18 | 0.15 |
NUE, % | 36.84 c | 39.52 b | 38.44 bc | 40.62 ab | 41.51 a | 0.624 | 0.05 | 0.10 | 0.29 |
Urinary purine derivatives | |||||||||
Allantoin, mmol/d | 123.81 | 119.88 | 120.45 | 123.19 | 120.50 | 2.840 | 0.79 | 0.28 | 0.33 |
PD excretion, mmol/d | 135.64 | 128.68 | 129.3 | 131.97 | 129.31 | 4.509 | 0.58 | 0.21 | 0.86 |
PD absorption, mmol/d | 108.30 | 105.83 | 107.68 | 105.76 | 105.27 | 5.195 | 0.54 | 0.29 | 0.27 |
MN supply, g N/d | 78.73 | 76.94 | 78.28 | 76.89 | 76.53 | 2.619 | 0.53 | 0.58 | 0.56 |
EMNS, g N/kg DOMR | 21.08 | 21.28 | 21.11 | 21.41 | 21.27 | 0.453 | 0.62 | 0.61 | 0.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khejornsart, P.; Juntanam, T.; Gunun, P.; Gunun, N.; Cherdthong, A. Effect of High-Tannin and -Polyphenol Plant Material Supplement on Rumen Fermentation, Nitrogen Partitioning and Nutrient Utilization in Beef Cattle. Animals 2024, 14, 3092. https://doi.org/10.3390/ani14213092
Khejornsart P, Juntanam T, Gunun P, Gunun N, Cherdthong A. Effect of High-Tannin and -Polyphenol Plant Material Supplement on Rumen Fermentation, Nitrogen Partitioning and Nutrient Utilization in Beef Cattle. Animals. 2024; 14(21):3092. https://doi.org/10.3390/ani14213092
Chicago/Turabian StyleKhejornsart, Pichad, Theerayut Juntanam, Pongsatorn Gunun, Nirawan Gunun, and Anusorn Cherdthong. 2024. "Effect of High-Tannin and -Polyphenol Plant Material Supplement on Rumen Fermentation, Nitrogen Partitioning and Nutrient Utilization in Beef Cattle" Animals 14, no. 21: 3092. https://doi.org/10.3390/ani14213092
APA StyleKhejornsart, P., Juntanam, T., Gunun, P., Gunun, N., & Cherdthong, A. (2024). Effect of High-Tannin and -Polyphenol Plant Material Supplement on Rumen Fermentation, Nitrogen Partitioning and Nutrient Utilization in Beef Cattle. Animals, 14(21), 3092. https://doi.org/10.3390/ani14213092