Study on the Swimming Behavior of Black Carp (Mylopharyngodon piceus) and Silver Carp (Hypophthalmichthys molitrix) in Early Developmental Stage
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Test Apparatus
2.2. Hydraulics
2.3. Experimental Fish
2.4. Experimental Methods
2.5. Data Analysis
3. Results
3.1. Swimming Behavior of Fish
3.2. The Ability to Detect Water Flow for Two Types of Carp in Their Early Developmental Stage
3.3. The Ability to Swim Against the Water Flow for Two Types of Carp in Their Early Developmental Stage
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nislow, K.H.; Armstrong, J.D. Towards a life-history-based management framework for the effects of flow on juvenile salmonids in streams and rivers. Fish. Manag. Ecol. 2012, 19, 451–463. [Google Scholar] [CrossRef]
- Suriyampola, P.S.; Iruri-Tucker, A.A.; Padilla-Veléz, L.; Enriquez, A.; Shelton, D.S.; Martins, E.P. Small increases in group size improve small shoals’ response to water flow in zebrafish. J. Zool. 2022, 316, 271–281. [Google Scholar] [CrossRef] [PubMed]
- García-Vega, A.; Ruiz-Legazpi, J.; Fuentes-Pérez, J.F.; Bravo-Cordoba, F.J.; Sanz-Ronda, F.J. Effect of thermo-velocity barriers on fish: Influence of water temperature, flow velocity and body size on the volitional swimming capacity of northern straight-mouth nase (Pseudochondrostoma duriense). J. Fish Biol. 2023, 102, 689–706. [Google Scholar] [CrossRef] [PubMed]
- Crowder, D.W.; Diplas, P. Vorticity and circulation: Spatial metrics for evaluating flow complexity in stream habitats. Can. J. Fish. Aquat. Sci. 2002, 59, 633–645. [Google Scholar] [CrossRef]
- McHenry, M.J.; Michel, K.B.; Stewart, W.; Müller, U.K. Hydrodynamic sensing does not facilitate active drag reduction in the golden shiner (Notemigonus crysoleucas). J. Exp. Biol. 2010, 213, 1309–1319. [Google Scholar] [CrossRef]
- Katz, S.L.; Syme, D.A.; Shadwick, R.E. Enhanced power in yellowfin tuna. Nature 2001, 410, 770–771. [Google Scholar] [CrossRef]
- Jones, N.E.; Petreman, I.C. Environmental influences on fish migration in a hydropeaking river. River Res. Appl. 2015, 31, 1109–1118. [Google Scholar] [CrossRef]
- Burnett, M.J.; Süßle, V.; Saayman, T.; Jewitt, G.; O’Brien, G.C.; Downs, C.T. Detecting changes in fish behaviour in real time to alert managers to thresholds of potential concern. River Res. Appl. 2024, 40, 129–147. [Google Scholar] [CrossRef]
- Delavan, S.K.; Sood, S.; Pérez-Fuentetaja, A.; Hannes, A.R. Anthropogenic turbulence and velocity barriers for upstream swimming fish: A field study on emerald shiners (Notropis atherinoides) in the Upper Niagara River. Ecol. Eng. 2017, 101, 91–106. [Google Scholar] [CrossRef]
- Liao, J.C. A review of fish swimming mechanics and behaviour in altered flows. Philos. Trans. R. Soc. B Biol. Sci. 2007, 362, 1973–1993. [Google Scholar] [CrossRef]
- Tritico, H.M.; Cotel, A.J. The effects of turbulent eddies on the stability and critical swimming speed of creek chub (Semotilus atromaculatus). J. Exp. Biol. 2010, 213, 2284–2293. [Google Scholar] [CrossRef] [PubMed]
- Pavlov, D.S.; Parshina, V.Y.; Kostin, V.V. Rheoreaction in Danio rerio (Cyprinidae): Influence of Flow Velocity and Availability of Still Water Zones. J. Ichthyol. 2022, 62, 957–967. [Google Scholar] [CrossRef]
- Fang, D.A.; Zhou, Y.F.; Ren, P.; Peng, Y.X.; Xue, X.P.; Ren, L.; Xu, D.P. The Status of Silver Carp Resources and Their Complementary Mechanism in the Yangtze River. Front. Mar. Sci. 2022, 8, 790614. [Google Scholar] [CrossRef]
- Mousavi, S.E.; Patil, J.G. Stages of embryonic development in the live-bearing fish, Gambusia holbrooki. Dev. Dyn. 2022, 251, 287–320. [Google Scholar] [CrossRef] [PubMed]
- May, R.C. Larval mortality in marine fishes and the critical period concept. In The Early Life History of Fish; Springer: Berlin/Heidelberg, Germany, 1974. [Google Scholar] [CrossRef]
- Fonseca, V.F.; Cabral, H.N. Are fish early growth and condition patterns related to life-history strategies? Rev. Fish Biol. Fish. 2007, 17, 545–564. [Google Scholar] [CrossRef]
- Li, M.Z.; Duan, Z.H.; Gao, X.; Cao, W.X.; Liu, H.Z. Impact of the Three Gorges Dam on reproduction of four major Chinese carps species in the middle reaches of the Changjiang River. Chin. J. Oceanol. Limnol. 2016, 34, 885–893. [Google Scholar] [CrossRef]
- Yang, Q.H.; Zhou, J.Y.; Zhang, L.; Wang, J.S. Research on the transport and dispersion of Asian carp eggs in the “man-made flood pulse” in the middle Yangtze River by Reynolds-averaged numerical simulation. In Proceedings of the 5th International Conference on Water Resource and Environment, Macao, China, 16–19 July 2019. [Google Scholar] [CrossRef]
- Song, Y.; Cheng, F.; Murphy, B.R.; Xie, S.Q. Downstream effects of the Three Gorges Dam on larval dispersal, spatial distribution, and growth of the four major Chinese carps call for reprioritizing conservation measures. Can. J. Fish. Aquat. Sci. 2018, 75, 141–151. [Google Scholar] [CrossRef]
- Guo, W.X.; Jin, Y.G.; Zhao, R.C.; Wang, H.X. The impact of the ecohydrologic conditions of three gorges reservoir on the spawning activity of four major Chinese carps in the middle of Yangtze River, China. Appl. Ecol. Environ. Res. 2021, 19, 4313–4330. [Google Scholar] [CrossRef]
- Guo, H.; Li, Y.P.; Yang, W.J.; Chen, D.; Huang, M.H.; Xing, L.H. Settling and transport properties of grass carp and silver carp eggs in the water-hardened phase: Implications for resource protection and invasion control during early life period. Ecol. Indic. 2023, 148, 110064. [Google Scholar] [CrossRef]
- Newbold, L.R.; Shi, X.; Hou, Y.; Han, D.J.; Kemp, P.S. Swimming performance and behaviour of bighead carp (Hypophthalmichthys nobilis): Application to fish passage and exclusion criteria. Ecol. Eng. 2016, 95, 690–698. [Google Scholar] [CrossRef]
- Yuan, S.Y.; Xu, L.; Tang, H.W.; Xiao, Y.; Whittaker, C. Swimming behavior of juvenile silver carp near the separation zone of a channel confluence. Int. J. Sediment Res. 2022, 37, 122–127. [Google Scholar] [CrossRef]
- Hou, Y.; Cai, L.; Wang, X.; Chen, X.; Zhu, D.; Johnson, D.; Shi, X. Swimming performance of 12 Schizothoracinae species from five rivers. J. Fish Biol. 2018, 92, 2022–2028. [Google Scholar] [CrossRef] [PubMed]
- Simmons, O.M.; Silva, A.T.; Forseth, T.; Andreasson, P.; Müller, S.; Calles, O.; Aldvén, D. Swimming behaviour of Atlantic salmon kelts migrating past a hydropower plant dam: Effects of hydraulics and dam operations. Sci. Total Environ. 2024, 922, 171304. [Google Scholar] [CrossRef] [PubMed]
- Plew, D.R.; Klebert, P.; Rosten, T.W.; Aspaas, S.; Birkevold, J. Changes to flow and turbulence caused by different concentrations of fish in a circular tank. J. Hydraul. Res. 2015, 53, 364–383. [Google Scholar] [CrossRef]
- Oteiza, P.; Odstrcil, I.; Lauder, G.; Portugues, R.; Engert, F. A novel mechanism for mechanosensory-based rheotaxis in larval zebrafish. Nature 2017, 547, 445–448. [Google Scholar] [CrossRef]
- Myfanwy, E.; John, T.; Klimley, P.; Lindvall, M.E.; McElreath, R.; Klimley, A.P. Experimental evaluation of the use of vision and barbels as references for rheotaxis in green sturgeon. J. Exp. Mar. Biol. Ecol. 2017, 496, 9–15. [Google Scholar] [CrossRef]
- Rodeles, A.A.; Galicia, D.; Miranda, R. A new method to include fish biodiversity in river connectivity indices with applications in dam impact assessments. Ecol. Indic. 2020, 117, 106605. [Google Scholar] [CrossRef]
- Li, F.F.; Liu, C.M.; Qiu, J. Quantitative identification of natural flow regimes in fish spawning seasons. Ecol. Eng. 2019, 138, 209–218. [Google Scholar] [CrossRef]
- Li, F.F.; Wei, J.H.; Qiu, J.; Jiang, H. Determining the most effective flow rising process to stimulate fish spawning via reservoir operation. J. Hydrol. 2020, 582, 124490. [Google Scholar] [CrossRef]
- Bai, Y.; Lu, B.; Luo, J.; Liang, Y.Y.; Liu, D.F.; Chen, Q.W.; Shi, X.T. Induction velocity of juvenile grass carp, silver carp, and darkbarbel catfish. Chin. J. Ecol. 2013, 32, 2085. (In Chinese) [Google Scholar] [CrossRef]
- Li, J.; Liu, H.; Xiao, Z.; Wei, X.; Liu, Z.; Zhang, Z.P. Swimming performance of Cyprinus carpio (Carp) in China. Heliyon 2023, 9, e17014. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, J.C.; MacDonald, J.A. Sensory tuning of lateral line receptors in Antarctic fish to the movements of planktonic prey. Science 1987, 235, 195–196. [Google Scholar] [CrossRef] [PubMed]
- Coombs, S.; Bak-Coleman, J.; Montgomery, J. Rheotaxis revisited: A multi-behavioral and multisensory perspective on how fish orient to flow. J. Exp. Biol. 2020, 223, jeb223008. [Google Scholar] [CrossRef] [PubMed]
- Hoover, J.J.; Zielinski, D.P.; Sorensen, P.W. Swimming performance of adult bighead carp Hypophthalmichthys nobilis (Richardson, 1845) and silver carp H. molitrix (Valenciennes, 1844). J. Appl. Ichthyol. 2017, 33, 54–62. [Google Scholar] [CrossRef]
- Hintz, W.D.; Porreca, A.P.; Garvey, J.E. Water velocity shapes fish movement behavior. J. Fish Biol. 2024, 104, 1223–1230. [Google Scholar] [CrossRef]
- Li, H.F.; Cai, D.S.; Yang, P.N. Swimming ability and behavior of different sized silver carp. J. Hydroecol. 2016, 37, 88–92. (In Chinese) [Google Scholar] [CrossRef]
- Cano-Barbacil, C.; Radinger, J.; Argudo, M.; Rubio-Gracia, F.; Vila-Gispert, A.; García-Berthou, E. Key factors explaining critical swimming speed in freshwater fish: A review and statistical analysis for Iberian species. Sci. Rep. 2020, 10, 18947. [Google Scholar] [CrossRef]
- Arenas, A.; Politano, M.; Weber, L.; Timko, M. Analysis of movements and behavior of smolts swimming in hydropower reservoirs. Ecol. Model. 2015, 312, 292–307. [Google Scholar] [CrossRef]
- Liu, S.K.; Cao, C.Y.; Xi, Y.Q.; Li, P.C.; Chen, X.F.; Xiao, L.R.; Yao, W.W. Morphology and motor behavior of endemic fishes in the upper reaches of the Yangtze River basin. J. Fish Biol. 2024. [CrossRef]
- Yan, G.J.; He, X.K.; Cao, Z.D.; Fu, S.J. The trade-off between steady and unsteady swimming performance in six cyprinids at two temperatures. J. Therm. Biol. 2012, 37, 424–431. [Google Scholar] [CrossRef]
- Norin, T.; Clark, T.D. Measurement and relevance of maximum metabolic rate in fishes. J. Fish Biol. 2016, 88, 122–151. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.J.; Liu, Z.B.; Wang, Y.; Wang, Y.Y.; Ke, S.F.; Shi, X.T. Analysis of movements and behavior of bighead carps (Hypophthalmichthys nobilis) considering fish passage energetics in an experimental vertical slot Fishway. Animals 2022, 12, 1725. [Google Scholar] [CrossRef] [PubMed]
Species | N | Body Length (cm) | Body Weight (g) | Detected Water Velocity (m/s) |
---|---|---|---|---|
black carp | 38 | 2.0–5.0 | 1.0–5.2 | 0.020–0.060 |
41 | 5.1–10.0 | 5.5–16.2 | ||
silver carp | 38 | 2.0–5.0 | 0.8–4.8 | 0.020–0.060 |
48 | 5.1–10.0 | 5.0–15.0 |
Swimming Behavior | Body Length (cm) | Frequencies | |
---|---|---|---|
Black Carp | Silver Carp | ||
Swimming against the water flow | 2.0–4.0 | 5 ± 1.3 | 6 ± 2.8 |
4.1–6.0 | 9 ± 2.2 | 12 ± 2.3 | |
6.1–8.0 | 13 ± 2.0 | 19 ± 2.6 | |
8.1–10.0 | 18 ± 2.4 | 29 ± 2.8 | |
Holding station | 2.0–4.0 | 2 | 0 |
4.1–6.0 | 2 | 3 | |
6.1–8.0 | 1 | 0 | |
8.1–10.0 | 1 | 2 | |
Moving downstream | 2.0–4.0 | 4 ± 1.4 | 6 ± 2.8 |
4.1–6.0 | 9 ± 2.2 | 12 ± 2.2 | |
6.1–8.0 | 12 ± 2.3 | 19 ± 2.7 | |
8.1–10.0 | 18 ± 2.5 | 29 ± 3.1 | |
Fallback | 2.0–4.0 | 2 | 0 |
4.1–6.0 | 3 | 3 | |
6.1–8.0 | 1 | 2 | |
8.1–10.0 | 1 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, J.; Zhu, X.; Sun, J.; Wang, Y.; Zhang, H.; Ke, S.; Kattel, G.R.; Shi, X. Study on the Swimming Behavior of Black Carp (Mylopharyngodon piceus) and Silver Carp (Hypophthalmichthys molitrix) in Early Developmental Stage. Animals 2024, 14, 3221. https://doi.org/10.3390/ani14223221
Tan J, Zhu X, Sun J, Wang Y, Zhang H, Ke S, Kattel GR, Shi X. Study on the Swimming Behavior of Black Carp (Mylopharyngodon piceus) and Silver Carp (Hypophthalmichthys molitrix) in Early Developmental Stage. Animals. 2024; 14(22):3221. https://doi.org/10.3390/ani14223221
Chicago/Turabian StyleTan, Junjun, Xueqin Zhu, Junjian Sun, Yuanyang Wang, Hongqing Zhang, Senfan Ke, Giri Raj Kattel, and Xiaotao Shi. 2024. "Study on the Swimming Behavior of Black Carp (Mylopharyngodon piceus) and Silver Carp (Hypophthalmichthys molitrix) in Early Developmental Stage" Animals 14, no. 22: 3221. https://doi.org/10.3390/ani14223221
APA StyleTan, J., Zhu, X., Sun, J., Wang, Y., Zhang, H., Ke, S., Kattel, G. R., & Shi, X. (2024). Study on the Swimming Behavior of Black Carp (Mylopharyngodon piceus) and Silver Carp (Hypophthalmichthys molitrix) in Early Developmental Stage. Animals, 14(22), 3221. https://doi.org/10.3390/ani14223221