Use of CLEANED to Assess the Productive, Environmental, and Economic Impact of Dairy Farms in the Peruvian Amazon
Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Area of Study
2.2. Dairy Farms
2.3. Source of Information
2.4. CLEANED Tool
2.5. Economic Evaluation
2.6. Statistical Analysis
3. Results
3.1. Dairy Farm Characteristics
3.2. Required Area
3.3. Milk and Meat Production
3.4. Environmental Impacts
3.5. Economic Analysis
4. Discussion
4.1. Required Area
4.2. Milk and Meat Production
4.3. Environmental Impacts
4.4. Greenhouse Gas Emissions
4.5. Economic Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- OECD/FAO. OECD-FAO Agricultural Outlook 2023–2032; OECD Publishing: Paris, France, 2023. [Google Scholar] [CrossRef]
- Cerri, C.E.P.; Cerri, C.C.; Maia, S.M.F.; Cherubin, M.R.; Feigl, B.J.; Lal, R. Reducing Amazon deforestation through agricultural intensification in the Cerrado for advancing food security and mitigating climate change. Sustainability 2018, 10, 989. [Google Scholar] [CrossRef]
- Forero Camacho, C.A.; Rojas Carvajal, G.H.; Argüelles-Cárdenas, J.H. Capital social y capital financiero en la adopción de tecnologías ganaderas en zonas rurales altoandinas de Colombia. Cienc. Tecnol. Agropecu. 2013, 14, 149–163. [Google Scholar] [CrossRef]
- Rojo-Rubio, R.; Vázquez-Armijo, J.F.; Pérez-Hernández, P.; Mendoza-Martínez, G.D.; Salem, A.Z.M.; Albarrán-Portillo, B.; González-Reyna, A.; Hernández-Martínez, J.; Rebollar-Rebollar, S.; Cardoso-Jiménez, D.; et al. Dual purpose cattle production in Mexico. Trop. Anim. Health Prod. 2009, 41, 715–721. [Google Scholar] [CrossRef]
- MINAM. Mapa de Cobertura y Pérdida de Bosque Húmedo Amazónico al 2018. Programa NACIONAL de COnservación de Bosques para la Mitigación del Cambio Climático. 2021. Available online: http://geobosques.minam.gob.pe (accessed on 1 July 2024).
- Ayantunde, A.A.; de Leeuw, J.; Turner, M.D.; Said, M. Challenges of assessing the sustainability of (agro)-pastoral systems. Livest. Sci. 2021, 139, 30–43. [Google Scholar] [CrossRef]
- Amejo, A.G.; Gebere, Y.M.; Kassa, H.; Tana, T. Characterization of smallholder mixed crop–livestock systems in integration with spatial information: In Case Ethiopia. Cogent Food Agric. 2019, 5, 1565299. [Google Scholar] [CrossRef]
- Omore, A.; Kidoido, M.; Twine, E.; Kurwijila, L.; O’Flynn, M.; Githinji, J. Using “theory of change” to improve agricultural research: Recent experience from Tanzania. Dev. Pract. 2019, 29, 898–911. [Google Scholar] [CrossRef]
- Hinostrosa, C.L. Anuario Estadístico de la Producción Ganadera y Avícola 2020. Lima: Ministerio de Desarrollo Agrario y Riego. 2021. Available online: https://cdn.www.gob.pe/uploads/document/file/2803269/Compendio%20del%20anuario%20%22PRODUCCI%C3%93N%20GANADERA%20Y%20AV%C3%8DCOLA%22%202020.pdf (accessed on 1 July 2024).
- Núñez Delgado, J.; Ñaupari Vasquez, J.; Flores Mariazza, E. Comportamiento nutricional y perfil alimentario de la producción lechera en pastos cultivados (Panicum maximum Jacq). Rev. Inv. Vet. Perú 2019, 30, 178–192. [Google Scholar] [CrossRef]
- Romero Delgado, G.; Echevarría Rojas, M.; Trillo Zárate, F.; Hidalgo Lozano, V.; Aguirre Terrazas, L.; Robles Rodríguez, R.; Núñez Delgado, J. Efecto del faique (Acacia macracantha) sobre el valor nutricional del pasto guinea (Panicum maximum Jacq.) en un sistema silvopastoril. Rev. Investig. Vet. Perú 2020, 31, e17562. [Google Scholar] [CrossRef]
- Marc, A.W.; Martucci, R. Milk and the city: Raw milk challenging the value claims of value chains. Agroecol. Sustain. Food Syst. 2019, 43, 1077–1105. [Google Scholar] [CrossRef]
- Mukiri, J.; Notenbaert, A.; van der Hoek, R.; Birnholz, C. CLEANED X-Version 2.0.1 Technical Manual and User Guide; CIAT Publication No. 492; International Center for Tropical Agriculture (CIAT): Nairobi, Kenya, 2019. [Google Scholar]
- Osele, V.; Paul, B.K.; Mukiri, J.; Halder, S.; Sagala, T.; Juma, A.; Notenbaert, A.M.O. Feeding a Productive Dairy Cow in Western Kenya: Environmental and Socioeconomic Impacts; CIAT: Nairobi, Kenya, 2018. [Google Scholar]
- Hoek, R.V.D.; Notenbaert, A.M.O.; Musau, E.M.; Mukiri, J.; Paul, B.K. CLEANED: A Tool for Ex-Ante Assessment of Environmental Impacts Of Livestock Production—A Case Study on Dairy Production in Tunisia; CIAT: Nairobi, Kenya, 2022. [Google Scholar]
- IPCC. Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Calvo Buendia, E., Tanabe, K., Kranjc, A., Baasansuren, J., Fukuda, M., Ngarize, S., Osako, A., Pyrozhenko, Y., Shermanau, P., Federici, S., Eds.; IPCC: Geneva, Switzerland, 2019; Available online: www.ipcc-nggip.iges.or.jp (accessed on 1 August 2024).
- Ouali, M.; Belhouadjeb, F.A.; Soufan, W.; Rihan, H.Z. Sustainability Evaluation of Pastoral Livestock Systems. Animals 2023, 13, 1335. [Google Scholar] [CrossRef]
- Murgueitio, E.; Calle, Z.; Uribe, F.; Calle, A.; Solorio, B. Native trees and shrubs for the productive rehabilitation of tropical cattle ranching lands. For. Ecol. Manag. 2011, 261, 1654–1663. [Google Scholar] [CrossRef]
- Lopes, M.A.; Feltre, K.; De Oliveira, A.D.; Evangelista, A.R. Manejo e viabilidade econômica da adubação nitrogenada em Brachiaria brizantha cv. Marandu. Arch. Latinoam. De Prod. Anim. 2013, 21, 159–162. [Google Scholar]
- Carvalho, L.S.; Willers, C.D.; Soares, B.B.; Nogueira, A.R.; de Almeida Neto, J.A.; Rodrigues, L.B. Environmental life cycle assessment of cow milk in a conventional semi-intensive Brazilian production system. Environ. Sci. Pollut. Res. 2022, 29, 21259–21274. [Google Scholar] [CrossRef] [PubMed]
- Bashir, H.H.A.; El Zubeir, I.E.M. Milk production and reproduction performance of Baggara cattle raised under extensive and semiextensive system in South Kordofan State. J. Anim. Prod. Adv. 2013, 3, 192–202. [Google Scholar] [CrossRef]
- Bernués, A.; Ruiz, R.; Olaizola, A.; Villalba, D.; Casasús, I. Sustainability of pasture-based livestock farming systems in the European Mediterranean context: Synergies and trade-offs. Livest. Sci. 2011, 139, 44–57. [Google Scholar] [CrossRef]
- Bellido, M.; Sánchez, M.E.; Díaz, F.M.; De Ledesma, A.R.; García, F.P. Sistemas extensivos de producción animal. Arch. De Zootec. 2001, 50, 465–489. [Google Scholar]
- Leng, R.A. Factors affecting the utilization of ‘poor-quality’ forages by ruminants particularly under tropical conditions. Nutr. Res. Rev. 1990, 3, 277–303. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. A global assessment of the water footprint of farm animals. Water Resour. Manag. 2012, 26, 223–248. [Google Scholar] [CrossRef]
- Hoek, R.V.D. CLEANED Workshop Report–Nicaragua September 2017; International Center for Tropical Agriculture (CIAT): Nairobi, Nicaragua, 2018. [Google Scholar]
- Mwema, E.; Mukiri, J.; Nzogela, B.; Paul, B.K.; Notenbaert, A.M.O. Assessing the Environmental Impacts of Smallholder Dairy Intensification Through Improved Feeding Strategies in the Southern Highlands of Tanzania; Alliance of Bioversity International and CIAT: Nairobi, Kenya, 2021. [Google Scholar]
- Vianney Nsabiyumva, J.M.; Apollonio, C.; Castelli, G.; Petroselli, A.; Sabir, M.; Preti, F. Agricultural Practices for Hillslope Erosion Mitigation: A Case Study in Morocco. Water 2023, 15, 2120. [Google Scholar] [CrossRef]
- Lal, R. Soil erosion and the global carbon cycle. Environ. Sci. Policy 2003, 6, 327–338. [Google Scholar] [CrossRef]
- Aryal, D.R.; Gómez-González, R.R.; Hernández-Nuriasmú, R.; Morales-Ruiz, D.E. Carbon stocks and tree diversity in scattered tree silvopastoral systems in Chiapas, Mexico. Agrofor. Syst. 2019, 93, 213–227. [Google Scholar] [CrossRef]
- Ibrahim, M.A.; Chacón, M.; Cuartas, C.; Naranjo, J.; Ponce, G.; Vega, P.; Casasola Coto, F.; Rojas, J. Almacenamiento de carbono en el suelo y la biomasa arbórea en sistemas de usos de la tierra en paisajes ganaderos de Colombia, Costa Rica y Nicaragua. In Agroforestería en las Américas, Número; CATIE: Turrialba, Costa Rica, 2013; Volume 45. [Google Scholar]
- Dondini, M.; Martin, M.; De Camillis, C.; Uwizeye, A.; Soussana, J.F.; Robinson, T.; Steinfeld, H. Global Assessment of Soil Carbon in Grasslands: From Current Stock Estimates to Sequestration Potential; Food & Agriculture Organization: Rome, Italy, 2023. [Google Scholar]
- Gerber, P.; Vellinga, T.; Opio, C.; Steinfeld, H. Productivity gains and greenhouse gas emissions intensity in dairy systems. Livest. Sci. 2011, 139, 100–108. [Google Scholar] [CrossRef]
- Džermeikaitė, K.; Krištolaitytė, J.; Antanaitis, R. Relationship between Dairy Cow Health and Intensity of Greenhouse Gas Emissions. Animals 2024, 14, 829. [Google Scholar] [CrossRef] [PubMed]
- Kaewpila, C.; Sommart, K. Development of methane conversion factor models for Zebu beef cattle fed low-quality crop residues and by-products in tropical regions. Ecol. Evol. 2016, 6, 7422–7432. [Google Scholar] [CrossRef]
- Ku-Vera, J.; Castelán-Ortega, O.; Galindo-Maldonado, F.; Arango, J.; Chirinda, N.; Jiménez-Ocampo, R.; Valencia-Salazar, S.S.; Flores-Santiago, E.J.; Montoya-Flores, M.D.; Molina-Botero, I.C.; et al. Strategies for enteric methane mitigation in cattle fed tropical forages. Animal 2020, 14 (Suppl. S3), s453–s463. [Google Scholar] [CrossRef]
- Alvarado-Bolovich, V.; Medrano, J.; Haro, J.; Castro-Montoya, J.; Dickhoefer, U.; Gómez, C. Enteric methane emissions from lactating dairy cows grazing cultivated and native pastures in the high Andes of Peru. Livest. Sci. 2021, 243, 104385. [Google Scholar] [CrossRef]
- Salas-Riega, C.Y.; Osorio, S.; del Pilar Gamarra, J.; Alvarado-Bolovich, V.; Osorio, C.M.; Gomez, C.A. Enteric methane emissions by lactating and dry cows in the high Andes of Peru. Trop. Anim. Health Prod. 2022, 54, 144. [Google Scholar] [CrossRef]
- Ruiz, D.; Velarde-Guillén, J.; Fuentes, E.; Prudencio, M.; Gómez, C. Milk carbon footprint of silvopastoral dairy systems in the Northern Peruvian Amazon. Trop. Anim. Health Prod. 2022, 54, 227. [Google Scholar] [CrossRef]
- Berton, M.; Bittante, G.; Zendri, F.; Ramanzin, M.; Schiavon, S.; Sturaro, E. Environmental impact and efficiency of use of resources of different mountain dairy farming systems. Agric. Syst. 2020, 181, 102806. [Google Scholar] [CrossRef]
- Molina-Botero, I.C.; Arroyave-Jaramillo, J.; Valencia-Salazar, S.; Barahona-Rosales, R.; Aguilar-Pérez, C.F.; Burgos, A.A.; Arango, J.; Ku-Vera, J.C. Effects of tannins and saponins contained in foliage of Gliricidia sepium and pods of Enterolobium cyclocarpum on fermentation, methane emissions and rumen microbial population in crossbred heifers. Anim. Feed Sci. Technol. 2019, 251, 1–11. [Google Scholar] [CrossRef]
- Díaz-Céspedes, M.; Hernández-Guevara, J.E.; Gómez, C. Enteric methane emissions by young Brahman bulls grazing tropical pastures at different rainfall seasons in the Peruvian jungle. Trop. Anim. Health Prod. 2021, 53, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Kliem, K.E.; Humphries, D.J.; Kirton, P.; Givens, D.I.; Reynolds, C.K. Differential effects of oilseed supplements on methane production and milk fatty acid concentrations in dairy cows. Animal 2019, 13, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Jebari, A.; Álvaro-Fuentes, J.; Pardo, G.; Batalla, I.; Martín, J.A.R.; Del Prado, A. Effect of dairy cattle production systems on sustaining soil organic carbon storage in grasslands of northern Spain. Reg. Environ. Change 2022, 22, 67. [Google Scholar] [CrossRef]
- Fornara, D.A.; Wasson, E.A.; Christie, P.; Watson, C. Long-term nutrient fertilization and the carbon balance of permanent grassland: Any evidence for sustainable intensification? Biogeosciences 2016, 13, 4975–4984. [Google Scholar] [CrossRef]
- Ramírez, D.O.C. Estudio de factibilidad para producción de carne a partir de mini angus bajo un sistema de semiestabulación en Villavicencio, Meta. EPISTEME Rev. Estud. Socioterrit. 2024, 6, 189–195. [Google Scholar] [CrossRef]
- Shivakumara, C.; Kiran, S. Economics of sheep and goat rearing under extensive, semi-intensive and intensive methods of rearing. Econ. Aff. 2019, 64, 553–561. [Google Scholar]
- Amiri, Z.; Maghsoudi, A.; Asgharipour, M.R.; Nejati-Javaremi, A.; Campbell, D.E. The semi-intensive production model: A strategy based on emergy and economic analyses to realize sustainability in the ecosystem of Sistani beef cattle raising in Iran. J. Clean. Prod. 2022, 362, 132304. [Google Scholar] [CrossRef]
- Murgueitio, E.; Flores, M.X.; Calle, Z.; Barahona, J.D.C.R.; Molina, C.H.; Uribe, F. Intensivos en América Latina. Sist. Agrofor. 2015, 59, 1–454. [Google Scholar]
Item | Unit | Extensive System | Semi-Intensive System | p 1 |
---|---|---|---|---|
Animals | Head | 29 ± 8 2 | 54 ± 25 | 0.0378 |
Dairy cows | Head | 9 ± 4 | 19 ± 6 | 0.0116 |
Total area | Ha | 87.8 ± 60.7 | 91.7 ± 42.5 | 0.9017 |
Grassland | Ha | 62.2 ± 28.5 | 72.5 ± 30.0 | 0.5538 |
Milk yield | L/cow/d | 6.5 ± 0.9 | 8.6 ± 0.5 | 0.0005 |
Milk fat | % | 2.7 ± 0.5 | 3.1 ± 0.2 | 0.2678 |
Milk protein | % | 3.5 ± 0.1 | 3.4 ± 0.1 | 0.4611 |
Ingredients | Unit | Brachiaria brizantha | Brewery waste | Supplement * |
Dry matter | % | 31.14 | 27.46 | 93.18 |
Crude protein | % | 2.33 | 8.15 | 12.19 |
Digestibility of the dry matter | % | 53.13 | 36.725 | 59.7 |
Neutral detergent fiber | % | 20.97 | 14.72 | 31.29 |
Item | Unit | Extensive System | Semi-Intensive System | p Value | ||
---|---|---|---|---|---|---|
Average | SD | Average | SD | |||
Milk yield | kg FPCM */yr | 27,737 | 15,978 | 71,645 | 20,218 | 0.001 |
kg FPCM/ha/yr 1 | 382 | 167 | 1259 | 814 | 0.092 | |
Meat production | kg/yr | 697 | 297 | 1184 | 563 | 0.090 |
kg/ha/yr | 10.3 | 5.3 | 16.4 | 2.4 | 0.878 |
Item | Unit | Extensive System | Semi-Intensive System | p Value | ||
---|---|---|---|---|---|---|
Average | SD * | Average | SD | |||
Water use | m3/kg of FPCM | 0.59 | 0.17 | 0.29 | 0.07 | 0.007 |
m3/kg of meat | 22.29 | 8.25 | 19.51 | 7.85 | 0.600 | |
m3/kg of protein | 14.36 | 2.33 | 7.80 | 1.70 | 0.001 | |
Soil erosion | t/ha/yr | 1.53 | 0.43 | 1.85 | 1.12 | 0.560 |
Carbon stock | Mg C/ha/yr | 0.14 | 0.04 | 0.18 | 0.9 | 0.350 |
Methane | kg CO2eq/kg FPCM | 1.70 | 0.51 | 1.00 | 0.17 | 0.010 |
Nitrous oxide | kg CO2eq/kg FPCM | 0.22 | 0.05 | 0.17 | 0.03 | 0.032 |
GHG emissions | kg CO2eq/kg FPCM | 1.91 | 0.49 | 1.18 | 0.19 | 0.007 |
kg CO2eq/kg meat | 72.43 | 24.36 | 84.03 | 33.71 | 0.510 | |
kg CO2eq/kg protein | 46.94 | 6.56 | 31.75 | 3.74 | 0.001 |
Item | Extensive System | Semi-Intensive System | p Value | ||
---|---|---|---|---|---|
Average | SD * | Average | SD | ||
GHG emissions | 1.32 | 0.74 | 2.62 | 0.42 | 0.005 |
Carbon sequestration | 0.90 | 0.96 | 0.66 | 0.32 | 0.580 |
Net emission | 0.64 | 1.01 | 1.57 | 1.19 | 0.203 |
Item | Extensive System | Semi-Intensive System | p Value |
---|---|---|---|
Total inversion | 11,002 | 116,475 | 0.052 |
Annual income | 4396 | 23,340 | 0.008 |
Annual expenses | 3786 | 19,525 | 0.009 |
Gross profit per year | 604 | 3815 | 0.016 |
Gross profit per month | 50 | 318 | 0.016 |
Annual profitability | 14 | 19 | 0.213 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oré, L.; Romero, G.; Souza de Abreu, M.H.; Velarde-Guillén, J.; Arango, J.; Ku-Vera, J.C.; Gómez, C. Use of CLEANED to Assess the Productive, Environmental, and Economic Impact of Dairy Farms in the Peruvian Amazon. Animals 2024, 14, 3224. https://doi.org/10.3390/ani14223224
Oré L, Romero G, Souza de Abreu MH, Velarde-Guillén J, Arango J, Ku-Vera JC, Gómez C. Use of CLEANED to Assess the Productive, Environmental, and Economic Impact of Dairy Farms in the Peruvian Amazon. Animals. 2024; 14(22):3224. https://doi.org/10.3390/ani14223224
Chicago/Turabian StyleOré, Linda, Gelver Romero, Maria H. Souza de Abreu, José Velarde-Guillén, Jacobo Arango, Juan Carlos Ku-Vera, and Carlos Gómez. 2024. "Use of CLEANED to Assess the Productive, Environmental, and Economic Impact of Dairy Farms in the Peruvian Amazon" Animals 14, no. 22: 3224. https://doi.org/10.3390/ani14223224
APA StyleOré, L., Romero, G., Souza de Abreu, M. H., Velarde-Guillén, J., Arango, J., Ku-Vera, J. C., & Gómez, C. (2024). Use of CLEANED to Assess the Productive, Environmental, and Economic Impact of Dairy Farms in the Peruvian Amazon. Animals, 14(22), 3224. https://doi.org/10.3390/ani14223224