Dietary Oregano Oil Supplementation Improved Egg Quality by Altering Cecal Microbiota Function in Laying Hens
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Design
2.2. Sample Collection
2.3. Egg Quality Parameters
2.4. Morphology of Small Intestine
2.5. Sequencing and Analysis of 16S rRNA Gene
2.6. Statistical Analysis
3. Results
3.1. Egg Quality Parameters
3.2. Amino Acids Profile
3.3. Fatty Acid Content
3.4. Chemical Properties
3.5. Mineral Elements
3.6. Intestinal Morphology
3.7. Cecum Microbial Diversity
3.8. Correlational Analysis Between Cecal Microbiota and Egg Quality
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Miranda, J.M.; Anton, X.; Redondo-Valbuena, C.; Roca-Saavedra, P.; Rodriguez, J.A.; Lamas, A.; Franco, C.M.; Cepeda, A. Egg and Egg-Derived Foods: Effects on Human Health and Use as Functional Foods. Nutrients 2015, 7, 706–729. [Google Scholar] [CrossRef] [PubMed]
- Réhault-Godbert, S.; Guyot, N.; Nys, Y. The Golden Egg: Nutritional Value, Bioactivities, and Emerging Benefits for Human Health. Nutrients 2019, 11, 684. [Google Scholar] [CrossRef] [PubMed]
- Lordelo, M.; Cid, J.; Cordovil, C.M.D.S.; Alves, S.P.; Bessa, R.J.B.; Carolino, I. A Comparison between the Quality of Eggs from Indigenous Chicken Breeds and That from Commercial Layers. Poult. Sci. 2020, 99, 1768–1776. [Google Scholar] [CrossRef] [PubMed]
- Vlčková, J.; Tůmová, E.; Míková, K.; Englmaierová, M.; Okrouhlá, M.; Chodová, D. Changes in the Quality of Eggs during Storage Depending on the Housing System and the Age of Hens. Poult. Sci. 2019, 98, 6187–6193. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, J.; Yang, J.; Gong, S.; Zheng, J.; Xu, G. Effects of Lard and Vegetable Oils Supplementation Quality and Concentration on Laying Performance, Egg Quality and Liver Antioxidant Genes Expression in Hy-Line Brown. Animals 2021, 11, 769. [Google Scholar] [CrossRef]
- Greenwell, M.; Rahman, P.K.S.M. Medicinal Plants: Their Use in Anticancer Treatment. Int. J. Pharm. Sci. Res. 2015, 6, 4103–4112. [Google Scholar] [CrossRef]
- Esmaeili, Y.; Paidari, S.; Baghbaderani, S.A.; Nateghi, L.; Al-Hassan, A.A.; Ariffin, F. Essential Oils as Natural Antimicrobial Agents in Postharvest Treatments of Fruits and Vegetables: A Review. J. Food Meas. Charact. 2022, 16, 507–522. [Google Scholar] [CrossRef]
- Leyva-López, N.; Gutiérrez-Grijalva, E.P.; Vazquez-Olivo, G.; Heredia, J.B. Essential Oils of Oregano: Biological Activity beyond Their Antimicrobial Properties. Molecules 2017, 22, 989. [Google Scholar] [CrossRef]
- Al-Hijazeen, M.; Mendonca, A.; Lee, E.J.; Ahn, D.U. Effect of Oregano Oil and Tannic Acid Combinations on the Quality and Sensory Characteristics of Cooked Chicken Meat. Poult. Sci. 2018, 97, 676–683. [Google Scholar] [CrossRef]
- Asensio, C.M.; Paredes, A.J.; Martin, M.P.; Allemandi, D.A.; Nepote, V.; Grosso, N.R. Antioxidant Stability Study of Oregano Essential Oil Microcapsules Prepared by Spray-Drying. J. Food. Sci. 2017, 82, 2864–2872. [Google Scholar] [CrossRef]
- Gilling, D.H.; Kitajima, M.; Torrey, J.R.; Bright, K.R. Antiviral Efficacy and Mechanisms of Action of Oregano Essential Oil and Its Primary Component Carvacrol against Murine Norovirus. J. Appl. Microbiol. 2014, 116, 1149–1163. [Google Scholar] [CrossRef] [PubMed]
- Xin, Y.; Liu, H.; Yan, X.; Huang, W.; Pan, S.; Zhou, M.; Lu, B.; Tan, B.; Dong, X.; Yang, Y. Effect of Dietary Oregano Oil on Growth Performance, Disease Resistance, Intestinal Morphology, Immunity, and Microbiota of Hybrid Grouper (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂). Front. Mar. Sci. 2022, 9, 1038394. [Google Scholar] [CrossRef]
- Nadia, R.; Hassan, R.A.; Qota, E.M.; Fayek, H.M. Effect of Natural Antioxidant on Oxidative Stability of Eggs and Productive and Reproductive Performance of Laying Hens. Int. J. Poult. Sci. 2008, 7, 134–150. [Google Scholar] [CrossRef]
- Ramirez, S.Y.; Peñuela-Sierra, L.M.; Ospina, M.A. Effects of Oregano (Lippia origanoides) Essential Oil Supplementation on the Performance, Egg Quality, and Intestinal Morphometry of Isa Brown Laying Hens. Vet. World 2021, 14, 595. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Zhang, L.; Li, H.; Xia, F.; Bai, H.; Piao, X.; Sun, Z.; Cui, H.; Shi, L. Dietary Oregano Essential Oil Supplementation Influences Production Performance and Gut Microbiota in Late-Phase Laying Hens Fed Wheat-Based Diets. Animal 2022, 12, 3007. [Google Scholar] [CrossRef]
- Rattanawut, J.; Pimpa, O.; Yamauchi, K.E. Effects of Dietary Bamboo Vinegar Supplementation on Performance, Eggshell Quality, Ileal Microflora Composition, and Intestinal Villus Morphology of Laying Hens in the Late Phase of Production. Anim. Sci. J. 2018, 89, 1572–1580. [Google Scholar] [CrossRef]
- Li, W.; Xu, B.; Wang, L.; Sun, Q.; Deng, W.; Wei, F.; Ma, H.; Fu, C.; Wang, G.; Li, S. Effects of Clostridium Butyricum on Growth Performance, Gut Microbiota and Intestinal Barrier Function of Broilers. Front. Microbiol. 2021, 12, 777456. [Google Scholar] [CrossRef]
- Montalto, M.; D’Onofrio, F.; Gallo, A.; Cazzato, A.; Gasbarrini, G. Intestinal Microbiota and Its Functions. Dig. Liver Dis. Suppl. 2009, 3, 30–34. [Google Scholar] [CrossRef]
- Wei, S.; Morrison, M.; Yu, Z. Bacterial Census of Poultry Intestinal Microbiome. Poult. Sci. 2013, 92, 671–683. [Google Scholar] [CrossRef]
- Pan, D.; Yu, Z. Intestinal Microbiome of Poultry and Its Interaction with Host and Diet. Gut Microbes 2014, 5, 108–119. [Google Scholar] [CrossRef]
- NY/T33-2004; Feeding Standard of Chicken. Institute of Animal Sciences of CAAS: Beijing, China, 2004.
- DB54/T 0036-2009; Technical Specifications for Breeding of Lhasa White Chicken (Breed Group). Xizang Autonomous Region Bureau of Quality and Technical Supervision: Xizang, China, 2009.
- Applegate, T.J.; Angel, R. Nutrient requirements of poultry publication: History and need for an update. J. Appl. Poult. Res. 2014, 23, 567–575. [Google Scholar] [CrossRef]
- GB 5009.124-2016; National Food Safety Standard—Limits of Microbial Contaminants in Foods. China Standards Publishing House: Beijing, China, 2016.
- GB/T 5009.168-2016; National Food Safety Standard—Determination of Total Dietary Fiber in Foods. China Standards Publishing House: Beijing, China, 2016.
- GB 5009.85-2016; National Food Safety Standard—Determination of Mycotoxins in Foods. China Standards Publishing House: Beijing, China, 2016.
- GB 5009.84-2016; National Food Safety Standard—Determination of Residues of Pesticides in Foods. China Standards Publishing House: Beijing, China, 2016.
- GB 5009.5-2016; National Food Safety Standard—Determination of Moisture in Foods. China Standards Publishing House: Beijing, China, 2016.
- Tu, K.; Zhao, L.; Pan, L.Q. Status of Examination for Egg Quality. China Poult. 2004, 26, 48–50. [Google Scholar] [CrossRef]
- GB 5009.268-2016; National Food Safety Standard—Determination of Heavy Metals in Foods. China Standards Publishing House: Beijing, China, 2016.
- He, X.; Hao, D.; Liu, C.; Zhang, X.; Xu, D.; Xu, X.; Wang, J.; Wu, R. Effect of Supplemental Oregano Essential Oils in Diets on Production Performance and Relatively Intestinal Parameters of Laying Hens. Am. J. Respir. Cell Mol. Biol. 2016, 7, 73–85. [Google Scholar] [CrossRef]
- Ding, X.; Yu, Y.; Su, Z.; Zhang, K. Effects of Essential Oils on Performance, Egg Quality, Nutrient Digestibility and Yolk Fatty Acid Profile in Laying Hens. Anim. Nutr. 2017, 3, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Lu, M.; Wang, J.; Zhang, H.; Qiu, K.; Qi, G.; Wu, S. Dietary Oregano Essential Oil Supplementation Improves Intestinal Functions and Alters Gut Microbiota in Late-Phase Laying Hens. J. Anim. Sci. Biotechnol. 2021, 12, 72. [Google Scholar] [CrossRef]
- Grobas, S.; Mendez, J.; De Blas, C.; Mateos, G.G. Influence of Dietary Energy, Supplemental Fat and Linoleic Acid Concentration on Performance of Laying Hens at Two Ages. Br. Poult. Sci. 1999, 40, 681–687. [Google Scholar] [CrossRef]
- Chowdhury, S.; Mandal, G.P.; Patra, A.K.; Kumar, P.; Samanta, I.; Pradhan, S.; Samanta, A.K. Different Essential Oils in Diets of Broiler Chickens: 2. Gut Microbes and Morphology, Immune Response, and Some Blood Profile and Antioxidant Enzymes. Anim. Feed Sci. Technol. 2018, 236, 39–47. [Google Scholar] [CrossRef]
- Li, F.; Yin, Y.; Tan, B.; Kong, X.; Wu, G. Leucine Nutrition in Animals and Humans: mTOR Signaling and Beyond. Amino Acids 2011, 41, 1185–1193. [Google Scholar] [CrossRef]
- Wu, G. Dietary Requirements of Synthesizable Amino Acids by Animals: A Paradigm Shift in Protein Nutrition. J. Anim. Sci. Biotechnol. 2014, 5, 34. [Google Scholar] [CrossRef]
- Simopoulos, A.P.; Salem, N. Egg Yolk as a Source of Long-Chain Polyunsaturated Fatty Acids in Infant Feeding. Am. J. Clin Nutr. 1992, 55, 411–414. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Omega-3 Polyunsaturated Fatty Acids and Their Health Benefits. Annu. Rev. Food. Sci. Technol. 2018, 9, 345–381. [Google Scholar] [CrossRef] [PubMed]
- Sokoła-Wysoczańska, E.; Wysoczański, T.; Wagner, J.; Czyż, K.; Bodkowski, R.; Lochyński, S.; Patkowska-Sokoła, B. Polyunsaturated Fatty Acids and Their Potential Therapeutic Role in Cardiovascular System Disorders—A Review. Nutrients 2018, 10, 1561. [Google Scholar] [CrossRef] [PubMed]
- Filipiak-Florkiewicz, A.; Deren, K.; Florkiewicz, A.; Topolska, K.; Juszczak, L.; Cieslik, E. Quail Egg Yolk (Coturnix coturnix Japonica) Enriched with Omega-3 Fatty Acids. LWT-Food Sci. Technol. 2009, 42, 660–663. [Google Scholar] [CrossRef]
- Bölükbasi, S.C.; Erhan, M.K.; Ürüsan, H. The Effects of Supplementation of Bergamot Oil (Citrus bergamia) on Egg Production, Egg Quality, Fatty Acid Composition of Egg Yolk in Laying Hens. J. Poult. Sci. 2010, 47, 163–169. [Google Scholar] [CrossRef]
- Abdel-Wareth, A.A.A. Effect of Dietary Supplementation of Thymol, Synbiotic and Their Combination on Performance, Egg Quality and Serum Metabolic Profile of Hy-Line Brown Hens. Br. Poult. Sci. 2016, 57, 114–122. [Google Scholar] [CrossRef]
- Cherian, G.; Quezada, N. Egg Quality, Fatty Acid Composition and Immunoglobulin Y Content in Eggs from Laying Hens Fed Full Fat Camelina or Flax Seed. J. Anim. Sci. Biotechnol. 2016, 7, 15. [Google Scholar] [CrossRef]
- Li, J.; Huang, Q.; Yang, C.; Yu, C.; Zhang, Z.; Chen, M.; Ren, P.; Qiu, M. Molecular Regulation of Differential Lipid Molecule Accumulation in the Intramuscular Fat and Abdominal Fat of Chickens. Genes 2023, 14, 1457. [Google Scholar] [CrossRef]
- Stephanie, W.; Karen, A. Effect of Variety and Environment on the Amount of Thiamine and Riboflavin in Cereals and Grain Legumes. Anim. Feed Sci. Technol. 2018, 238, 39–46. [Google Scholar] [CrossRef]
- Amer, S.A.; Tolba, S.A.; AlSadek, D.M.M.; Abdel Fattah, D.M.; Hassan, A.M.; Metwally, A.E. Effect of Supplemental Glycerol Monolaurate and Oregano Essential Oil Blend on the Growth Performance, Intestinal Morphology, and Amino Acid Digestibility of Broiler Chickens. BMC Vet. Res. 2021, 17, 312. [Google Scholar] [CrossRef]
- Abdelqader, A.; Al-Fataftah, A.R.; Daş, G. Effects of Dietary Bacillus Subtilis and Inulin Supplementation on Performance, Eggshell Quality, Intestinal Morphology and Microflora Composition of Laying Hens in the Late Phase of Production. Anim. Feed Sci. Technol. 2013, 179, 103–111. [Google Scholar] [CrossRef]
- Manore, M.M. Effect of Physical Activity on Thiamine, Riboflavin, and Vitamin B-6 Requirements123. Am. J. Clin. Nutr. 2000, 72, 598S–606S. [Google Scholar] [CrossRef] [PubMed]
- Calvo, M.S.; Moshfegh, A.J.; Tucker, K.L. Assessing the Health Impact of Phosphorus in the Food Supply: Issues and Considerations123. Adv. Nutr. 2014, 5, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Chemical Composition of Eggs and Egg Products. Available online: https://link.springer.com/referenceworkentry/10.1007/978-3-642-36605-5_28 (accessed on 13 September 2024).
- Rayman, M.P. The Importance of Selenium to Human Health. Lancet 2000, 356, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Rayman, M.P. Selenium and Human Health. Lancet 2012, 379, 1256–1268. [Google Scholar] [CrossRef]
- Pilarczyk, B.; Tomza-Marciniak, A.; Pilarczyk, R.; Kuba, J.; Hendzel, D.; Udała, J.; Tarasewicz, Z. Eggs as a Source of Selenium in the Human Diet. J. Food Compos. Anal. 2019, 78, 19–23. [Google Scholar] [CrossRef]
- Oviedo-Rondón, E.O. Holistic View of Intestinal Health in Poultry. Anim. Feed Sci. Technol. 2019, 250, 1–8. [Google Scholar] [CrossRef]
- Apajalahti, J. Comparative Gut Microflora, Metabolic Challenges, and Potential Opportunities. J. Appl. Poult. Res. 2005, 14, 444–453. [Google Scholar] [CrossRef]
- Gibiino, G.; Lopetuso, L.R.; Scaldaferri, F.; Rizzatti, G.; Binda, C.; Gasbarrini, A. Exploring Bacteroidetes: Metabolic Key Points and Immunological Tricks of Our Gut Commensals. Diges. Liver. Dis. 2018, 50, 635–639. [Google Scholar] [CrossRef]
- Karlsson, F.H.; Ussery, D.W.; Nielsen, J.; Nookaew, I. A closer look at bacteroides: Phylogenetic relationship and genomic implications of a life in the human gut. Microb. Ecol. 2011, 61, 473–485. [Google Scholar] [CrossRef]
- Li, Y.; Xu, Q.; Huang, Z.; Lv, L.; Liu, X.; Yin, C.; Yan, H.; Yuan, J. Effect of Bacillus Subtilis CGMCC 1.1086 on the Growth Performance and Intestinal Microbiota of Broilers. J. Appl. Microbiol. 2016, 120, 195–204. [Google Scholar] [CrossRef]
- Sergeant, M.J.; Constantinidou, C.; Cogan, T.A.; Bedford, M.R.; Penn, C.W.; Pallen, M.J. Extensive Microbial and Functional Diversity within the Chicken Cecal Microbiome. PLoS ONE 2014, 9, e91941. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.W.; Wang, J.; Zhang, H.J.; Wu, S.J.; Qi, G.H. Effects of Clostridium butyricum on production performance and intestinal absorption function of laying hens in the late phase of production. Anim. Feed Sci. Technol. 2020, 264, 114476. [Google Scholar] [CrossRef]
- Shimizu, J.; Kubota, T.; Takada, E.; Takai, K.; Fujiwara, N.; Arimitsu, N.; Ueda, Y.; Wakisaka, S.; Suzuki, T.; Suzuki, N. Relative Abundance of Megamonas Hypermegale and Butyrivibrio Species Decreased in the Intestine and Its Possible Association with the T Cell Aberration by Metabolite Alteration in Patients with Behcet’s Disease (210 Characters). Clin. Rheumatol. 2019, 38, 1437–1445. [Google Scholar] [CrossRef] [PubMed]
Ingredients (%) | Nutrient Levels 2 | ||
---|---|---|---|
Corn | 62.70 | ME (MJ/kg) | 11.09 |
Soybean meal (CP 43%) | 26.30 | CP (%) | 16.61 |
CaHPO4 | 1.00 | CF (%) | 3.31 |
DL-Methionine | 0.10 | Available phosphorous, % (%) | 0.35 |
Limestone | 8.50 | Lysine (%) | 0.85 |
Choline chloride (70%) | 0.10 | Methionine (%) | 0.35 |
NaCl | 0.30 | Ca (%) | 3.50 |
1 Premix | 1.00 | Na (%) | 0.01 |
Total | 100 |
Item | Concentration (mg/kg) | SEM | p Value | ||||
---|---|---|---|---|---|---|---|
0 | 25 | 50 | 75 | 100 | |||
Egg weight (g) | 52.02 | 51.21 | 54.03 | 52.97 | 52.40 | 0.51 | 0.53 |
Yolk weight (g) | 17.23 | 16.39 | 18.05 | 17.53 | 16.77 | 0.22 | 0.14 |
Eggshell weight (g) | 5.39 a | 6.38 b | 6.42 b | 6.38 b | 6.35 b | 0.12 | 0.01 |
Haugh unit | 72.00 | 84.83 | 83.33 | 82.66 | 79.00 | 1.60 | 0.07 |
Egg white thickness (mm) | 5.82 | 7.24 | 7.27 | 7.19 | 6.51 | 0.22 | 0.17 |
Yolk thickness (mm) | 17.18 | 18.11 | 18.69 | 18.84 | 18.00 | 0.21 | 0.08 |
Eggshell thickness (mm) | 0.25 a | 0.33 b | 0.33 b | 0.29 b | 0.34 b | 0.011 | 0.00 |
Air chamber diameter (mm) | 16.01 a | 15.92 a | 17.21 b | 17.09 ab | 16.03 a | 0.215 | 0.04 |
1 Egg shape index | 1.33 | 1.31 | 1.30 | 1.33 | 1.29 | 0.21 | 0.75 |
Items (mg/g) | Concentration (mg/kg) | 1 SEM | p Value 2 | ||||
---|---|---|---|---|---|---|---|
0 | 25 | 50 | 75 | 100 | |||
Egg white | |||||||
Glutamic acid | 14.16 | 12.81 | 12.62 | 14.08 | 13.56 | 0.45 | 0.79 |
Aspartic acid | 11.95 | 10.93 | 10.60 | 11.81 | 11.65 | 0.35 | 0.75 |
Glycine | 5.68 | 5.42 | 5.15 | 5.42 | 5.60 | 0.23 | 0.97 |
Alanine | 10.22 | 9.32 | 9.08 | 10.28 | 9.77 | 0.32 | 0.76 |
Serine | 12.39 | 11.33 | 11.06 | 12.45 | 11.93 | 0.46 | 0.87 |
Proline | 5.46 | 5.11 | 5.31 | 5.69 | 5.23 | 0.23 | 0.96 |
Leucine | 0.21 | 0.15 | 0.16 | 0.18 | 0.19 | 0.01 | 0.23 |
Isoleucine | 13.85 | 12.70 | 12.75 | 14.11 | 13.23 | 0.54 | 0.92 |
Valine | 10.34 | 9.49 | 6.22 | 10.67 | 9.81 | 0.77 | 0.41 |
Phenylalanine | 6.63 | 6.09 | 6.46 | 6.99 | 6.29 | 0.26 | 0.89 |
Tyrosine | 3.55 | 3.37 | 3.50 | 3.78 | 3.41 | 0.15 | 0.94 |
Histidine | 3.70 | 3.59 | 3.01 | 3.44 | 3.75 | 0.16 | 0.66 |
Lysine | 7.90 | 7.19 | 6.83 | 7.97 | 7.58 | 0.32 | 0.83 |
Arginine | 9.02 | 6.66 | 8.38 | 9.26 | 8.73 | 0.60 | 0.73 |
Methionine | 3.39 | 2.92 | 3.28 | 3.80 | 3.17 | 0.17 | 0.61 |
Threonine | 6.90 | 6.20 | 6.20 | 7.14 | 6.63 | 0.27 | 0.80 |
Cysteine | 6.81 | 6.19 | 6.48 | 7.11 | 6.45 | 0.27 | 0.87 |
Total EAA | 49.21 | 44.74 | 41.91 | 50.86 | 46.89 | 1.98 | 0.69 |
Delicious amino acids | 26.11 | 23.74 | 23.22 | 25.89 | 25.21 | 0.80 | 0.77 |
Sweet amino acids | 33.75 | 31.17 | 30.60 | 33.84 | 32.53 | 1.20 | 0.91 |
Bitter amino acids | 55.20 | 49.23 | 47.32 | 56.39 | 52.99 | 2.33 | 0.76 |
Yolk | |||||||
Glutamic acid | 14.00 | 13.62 | 13.14 | 13.39 | 13.91 | 0.14 | 0.23 |
Aspartic acid | 11.18 | 10.87 | 10.35 | 10.51 | 10.91 | 0.12 | 0.13 |
Glycine | 7.98 | 7.45 | 7.52 | 7.69 | 7.96 | 0.09 | 0.21 |
Alanine | 9.80 | 9.58 | 9.00 | 9.00 | 9.65 | 0.14 | 0.17 |
Serine | 17.02 | 16.42 | 16.38 | 16.82 | 17.47 | 0.17 | 0.20 |
Proline | 9.59 | 9.44 | 9.67 | 10.07 | 9.62 | 0.11 | 0.50 |
Leucine | 0.21 abc | 0.19 a | 0.20 ab | 0.22 bc | 0.23 c | 0.00 | 0.04 |
Isoleucine | 16.95 | 16.41 | 16.34 | 16.63 | 16.87 | 0.11 | 0.29 |
Valine | 12.04 | 11.85 | 11.83 | 11.91 | 12.01 | 0.06 | 0.85 |
Phenylalanine | 7.23 | 7.13 | 7.23 | 7.39 | 7.19 | 0.07 | 0.84 |
Tyrosine | 5.26 | 5.25 | 5.27 | 5.49 | 5.45 | 0.05 | 0.45 |
Histidine | 3.60 | 3.46 | 3.30 | 3.40 | 3.73 | 0.08 | 0.49 |
Lysine | 9.09 | 8.73 | 8.47 | 8.43 | 9.04 | 0.12 | 0.23 |
Arginine | 9.87 | 9.77 | 9.81 | 9.74 | 9.87 | 0.07 | 0.98 |
Methionine | 6.27 b | 1.93 a | 3.83 ab | 6.41 b | 6.22 b | 0.62 | 0.04 |
Threonine | 9.41 | 9.38 | 9.27 | 9.50 | 9.78 | 0.07 | 0.25 |
Cysteine | 9.40 | 9.08 | 9.09 | 9.34 | 9.39 | 0.06 | 0.29 |
Total EAA | 61.21 b | 55.63 a | 57.72 ab | 60.49 b | 61.33 b | 0.78 | 0.04 |
Delicious amino acids 3 | 25.18 | 24.49 | 23.48 | 23.89 | 24.82 | 0.25 | 0.17 |
Sweet amino acids 4 | 44.39 | 42.89 | 42.57 | 43.57 | 44.70 | 0.34 | 0.19 |
Bitter amino acids 5 | 64.25 | 62.79 | 62.44 | 63.21 | 64.38 | 1.23 | 0.49 |
Items (mg/L) | Concentration (mg/kg) | SEM | p Value | ||||
---|---|---|---|---|---|---|---|
0 | 25 | 50 | 75 | 100 | |||
Yolk | |||||||
C4:0 | 8.51 bc | 7.48 abc | 3.40 a | 5.19 ab | 10.58 c | 0.87 | 0.04 |
C6:0 | 8.75 | 8.02 | 5.83 | 5.52 | 9.47 | 0.57 | 0.07 |
C11:0 | 3.78 | 2.08 | 2.14 | 1.86 | 5.25 | 0.48 | 0.08 |
C14:0 | 4.71 | 19.59 | 15.65 | 3.69 | 1.16 | 2.83 | 0.13 |
C14:1 | 0.00 | 3.55 | 3.02 | 0.00 | 0.00 | 0.73 | 0.32 |
C16:0 | 314.59 | 1246.78 | 903.54 | 259.65 | 83.01 | 182.40 | 0.21 |
C16:1 | 42.78 | 168.30 | 132.43 | 30.93 | 12.11 | 26.51 | 0.25 |
C17:0 | 0.00 | 10.28 | 8.14 | 3.25 | 0.00 | 1.54 | 0.08 |
C18:0 | 86.24 | 375.21 | 263.48 | 87.74 | 25.84 | 52.70 | 0.17 |
C18:1n9c | 239.24 | 1080.65 | 914.37 | 227.20 | 65.73 | 180.40 | 0.28 |
C18:2n6c | 198.25 a | 1148.39 b | 875.38 b | 215.46 a | 51.08 a | 136.31 | 0.01 |
C20:2 | 0.00 | 8.54 | 6.70 | 2.17 | 0.00 | 1.35 | 0.12 |
C20:3n3 | 1.06 | 6.86 | 4.49 | 0.49 | 0.00 | 1.00 | 0.10 |
C20:4n6 | 15.90 | 63.97 | 63.61 | 18.36 | 7.31 | 11.57 | 0.36 |
C23:0 | 5.71 | 8.03 | 6.13 | 6.19 | 4.73 | 0.61 | 0.59 |
1 SFA | 432.29 | 1677.46 | 1208.31 | 373.08 | 140.04 | 239.42 | 0.20 |
MUFA 2 | 282.01 | 1252.50 | 1049.82 | 258.13 | 77.84 | 207.54 | 0.28 |
PUFA 3 | 215.21 a | 1227.75 b | 950.18 b | 236.48 a | 58.38 a | 148.48 | 0.01 |
Items | Concentration (mg/kg) | SEM | p Value | ||||
---|---|---|---|---|---|---|---|
0 | 25 | 50 | 75 | 100 | |||
Egg white | |||||||
Glucose (mg/g) | 4.26 | 3.93 | 3.49 | 3.99 | 3.99 | 0.19 | 0.82 |
Crude protein (%) | 12.40 | 11.79 | 13.02 | 13.02 | 11.85 | 0.34 | 0.70 |
Total soluble sugar (mg/g) | 7.42 a | 7.71 a | 9.74 b | 7.67 a | 7.79 a | 0.26 | 0.00 |
Crude fat (%) | 0.51 | 0.56 | 0.56 | 0.58 | 0.54 | 0.01 | 0.09 |
Ash content (%) | 0.72 | 0.73 | 0.72 | 0.69 | 0.66 | 0.01 | 0.60 |
Moisture (%) | 84.69 | 85.26 | 84.32 | 83.84 | 85.31 | 0.35 | 0.70 |
Total cholesterol (mg/g) | 0.13 | 0.10 | 0.33 | 0.30 | 0.24 | 0.05 | 0.47 |
Triglyceride (mg/g) | 1.20 | 0.96 | 0.88 | 0.26 | 0.32 | 0.14 | 0.12 |
Riboflavin (ug/g) | 12.77 | 14.00 | 10.45 | 12.80 | 14.82 | 0.76 | 0.49 |
Thiamine (ug/g) | 3.88 a | 12.08 b | 8.39 ab | 6.03 ab | 2.70 a | 1.17 | 0.04 |
Yolk | |||||||
Glucose (mg/g) | 2.36 | 2.39 | 2.08 | 2.25 | 2.51 | 0.05 | 0.07 |
Grude protein (%) | 15.02 | 14.27 | 14.34 | 15.04 | 2.51 | 0.18 | 0.23 |
Total soluble sugar (mg/g) | 2.70 a | 2.86 ab | 3.08 b | 2.61 a | 2.71 a | 0.05 | 0.014 |
Crude fat (%) | 29.63 | 29.83 | 29.95 | 29.37 | 31.37 | 0.29 | 0.20 |
Ash content (%) | 1.51 | 1.47 | 1.48 | 1.51 | 1.57 | 0.01 | 0.07 |
Moisture (%) | 52.94 | 53.53 | 53.35 | 53.34 | 51.05 | 0.36 | 0.15 |
Total cholesterol (mg/g) | 8.70 | 10.59 | 9.84 | 10.25 | 11.39 | 0.44 | 0.42 |
Triglyceride (mg/g) | 26.08 | 32.40 | 29.13 | 31.17 | 32.42 | 0.91 | 0.10 |
Riboflavin (ug/g) | 11.13 bc | 12.31 c | 10.44 bc | 8.98 ab | 7.51 a | 0.54 | 0.01 |
Thiamine (ug/g) | 3.80 | 6.17 | 4.68 | 5.76 | 2.69 | 0.49 | 0.11 |
Items | Concentration (mg/kg) | SEM | p Value | ||||
---|---|---|---|---|---|---|---|
0 | 25 | 50 | 75 | 100 | |||
Egg white | |||||||
Potassium (mg/kg) | 0.0052 | 0.0050 | 0.0062 | 0.0044 | 0.0054 | 0.02 | 0.11 |
Calcium (mg/kg) | 129.41 | 198.56 | 209.63 | 193.91 | 274.80 | 26.27 | 0.60 |
Total phosphorus (mg/g) | 0.08 a | 0.08 ab | 0.11 b | 0.12 b | 0.13 c | 0.01 | 0.04 |
Magnesium (mg/g) | 0.17 | 0.21 | 0.25 | 0.19 | 0.25 | 0.01 | 0.31 |
Sodium (mg/g) | 1.88 | 2.11 | 2.16 | 1.93 | 2.19 | 0.08 | 0.72 |
Iron (mg/kg) | 41.44 | 46.20 | 34.73 | 29.32 | 74.68 | 6.55 | 0.21 |
Selenium (ug/kg) | 30.97 | 29.67 | 36.88 | 33.07 | 44.87 | 2.62 | 0.39 |
Zinc (mg/kg) | 1.29 | 0.71 | 1.21 | 0.51 | 1.39 | 0.16 | 0.36 |
Yolk | |||||||
Potassium (mg/kg) | 0.0030 | 0.0036 | 0.0040 | 0.0034 | 0.0039 | 0.01 | 0.19 |
Calcium (mg/kg) | 1423.16 | 1553.55 | 2032.61 | 1558.43 | 1539.27 | 130.18 | 0.68 |
Total phosphorus (mg/g) | 4.55 | 4.77 | 4.79 | 4.79 | 5.50 | 0.16 | 0.45 |
Magnesium (mg/g) | 0.27 | 0.31 | 0.41 | 0.29 | 0.28 | 0.03 | 0.50 |
Sodium (mg/g) | 0.60 | 0.70 | 0.71 | 0.75 | 0.66 | 0.03 | 0.56 |
Iron (mg/kg) | 194.49 | 222.00 | 240.99 | 170.14 | 166.01 | 12.08 | 0.21 |
Selenium (ug/kg) | 150.87 ab | 387.19 c | 348.77 c | 228.43 bc | 39.72 a | 39.26 | 0.00 |
Zinc (mg/kg) | 44.51 | 47.54 | 46.12 | 47.79 | 52.15 | 1.69 | 0.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xian, L.; Wang, Y.; Peng, D.; Zang, L.; Xu, Y.; Wu, Y.; Li, J.; Feng, J. Dietary Oregano Oil Supplementation Improved Egg Quality by Altering Cecal Microbiota Function in Laying Hens. Animals 2024, 14, 3235. https://doi.org/10.3390/ani14223235
Xian L, Wang Y, Peng D, Zang L, Xu Y, Wu Y, Li J, Feng J. Dietary Oregano Oil Supplementation Improved Egg Quality by Altering Cecal Microbiota Function in Laying Hens. Animals. 2024; 14(22):3235. https://doi.org/10.3390/ani14223235
Chicago/Turabian StyleXian, Lili, Yan Wang, Da Peng, Lei Zang, Yidan Xu, Yuanyuan Wu, Jingjing Li, and Jing Feng. 2024. "Dietary Oregano Oil Supplementation Improved Egg Quality by Altering Cecal Microbiota Function in Laying Hens" Animals 14, no. 22: 3235. https://doi.org/10.3390/ani14223235
APA StyleXian, L., Wang, Y., Peng, D., Zang, L., Xu, Y., Wu, Y., Li, J., & Feng, J. (2024). Dietary Oregano Oil Supplementation Improved Egg Quality by Altering Cecal Microbiota Function in Laying Hens. Animals, 14(22), 3235. https://doi.org/10.3390/ani14223235