Identification of Goat Supernumerary Teat Phenotype Using Wide-Genomic Copy Number Variants
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Y.; Pu, L.; Shi, L.; Gao, H.; Zhang, P.; Wang, L.; Zhao, F. Revealing New Candidate Genes for Teat Number Relevant Traits in Duroc Pigs Using Genome-Wide Association Studies. Animals 2021, 11, 806. [Google Scholar] [CrossRef] [PubMed]
- Martin, P.; Palhière, I.; Tosser-Klopp, G.; Rupp, R. Heritability and genome-wide association mapping for supernumerary teats in French Alpine and Saanen dairy goats. J. Dairy Sci. 2016, 99, 8891–8900. [Google Scholar] [CrossRef] [PubMed]
- Bruce, J.M. Supernumerary Nipples and Mammae: With an Account of Sixty-five Instances observed. J. Anat. Physiol. 1879, 13, 425–448. [Google Scholar] [PubMed]
- Famá, F.; Cicciú, M.; Sindoni, A.; Scarfó, P.; Pollicino, A.; Giacobbe, G.; Buccheri, G.; Taranto, F.; Palella, J.; Gioffré-Florio, M. Prevalence of Ectopic Breast Tissue and Tumor: A 20-Year Single Center Experience. Clin. Breast Cancer 2016, 16, e107–e112. [Google Scholar] [CrossRef] [PubMed]
- DeFilippis, E.M.; Arleo, E.K. The ABCs of accessory breast tissue: Basic information every radiologist should know. AJR Am. J. Roentgenol. 2014, 202, 1157–1162. [Google Scholar] [CrossRef]
- Chen, Q.Z.; Yang, M.Y.; Liu, X.Q.; Zhang, J.N.; Mi, S.Y.; Wang, Y.J.; Xiao, W.; Yu, Y. Blood transcriptome analysis and identification of genes associated with supernumerary teats in Chinese Holstein cows. J. Dairy Sci. 2022, 105, 9837–9852. [Google Scholar] [CrossRef]
- Schmidt, J.; Dreha-Kulaczewski, S.; Zafeiriou, M.P.; Schreiber, M.K.; Wilken, B.; Funke, R.; Neuhofer, C.M.; Altmuller, J.; Thiele, H.; Nurnberg, P.; et al. Somatic mosaicism in STAG2-associated cohesinopathies: Expansion of the genotypic and phenotypic spectrum. Front. Cell Dev. Biol. 2022, 10, 1025332. [Google Scholar] [CrossRef]
- Fiandrino, G.; Arossa, A.; Ghirardello, S.; Kalantari, S.; Rossi, C.; Bonasoni, M.P.; Cesari, S.; Rizzuti, T.; Giorgio, E.; Bassanese, F.; et al. SIMPSON-GOLABI-BEHMEL syndrome type 1: How placental immunohistochemistry can rapidly Predict the diagnosis. Placenta 2022, 126, 119–124. [Google Scholar] [CrossRef]
- Botty, V.D.B.A.; Gemignani, M.L. Management of ipsilateral supernumerary nipple at time of breast cancer diagnosis. Breast J. 2020, 26, 2042–2044. [Google Scholar] [CrossRef]
- Fonseca, G.M.; Cantín, M. Familial polythelia associated with dental anomalies: A case report. Colomb. Medica 2014, 45, 45–47. [Google Scholar] [CrossRef]
- Caouette-Laberge, L.; Borsuk, D. Congenital anomalies of the breast. Semin. Plast. Surg. 2013, 27, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Wen, H.; Luo, H.; Yang, M.; Augustino, S.; Wang, D.; Mi, S.; Guo, Y.; Zhang, Y.; Xiao, W.; Wang, Y.; et al. Genetic parameters and weighted single-step genome-wide association study for supernumerary teats in Holstein cattle. J. Dairy Sci. 2021, 104, 11867–11877. [Google Scholar] [CrossRef] [PubMed]
- Butty, A.M.; Frischknecht, M.; Gredler, B.; Neuenschwander, S.; Moll, J.; Bieber, A.; Baes, C.F.; Seefried, F.R. Genetic and genomic analysis of hyperthelia in Brown Swiss cattle. J. Dairy Sci. 2017, 100, 402–411. [Google Scholar] [CrossRef] [PubMed]
- Brka, M.; Reinsch, N.; Kalm, E. Frequency and heritability of supernumerary teats in German simmental and German Brown Swiss cows. J. Dairy Sci. 2002, 85, 1881–1886. [Google Scholar] [CrossRef]
- Palomino-Guerrera, W.; Estrada, Y.L.; Padilla, D.G.; Luis, J.C.; Zárate, F.T. Phaneroptic characterization and zoometric indices of Creole goats in the Ayacucho Region, Peru: First step for breeding programs, selection, and conservation. J. Adv. Vet. Anim. Res. 2024, 11, 494–502. [Google Scholar] [CrossRef]
- Ghaffarilaleh, V.; Javanmard, A.; Saberivand, A.; Asadzadeh, N.; Masoudi, R.; Barfourooshi, H.J.; Rashidi, A.; Eghbalsaied, S. Variation and frequency of supernumerary teats, litter size, histological features and the fibroblast growth factor 2 (FGF-2) gene expression pattern in goats. Theriogenology 2022, 179, 141–148. [Google Scholar] [CrossRef]
- Brisken, C.; Rajaram, R.D. Alveolar and lactogenic differentiation. J. Mammary Gland Biol. Neoplasia 2006, 11, 239–248. [Google Scholar] [CrossRef]
- Biffani, S.; Tiezzi, F.; Fresi, P.; Stella, A.; Minozzi, G. Genetic parameters of weeping teats in Italian Saanen and Alpine dairy goats and their relationship with milk production and somatic cell score. J. Dairy Sci. 2020, 103, 9167–9176. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Jung, Y.; Han, D.; Marschall, T. BWA-MEME: BWA-MEM emulated with a machine learning approach. Bioinformatics 2022, 38, 2404–2413. [Google Scholar] [CrossRef]
- Wang, X.; Zheng, Z.; Cai, Y.; Chen, T.; Li, C.; Fu, W.; Jiang, Y. CNVcaller: Highly efficient and widely applicable software for detecting copy number variations in large populations. Gigascience 2017, 6, gix115. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.F.; Shen, Y.; Kreitman, M.E. A population genetic test of selection at the molecular level. Science 1995, 270, 1497–1499. [Google Scholar] [CrossRef] [PubMed]
- Redon, R.; Ishikawa, S.; Fitch, K.R.; Feuk, L.; Perry, G.H.; Andrews, T.D.; Fiegler, H.; Shapero, M.H.; Carson, A.R.; Chen, W.; et al. Global variation in copy number in the human genome. Nature 2006, 444, 444–454. [Google Scholar] [CrossRef] [PubMed]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef]
- Stein, T.; Morris, J.S.; Davies, C.R.; Weber-Hall, S.J.; Duffy, M.A.; Heath, V.J.; Bell, A.K.; Ferrier, R.K.; Sandilands, G.P.; Gusterson, B.A. Involution of the mouse mammary gland is associated with an immune cascade and an acute-phase response, involving LBP, CD14 and STAT3. Breast Cancer Res. 2004, 6, R75. [Google Scholar] [CrossRef]
- Balkwill, F.; Coussens, L.M. Cancer: An inflammatory link. Nature 2004, 431, 405–406. [Google Scholar] [CrossRef]
- Balkwill, F.; Charles, K.A.; Mantovani, A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 2005, 7, 211–217. [Google Scholar] [CrossRef]
- Davies, C.R.; Morris, J.S.; Griffiths, M.R.; Page, M.J.; Pitt, A.; Stein, T.; Gusterson, B.A. Proteomic analysis of the mouse mammary gland is a powerful tool to identify novel proteins that are differentially expressed during mammary development. Proteomics 2006, 6, 5694–5704. [Google Scholar] [CrossRef]
- Calaf, G.M.; Roy, D. Gene expression signature of parathion-transformed human breast epithelial cells. Int. J. Mol. Med. 2007, 19, 741–750. [Google Scholar] [CrossRef]
- Font-Porterias, N.; McNelis, M.G.; Comas, D.; Hlusko, L.J. Evidence of Selection in the Ectodysplasin Pathway among Endangered Aquatic Mammals. Integr. Org. Biol. 2022, 4, obac018. [Google Scholar] [CrossRef]
- Lefebvre, S.; Mikkola, M.L. Ectodysplasin research—Where to next? Semin. Immunol. 2014, 26, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Lindfors, P.H.; Voutilainen, M.; Mikkola, M.L. Ectodysplasin/NF-κB Signaling in Embryonic Mammary Gland Development. J. Mammary Gland Biol. Neoplasia 2013, 18, 165–169. [Google Scholar] [CrossRef] [PubMed]
- Alshegifi, H.A.; Alamoudi, A.M.; Alrougi, A.; Alshaikh, H.; Alamri, A.; Shawli, A.M. Ectodermal Dysplasia: A Case Report. Curēus 2022, 14, e21184. [Google Scholar] [CrossRef] [PubMed]
- Clarke, A.; Phillips, D.I.; Brown, R.; Harper, P.S. Clinical aspects of X-linked hypohidrotic ectodermal dysplasia. Arch. Dis. Child. 1987, 62, 989–996. [Google Scholar] [CrossRef] [PubMed]
- Kuramoto, T.; Yokoe, M.; Hashimoto, R.; Hiai, H.; Serikawa, T. A rat model of hypohidrotic ectodermal dysplasia carries a missense mutation in the Edaradd gene. BMC Genet. 2011, 12, 91. [Google Scholar] [CrossRef]
- Yan, M.; Zhang, Z.; Brady, J.R.; Schilbach, S.; Fairbrother, W.J.; Dixit, V.M. Identification of a Novel Death Domain-Containing Adaptor Molecule for Ectodysplasin-A Receptor that Is Mutated in crinkled Mice. Curr. Biol. 2002, 12, 409–413. [Google Scholar] [CrossRef]
- Kuramoto, T.; Morimura, K.; Nomoto, T.; Namiki, C.; Hamada, S.; Fukushima, S.; Sugimura, T.; Serikawa, T.; Ushijima, T. Sparse and Wavy Hair: A New Model for Hypoplasia of Hair Follicle and Mammary Glands on Rat Chromosome 17. J. Hered. 2005, 96, 339–345. [Google Scholar] [CrossRef]
- Xu, M.; Zhou, Y.; Fan, S.; Zhang, M.; Gao, X. Cul5 mediates taurine-stimulated mTOR mRNA expression and proliferation of mouse mammary epithelial cells. Amino Acids 2023, 55, 243–252. [Google Scholar] [CrossRef]
- Matsuda, M.; Imaoka, T.; Vomachka, A.J.; Gudelsky, G.A.; Hou, Z.; Mistry, M.; Bailey, J.P.; Nieport, K.M.; Walther, D.J.; Bader, M.; et al. Serotonin Regulates Mammary Gland Development via an Autocrine-Paracrine Loop. Dev. Cell 2004, 6, 193–203. [Google Scholar] [CrossRef]
- Collier, R.J.; Hernandez, L.L.; Horseman, N.D. Serotonin as a homeostatic regulator of lactation. Domest. Anim. Endocrinol. 2012, 43, 161–170. [Google Scholar] [CrossRef]
- Habata, Y.; Fujii, R.; Hosoya, M.; Fukusumi, S.; Kawamata, Y.; Hinuma, S.; Kitada, C.; Nishizawa, N.; Murosaki, S.; Kurokawa, T.; et al. Apelin, the natural ligand of the orphan receptor APJ, is abundantly secreted in the colostrum. Biochim. Biophys. Acta 1999, 1452, 25–35. [Google Scholar] [CrossRef]
- Atashi, H.; Salavati, M.; De Koster, J.; Crowe, M.A.; Opsomer, G.; Hostens, M. Genome-wide association for metabolic clusters in early-lactation Holstein dairy cows. J. Dairy Sci. 2020, 103, 6392–6406. [Google Scholar] [CrossRef]
- Seagroves, T.N.; Krnacik, S.; Raught, B.; Gay, J.; Burgess-Beusse, B.; Darlington, G.J.; Rosen, J.M. C/EBPbeta, but not C/EBPalpha, is essential for ductal morphogenesis, lobuloalveolar proliferation, and functional differentiation in the mouse mammary gland. Genes Dev. 1998, 12, 1917–1928. [Google Scholar] [CrossRef] [PubMed]
- Cella, N.; Chiquet-Ehrismann, R.; Hynes, N.E. Lactogenic hormones and tenascin-C regulate C/EBPalpha and beta in mammary epithelial cells. J. Cell. Biochem. 2000, 76, 394–403. [Google Scholar] [CrossRef]
- Zhou, F.; Xue, J.; Shan, X.; Qiu, L.; Miao, Y. Functional roles for AGPAT6 in milk fat synthesis of buffalo mammary epithelial cells. Anim. Biotechnol. 2023, 34, 2120–2131. [Google Scholar] [CrossRef] [PubMed]
- Boumahrou, N.; Chevaleyre, C.; Berri, M.; Martin, P.; Bellier, S.; Salmon, H. An increase in milk IgA correlates with both pIgR expression and IgA plasma cell accumulation in the lactating mammary gland of PRM/Alf mice. J. Reprod. Immunol. 2012, 96, 25–33. [Google Scholar] [CrossRef]
- Shackleton, M.; Vaillant, F.; Simpson, K.J.; Stingl, J.; Smyth, G.K.; Asselin-Labat, M.L.; Wu, L.; Lindeman, G.J.; Visvader, J.E. Generation of a functional mammary gland from a single stem cell. Nature 2006, 439, 84–88. [Google Scholar] [CrossRef]
- Wang, C.; Chen, Y.; Deng, H.; Gao, S.; Li, L. Rbm46 Regulates Trophectoderm Differentiation by Stabilizing Cdx2 mRNA in Early Mouse Embryos. Stem Cells Dev. 2015, 24, 94–915. [Google Scholar] [CrossRef]
- Isshiki, S.; Togayachi, A.; Kudo, T.; Nishihara, S.; Watanabe, M.; Kubota, T.; Kitajima, M.; Shiraishi, N.; Sasaki, K.; Andoh, T.; et al. Cloning, expression, and characterization of a novel UDP-galactose: Beta-N-acetylglucosamine beta1,3-galactosyltransferase (beta3Gal-T5) responsible for synthesis of type 1 chain in colorectal and pancreatic epithelia and tumor cells derived therefrom. J. Biol. Chem. 1999, 274, 12499–12507. [Google Scholar] [CrossRef]
- Cheung, S.K.; Chuang, P.K.; Huang, H.W.; Hwang-Verslues, W.W.; Cho, C.H.; Yang, W.B.; Shen, C.N.; Hsiao, M.; Hsu, T.L.; Chang, C.F.; et al. Stage-specific embryonic antigen-3 (SSEA-3) and beta3GalT5 are cancer specific and significant markers for breast cancer stem cells. Proc. Natl. Acad. Sci. USA 2016, 113, 960–965. [Google Scholar] [CrossRef]
- Liao, Y.M.; Wang, Y.H.; Hung, J.T.; Lin, Y.J.; Huang, Y.L.; Liao, G.S.; Hsu, Y.L.; Wu, J.C.; Yu, A.L. High B3GALT5 expression confers poor clinical outcome and contributes to tumor progression and metastasis in breast cancer. Breast Cancer Res. 2021, 23, 5. [Google Scholar] [CrossRef] [PubMed]
- Foley, J.; Dann, P.; Hong, J.; Cosgrove, J.; Dreyer, B.; Rimm, D.; Dunbar, M.; Philbrick, W.; Wysolmerski, J. Parathyroid hormone-related protein maintains mammary epithelial fate and triggers nipple skin differentiation during embryonic breast development. Development 2001, 128, 513–525. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Kang, Y. Epithelial-Mesenchymal Plasticity in Cancer Progression and Metastasis. Dev. Cell 2019, 49, 361–374. [Google Scholar] [CrossRef] [PubMed]
- Jang, M.H.; Kim, H.J.; Kim, E.J.; Chung, Y.R.; Park, S.Y. Expression of epithelial-mesenchymal transition-related markers in triple-negative breast cancer: ZEB1 as a potential biomarker for poor clinical outcome. Hum. Pathol. 2015, 46, 1267–1274. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, X.; Wu, L.; Huang, J.J.; Jiang, W.Q.; Kipps, T.J.; Zhang, S. Aurora B induces epithelial-mesenchymal transition by stabilizing Snail1 to promote basal-like breast cancer metastasis. Oncogene 2020, 39, 2550–2567. [Google Scholar] [CrossRef]
- Fontana, X.; Peyrotte, I.; Valente, E.; Rossi, C.; Ettore, F.; Namer, M.; Bussiere, F. Glutathione S-transferase mu 1 (GSTM1): Susceptibility gene of breast cancer. Bull. Cancer 1997, 84, 35–40. [Google Scholar]
- Hemlata; Singh, J.; Bhardwaj, A.; Kumar, A.; Singh, G.; Priya, K.; Giri, S.K. Comparative frequency distribution of glutathione S-transferase mu (GSTM1) and theta (GSTT1) allelic forms in Himachal Pradesh population. Egypt. J. Med. Hum. Genet. 2022, 23, 86–87. [Google Scholar] [CrossRef]
- Hu, X.; Huang, X.; Ma, J.; Zuo, Y.; Luo, N.; Lai, S.; Su, D. GSTT1 and GSTM1 polymorphisms predict treatment outcome for breast cancer: A systematic review and meta-analysis. Tumor Biol. 2016, 37, 151–162. [Google Scholar] [CrossRef]
- Sull, J.W.; Ohrr, H.; Kang, D.R.; Nam, C.M. Glutathione S-transferase M1 status and breast cancer risk: A meta-analysis. Yonsei Med. J. 2004, 45, 683–689. [Google Scholar] [CrossRef]
- Wolfe, A.L.; Zhou, Q.; Toska, E.; Galeas, J.; Ku, A.A.; Koche, R.P.; Bandyopadhyay, S.; Scaltriti, M.; Lebrilla, C.B.; McCormick, F.; et al. UDP-glucose pyrophosphorylase 2, a regulator of glycogen synthesis and glycosylation, is critical for pancreatic cancer growth. Proc. Natl. Acad. Sci. USA 2021, 118, e2103592118. [Google Scholar] [CrossRef]
- Goldhirsch, A.; Wood, W.C.; Coates, A.S.; Gelber, R.D.; Thurlimann, B.; Senn, H.J. Strategies for subtypes—Dealing with the diversity of breast cancer: Highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann. Oncol. 2011, 22, 1736–1747. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.; Xing, W.; Liu, Y. Identification of UGP2 as a progression marker that promotes cell growth and motility in human glioma. J. Cell. Biochem. 2019, 120, 12489–12499. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Shen, S.; Li, J.; Liu, L.; Liu, X.; Zhang, Y.; Zhou, Y.; Zhu, W.; Yu, Y.; Cui, G. Low UGP2 Expression Is Associated with Tumour Progression and Predicts Poor Prognosis in Hepatocellular Carcinoma. Dis. Markers 2020, 2020, 3231273. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, E.P.; Weiss, S.B. The function of cytidine coenzymes in the biosynthesis of phospholipides. J. Biol. Chem. 1956, 222, 193–214. [Google Scholar] [CrossRef] [PubMed]
- Shah, T.; Krishnamachary, B.; Wildes, F.; Wijnen, J.P.; Glunde, K.; Bhujwalla, Z.M. Molecular causes of elevated phosphoethanolamine in breast and pancreatic cancer cells. NMR Biomed. 2018, 31, e3936. [Google Scholar] [CrossRef]
- Francone, E.; Nathan, M.J.; Murelli, F.; Bruno, M.S.; Traverso, E.; Friedman, D. Ectopic breast cancer: Case report and review of the literature. Aesthetic Plast. Surg. 2013, 37, 746–749. [Google Scholar] [CrossRef]
- Jegou, M.H.; Lorier-Roy, E. Paget’s disease of ectopic breast. Ann. Dermatol. Venereol. 2018, 145, 423–428. [Google Scholar] [CrossRef]
- Stone, K.; Wheeler, A. A Review of Anatomy, Physiology, and Benign Pathology of the Nipple. Ann. Surg. Oncol. 2015, 22, 3236–3240. [Google Scholar] [CrossRef]
- Hughes, K. Comparative mammary gland postnatal development and tumourigenesis in the sheep, cow, cat and rabbit: Exploring the menagerie. Semin. Cell Dev. Biol. 2021, 114, 186–195. [Google Scholar] [CrossRef]
- Newman, S.J.; Smith, S.A.; Zimmerman, K. Mammary carcinoma arising in an adenoma in a ewe. J. Vet. Diagn. Investig. 2021, 33, 566–571. [Google Scholar] [CrossRef]
- Quintas, H.; Alegria, N.; Mendonca, A.; Botelho, A.; Alves, A.; Pires, I. Coexistence of tuberculosis and mammary carcinoma in a goat. Reprod. Domest. Anim. 2014, 49, 606–610. [Google Scholar] [CrossRef] [PubMed]
- Arteche-Villasol, N.; Fernandez, M.; Gutierrez-Exposito, D.; Perez, V. Pathology of the Mammary Gland in Sheep and Goats. J. Comp. Pathol. 2022, 193, 37–49. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, L.; Zhang, W.; Zhang, H.; Yang, X.; Ceccobelli, S.; Zhao, Y.; E, G. Identification of Goat Supernumerary Teat Phenotype Using Wide-Genomic Copy Number Variants. Animals 2024, 14, 3252. https://doi.org/10.3390/ani14223252
Xu L, Zhang W, Zhang H, Yang X, Ceccobelli S, Zhao Y, E G. Identification of Goat Supernumerary Teat Phenotype Using Wide-Genomic Copy Number Variants. Animals. 2024; 14(22):3252. https://doi.org/10.3390/ani14223252
Chicago/Turabian StyleXu, Lu, Weiyi Zhang, Haoyuan Zhang, Xiuqin Yang, Simone Ceccobelli, Yongju Zhao, and Guangxin E. 2024. "Identification of Goat Supernumerary Teat Phenotype Using Wide-Genomic Copy Number Variants" Animals 14, no. 22: 3252. https://doi.org/10.3390/ani14223252
APA StyleXu, L., Zhang, W., Zhang, H., Yang, X., Ceccobelli, S., Zhao, Y., & E, G. (2024). Identification of Goat Supernumerary Teat Phenotype Using Wide-Genomic Copy Number Variants. Animals, 14(22), 3252. https://doi.org/10.3390/ani14223252