A Whole-Genome Survey and the Mitochondrial Genome of Acanthocepola indica Provide Insights into Its Phylogenetic Relationships in Priacanthiformes
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and DNA Sequencing
2.2. Genome Survey, Assembly and Simple Sequence Repeat (SSR) Identification
2.3. Mitochondrial Genome Assembly and Phylogenetic Analysis
2.4. Effective Population Size Inferrence
3. Results
3.1. The Genomic Estimation of A. indica
3.2. Genome Assembly and SSR Analysis
3.3. Characterization of A. indica Mitochondrial Genome
3.4. Phylogenetic Relationships of A. indica Based on Mitochondrial Genome
3.5. Population Size Dynamics of A. indica
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, W.; Gao, T.; Wang, Y.; Zhao, C.; Chen, J. Marine Fishes of Zhejiang and the DNA Barcode; China Agriculture Press: Beijing, China, 2022; Volume 1. [Google Scholar]
- Mahesh, V.; Asokan, P.K.; Jeena, N.S.; Vinod, K.; Said Koya, K.P.; Zacharia, P.U. New Distributional Record of Deep Sea Snake Fish Acanthocepola indica (Day, 1888) from the Southwest Coast of India. Thalass. Int. J. Mar. Sci. 2019, 35, 561–565. [Google Scholar] [CrossRef]
- Schoch, C.L.; Ciufo, S.; Domrachev, M.; Hotton, C.L.; Kannan, S.; Khovanskaya, R.; Leipe, D.; Mcveigh, R.; O’Neill, K.; Robbertse, B.; et al. NCBI Taxonomy: A Comprehensive Update on Curation, Resources and Tools. Database 2020, 2020, baaa062. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Zhou, Y.; Price, M.; Song, Z. Genome-Wide Characterization of Microsatellite DNA in Fishes: Survey and Analysis of Their Abundance and Frequency in Genome-Specific Regions. BMC Genom. 2021, 22, 421. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, S.-J.; Jo, E.; Choi, E.; Cho, M.; Choi, S.; Kim, J.-H.; Park, H. Whole-Genome Survey and Microsatellite Marker Detection of Antarctic Crocodile Icefish, Chionobathyscus dewitti. Animals 2022, 12, 2598. [Google Scholar] [CrossRef] [PubMed]
- Wenne, R. Microsatellites as Molecular Markers with Applications in Exploitation and Conservation of Aquatic Animal Populations. Genes 2023, 14, 808. [Google Scholar] [CrossRef]
- Ma, S.; Zhao, X.; Song, N. Whole-Genome Survey Analyses of Five Goby Species Provide Insights into Their Genetic Evolution and Invasion-Related Genes. Int. J. Mol. Sci. 2024, 25, 3293. [Google Scholar] [CrossRef]
- Lv, W.; Jiang, H.; Bo, J.; Wang, C.; Yang, L.; He, S. Comparative Mitochondrial Genome Analysis of Neodontobutis hainanensis and Perccottus glenii Reveals Conserved Genome Organization and Phylogeny. Genomics 2020, 112, 3862–3870. [Google Scholar] [CrossRef]
- Papetti, C.; Babbucci, M.; Dettai, A.; Basso, A.; Lucassen, M.; Harms, L.; Bonillo, C.; Heindler, F.M.; Patarnello, T.; Negrisolo, E. Not Frozen in the Ice: Large and Dynamic Rearrangements in the Mitochondrial Genomes of the Antarctic Fish. Genome Biol. Evol. 2021, 13, evab017. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, J.; Zhang, X.; Lin, B.; Chen, J. Comparative Mitogenomes Provide New Insights into Phylogeny and Taxonomy of the Subfamily Xenocyprinae (Cypriniformes: Cyprinidae). Front. Genet. 2022, 13, 966633. [Google Scholar] [CrossRef]
- Gao, J.; Li, C.; Yu, D.; Wang, T.; Lin, L.; Xiao, Y.; Wu, P.; Liu, Y. Comparative Mitogenome Analyses Uncover Mitogenome Features and Phylogenetic Implications of the Parrotfishes (Perciformes: Scaridae). Biology 2023, 12, 410. [Google Scholar] [CrossRef]
- Muhala, V.; Guimarães-Costa, A.; Bessa-Silva, A.R.; Rabelo, L.P.; Carneiro, J.; Macate, I.E.; Watanabe, L.; Balcázar, O.D.; Gomes, G.E.; Vallinoto, M.; et al. Comparative Mitochondrial Genome Brings Insights to Slight Variation in Gene Proportion and Large Intergenic Spacer and Phylogenetic Relationship of Mudskipper Species. Sci. Rep. 2024, 14, 3358. [Google Scholar] [CrossRef] [PubMed]
- Qin, Q.; Chen, L.; Zhang, F.; Xu, J.; Zeng, Y. Characterization of the Complete Mitochondrial Genome of Schizothorax kozlovi (Cypriniformes, Cyprinidae, Schizothorax) and Insights into the Phylogenetic Relationships of Schizothorax. Animals 2024, 14, 721. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Zheng, T.; Song, N.; Qu, Y.; Gao, T. Whole-Genome Survey Reveals Interspecific Differences in Genomic Characteristics and Evolution of Pampus Fish. Front. Mar. Sci. 2024, 10, 1332250. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, Y.; Du, X.; Ma, S.; Song, N.; Zhao, L. Whole-Genome Survey Analyses Provide a New Perspective for the Evolutionary Biology of Shimofuri Goby, Tridentiger bifasciatus. Animals 2022, 12, 1914. [Google Scholar] [CrossRef]
- Chen, D.; Zhang, M. Marine Fishes of China; China Ocean University Press: Qingdao, China, 2015. [Google Scholar]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An Ultra-Fast All-in-One FASTQ Preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Liu, B.; Shi, Y.; Yuan, J.; Hu, X.; Zhang, H.; Li, N.; Li, Z.; Chen, Y.; Mu, D.; Fan, W. Estimation of Genomic Characteristics by Analyzing K-Mer Frequency in de Novo Genome Projects. arXiv 2013. [Google Scholar] [CrossRef]
- Ranallo-Benavidez, T.R.; Jaron, K.S.; Schatz, M.C. GenomeScope 2.0 and Smudgeplot for Reference-Free Profiling of Polyploid Genomes. Nat. Commun. 2020, 11, 1432. [Google Scholar] [CrossRef]
- Chikhi, R.; Rizk, G. Space-Efficient and Exact de Bruijn Graph Representation Based on a Bloom Filter. Algorithms Mol. Biol. 2013, 8, 22. [Google Scholar] [CrossRef]
- Beier, S.; Thiel, T.; Münch, T.; Scholz, U.; Mascher, M. MISA-Web: A Web Server for Microsatellite Prediction. Bioinformatics 2017, 33, 2583–2585. [Google Scholar] [CrossRef]
- Meng, G.; Li, Y.; Yang, C.; Liu, S. MitoZ: A Toolkit for Animal Mitochondrial Genome Assembly, Annotation and Visualization. Nucleic Acids Res. 2019, 47, e63. [Google Scholar] [CrossRef]
- Xiang, C.-Y.; Gao, F.; Jakovlić, I.; Lei, H.-P.; Hu, Y.; Zhang, H.; Zou, H.; Wang, G.-T.; Zhang, D. Using PhyloSuite for Molecular Phylogeny and Tree-Based Analyses. iMeta 2023, 2, e87. [Google Scholar] [CrossRef] [PubMed]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; Von Haeseler, A.; Lanfear, R. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef] [PubMed]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v6: Recent Updates to the Phylogenetic Tree Display and Annotation Tool. Nucleic Acids Res. 2024, 52, W78–W82. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Durbin, R. Inference of Human Population History from Individual Whole-Genome Sequences. Nature 2011, 475, 493–496. [Google Scholar] [CrossRef] [PubMed]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; et al. Twelve Years of SAMtools and BCFtools. GigaScience 2021, 10, giab008. [Google Scholar] [CrossRef]
- Bergeron, L.A.; Besenbacher, S.; Zheng, J.; Li, P.; Bertelsen, M.F.; Quintard, B.; Hoffman, J.I.; Li, Z.; St. Leger, J.; Shao, C.; et al. Evolution of the Germline Mutation Rate across Vertebrates. Nature 2023, 615, 285–291. [Google Scholar] [CrossRef]
- Jia, C.; Yang, T.; Yanagimoto, T.; Gao, T. Comprehensive Draft Genome Analyses of Three Rockfishes (Scorpaeniformes, Sebastiscus) via Genome Survey Sequencing. Curr. Issues Mol. Biol. 2021, 43, 2048–2058. [Google Scholar] [CrossRef]
- Mochizuki, T.; Sakamoto, M.; Tanizawa, Y.; Nakayama, T.; Tanifuji, G.; Kamikawa, R.; Nakamura, Y. A Practical Assembly Guideline for Genomes with Various Levels of Heterozygosity. Brief. Bioinform. 2023, 24, bbad337. [Google Scholar] [CrossRef]
- AlMomin, S.; Kumar, V.; Al-Amad, S.; Al-Hussaini, M.; Dashti, T.; Al-Enezi, K.; Akbar, A. Draft Genome Sequence of the Silver Pomfret Fish. Pampus argenteus. Genome 2016, 59, 51–58. [Google Scholar] [CrossRef]
- Huang, G.; Cao, J.; Chen, C.; Wang, M.; Liu, Z.; Gao, F.; Yi, M.; Chen, G.; Lu, M. Genome Survey of Misgurnus Anguillicaudatus to Identify Genomic Information, Simple Sequence Repeat (SSR) Markers, and Mitochondrial Genome. Mol. Biol. Rep. 2022, 49, 2185–2196. [Google Scholar] [CrossRef]
- Choi, E.; Lee, S.J.; Jo, E.; Kim, J.; Parker, S.J.; Kim, J.-H.; Park, H. Genomic Survey and Microsatellite Marker Investigation of Patagonian Moray Cod (Muraenolepis orangiensis). Animals 2022, 12, 1608. [Google Scholar] [CrossRef] [PubMed]
- Liang, P.; Wang, S.; Lin, Y.; Wang, L.; Zhao, L.; Liu, S. The Complete Mitochondrial Genome of Cepola schlegelii from the East China Sea. Mitochondrial DNA Part B 2022, 7, 1925–1927. [Google Scholar] [CrossRef] [PubMed]
- Past Interglacials Working Group of PAGES. Interglacials of the Last 800,000 Years. Rev. Geophys. 2016, 54, 162–219. [Google Scholar] [CrossRef]
- Lambeck, K.; Esat, T.M.; Potter, E.-K. Links between Climate and Sea Levels for the Past Three Million Years. Nature 2002, 419, 199–206. [Google Scholar] [CrossRef]
- Park, J.-H.; Ryu, J.H.; Lee, J.M.; Kim, J.K. First Record of a Bandfish, Acanthocepola indica (Cepolidae: Perciformes) from Korea. Korean J. Ichthyol. 2008, 20, 220–223. [Google Scholar]
- Joshi, V.P.; Mohite, S.A.; Satam, S.B. On the Occurrence of the Deepsea Snake Fish, Acanthocepola limbata (Cuvier) (Pisces: Cepolidae) Along Ratnagiri Coast, Maharashtra, India. Species 2014, 7, 17–19. [Google Scholar]
- Pradhan, A.; Mahapatra, B.K. The Band Fish Acanthocepola indica (Perciformes: Cepolidae) in the Northern Bay of Bengal, India. UNED Res. J. 2018, 10, 115–118. [Google Scholar] [CrossRef]
- Sen, A.; Panda, P.; Kumar, J.S.Y. First Record of Black Spot Bandfish: Acanthocepola limbata (Valenciennes, 1835) from Northern Bay of Bengal. Taxa 2023, 1, 6p. [Google Scholar]
- Day, F. The Fishes of India; Being a Natural History of the Fishes Known to Inhabit the Seas and Fresh Waters of India, Burma, and Ceylon. In Fishes of India; Bernard Quaritch Ltd.: London, UK, 1888; Volume Suppl:v.1, pp. 779–816. [Google Scholar]
- Yan, T.; Yu, K.; Jiang, L.; Li, Y.; Zhao, N. Significant Sea-Level Fluctuations in the Western Tropical Pacific During the Mid-Holocene. Paleoceanogr. Paleoclimatol. 2024, 39, e2023PA004783. [Google Scholar] [CrossRef]
Species | Accession | Length (bp) | Order |
---|---|---|---|
Acanthocepola indica | PP962409 | 16,439 | Priacanthiformes |
Acanthocepola krusensternii | NC_034333.1 | 16,415 | Priacanthiformes |
Cepola schlegelii | NC_063676.1 | 17,020 | Priacanthiformes |
Cookeolus japonicus | NC_082750.1 | 16,506 | Priacanthiformes |
Heteropriacanthus cruentatus | NC_056807.1 | 16,506 | Priacanthiformes |
Priacanthus arenatus | NC_082997.1 | 16,996 | Priacanthiformes |
Priacanthus macracanthus | NC_029222.1 | 17,003 | Priacanthiformes |
Priacanthus tayenus | NC_029389.1 | 16,866 | Priacanthiformes |
Pristigenys niphonia | NC_031424.1 | 16,519 | Priacanthiformes |
Epinephelus cyanopodus | NC_068845.1 | 16,649 | Perciformes |
Pagetopsis macropterus | NC_057672.1 | 17,364 | Perciformes |
Perca schrenkii | NC_027745.1 | 16,536 | Perciformes |
Plectropomus leopardus | NC_008449.1 | 16,714 | Perciformes |
Trematomus loennbergii | NC_048965.1 | 19,374 | Perciformes |
Scortum barcoo | NC_027171.1 | 16,843 | Centrarchiformes |
Tetraodon nigroviridis | NC_031325.1 | 16,448 | Tetraodontiformes |
Reads Type | Reads Number | Base Count (Gb) | Read Length (bp) | Q20 (%) | Q30 (%) | GC Content (%) |
---|---|---|---|---|---|---|
raw | 455,825,818 | 68.37 | 150 | 96.00 | 88.49 | 44.00 |
dedup | 448,476,588 | 67.14 | 149 | 96.01 | 88.49 | 44.00 |
K-mer Number | K-mer Depth | Genome Size (bp) | Revised Genome Size (bp) | Heterozygous Ratio (%) | Repeat (%) |
---|---|---|---|---|---|
59,963,509,510 | 124 | 434,036,000 | 422,954,471 | 1.02 | 22.43 |
Total Number | Total Number (>2 kb) | Total Bases (bp) | Max Length (bp) | N50 (bp) | N90 (bp) | GC Content (%) |
---|---|---|---|---|---|---|
1,059,784 | 65,364 | 531,790,848 | 90,556 | 1942 | 168 | 43.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, W.; Xu, Z.; Liu, Q.; Li, N.; Liu, L.; Ren, B.; Gao, T.; Liu, C. A Whole-Genome Survey and the Mitochondrial Genome of Acanthocepola indica Provide Insights into Its Phylogenetic Relationships in Priacanthiformes. Animals 2024, 14, 3257. https://doi.org/10.3390/ani14223257
Mao W, Xu Z, Liu Q, Li N, Liu L, Ren B, Gao T, Liu C. A Whole-Genome Survey and the Mitochondrial Genome of Acanthocepola indica Provide Insights into Its Phylogenetic Relationships in Priacanthiformes. Animals. 2024; 14(22):3257. https://doi.org/10.3390/ani14223257
Chicago/Turabian StyleMao, Weihua, Ziyi Xu, Qi Liu, Na Li, Lu Liu, Biyan Ren, Tianxiang Gao, and Chuan Liu. 2024. "A Whole-Genome Survey and the Mitochondrial Genome of Acanthocepola indica Provide Insights into Its Phylogenetic Relationships in Priacanthiformes" Animals 14, no. 22: 3257. https://doi.org/10.3390/ani14223257
APA StyleMao, W., Xu, Z., Liu, Q., Li, N., Liu, L., Ren, B., Gao, T., & Liu, C. (2024). A Whole-Genome Survey and the Mitochondrial Genome of Acanthocepola indica Provide Insights into Its Phylogenetic Relationships in Priacanthiformes. Animals, 14(22), 3257. https://doi.org/10.3390/ani14223257