Effect of Subconjunctival Injection of Canine Adipose-Derived Mesenchymal Stem Cells on Canine Spontaneous Corneal Epithelial Defects
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Ophthalmic Examinations
2.3. cAD-MSC Preparation
2.3.1. Tissue Collection, Cell Isolation, Culture, and Cryopreservation
2.3.2. cAD-MSC Characterization
- (1)
- Flow cytometry
- (2)
- In vitro differentiation assessment (Tri-differentiation)
- (3)
- Sterility test
2.4. Therapy with cAD-MSCs
2.5. Evaluation of TNF-α and VEGF-A in Tear Fluid
2.5.1. Tear Fluid Collection
2.5.2. Multiplex Cytokines Immunoassay
2.6. Data Analysis
2.6.1. Evaluation Corneal Characteristics
= [corneal epithelial defect area/total corneal area] × 100
= [corneal neovascularization area/total corneal area] × 100
= [corneal opacification area/total corneal area] × 100
2.6.2. Tear Fluid Cytokine Quantification
3. Results
3.1. Corneal Evaluation
3.1.1. Corneal Epithelial Defect
3.1.2. Corneal Neovascularization
3.1.3. Corneal Opacification
3.2. Quantification of TNF-α and VEGF-A Concentrations in Tear Fluid
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Biehl, J.K.; Russell, B. Introduction to stem cell therapy. J. Cardiovasc. Nurs. 2009, 24, 98–103, quiz 104–105. [Google Scholar] [CrossRef] [PubMed]
- Galindo, S.; de la Mata, A.; Lopez-Paniagua, M.; Herreras, J.M.; Perez, I.; Calonge, M.; Nieto-Miguel, T. Subconjunctival injection of mesenchymal stem cells for corneal failure due to limbal stem cell deficiency: State of the art. Stem Cell Res. Ther. 2021, 12, 60. [Google Scholar] [CrossRef]
- Ke, Y.; Wu, Y.; Cui, X.; Liu, X.; Yu, M.; Yang, C.; Li, X. Polysaccharide hydrogel combined with mesenchymal stem cells promotes the healing of corneal alkali burn in rats. PLoS ONE 2015, 10, e0119725. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Luo, X.; Zhang, S.; Liu, R.; Liang, L.; Su, W.; Liang, D. Subconjunctival injection of tumor necrosis factor-alpha pre-stimulated bone marrow-derived mesenchymal stem cells enhances anti-inflammation and anti-fibrosis in ocular alkali burns. Graefes Arch. Clin. Exp. Ophthalmol. 2021, 259, 929–940. [Google Scholar] [CrossRef] [PubMed]
- Shukla, S.; Mittal, S.K.; Foulsham, W.; Elbasiony, E.; Singhania, D.; Sahu, S.K.; Chauhan, S.K. Therapeutic efficacy of different routes of mesenchymal stem cell administration in corneal injury. Ocul. Surf. 2019, 17, 729–736. [Google Scholar] [CrossRef]
- Dawson, C.; Naranjo, C.; Sanchez-Maldonado, B.; Fricker, G.V.; Linn-Pearl, R.N.; Escanilla, N.; Kafarnik, C.; Gould, D.J.; Sanchez, R.F.; Matas-Riera, M. Immediate effects of diamond burr debridement in patients with spontaneous chronic corneal epithelial defects, light and electron microscopic evaluation. Vet. Ophthalmol. 2017, 20, 11–15. [Google Scholar] [CrossRef]
- Cooper, S. Canine superficial chronic corneal epithelial deficits (SCCEDs). Companion Anim. 2018, 23, 342–347. [Google Scholar] [CrossRef]
- Gosling, A.A.; Labelle, A.L.; Breaux, C.B. Management of spontaneous chronic corneal epithelial defects (SCCEDs) in dogs with diamond burr debridement and placement of a bandage contact lens. Vet. Ophthalmol. 2013, 16, 83–88. [Google Scholar] [CrossRef]
- Bentley, E.; Campbell, S.; Woo, H.M.; Murphy, C.J. The effect of chronic corneal epithelial debridement on epithelial and stromal morphology in dogs. Investig. Ophthalmol. Vis. Sci. 2002, 43, 2136–2142. [Google Scholar]
- Bentley, E. Spontaneous chronic corneal epithelial defects in dogs: A review. J. Am. Anim. Hosp. Assoc. 2005, 41, 158–165. [Google Scholar] [CrossRef]
- Murphy, C.J.; Marfurt, C.F.; McDermott, A.; Bentley, E.; Abrams, G.A.; Reid, T.W.; Campbell, S. Spontaneous chronic corneal epithelial defects (SCCED) in dogs: Clinical features, innervation, and effect of topical SP, with or without IGF-1. Investig. Ophthalmol. Vis. Sci. 2001, 42, 2252–2261. [Google Scholar]
- Di, G.; Du, X.; Qi, X.; Zhao, X.; Duan, H.; Li, S.; Xie, L.; Zhou, Q. Mesenchymal Stem Cells Promote Diabetic Corneal Epithelial Wound Healing Through TSG-6-Dependent Stem Cell Activation and Macrophage Switch. Investig. Ophthalmol. Vis. Sci. 2017, 58, 4344–4354. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Li, Z.R.; Su, W.R.; Li, Y.P.; Lin, M.L.; Zhang, W.X.; Liu, Y.; Wan, Q.; Liang, D. Role of mesenchymal stem cells on cornea wound healing induced by acute alkali burn. PLoS ONE 2012, 7, e30842. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.F.; Lai, Y.C.; Tai, C.F.; Tsai, J.L.; Hsu, H.C.; Hsu, R.F.; Lu, S.N.; Feng, N.H.; Chai, C.Y.; Lee, C.H. Effects of cultured human adipose-derived stem cells transplantation on rabbit cornea regeneration after alkaline chemical burn. Kaohsiung J. Med. Sci. 2013, 29, 14–18. [Google Scholar] [CrossRef]
- Falcao, M.S.A.; Brunel, H.; Peixer, M.A.S.; Dallago, B.S.L.; Costa, F.F.; Queiroz, L.M.; Campbell, P.; Malard, P.F. Effect of allogeneic mesenchymal stem cells (MSCs) on corneal wound healing in dogs. J. Tradit. Complement. Med. 2020, 10, 440–445. [Google Scholar] [CrossRef]
- Louis, K.S.; Siegel, A.C. Cell viability analysis using trypan blue: Manual and automated methods. Methods Mol. Biol. 2011, 740, 7–12. [Google Scholar] [PubMed]
- Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.; Krause, D.; Deans, R.; Keating, A.; Prockop, D.; Horwitz, E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006, 8, 315–317. [Google Scholar] [CrossRef]
- Sebbag, L.; Harrington, D.M.; Mochel, J.P. Tear fluid collection in dogs and cats using ophthalmic sponges. Vet. Ophthalmol. 2018, 21, 249–254. [Google Scholar] [CrossRef]
- Gao, S.; Li, S.; Liu, L.; Wang, Y.; Ding, H.; Li, L.; Zhong, X. Early changes in ocular surface and tear inflammatory mediators after small-incision lenticule extraction and femtosecond laser-assisted laser in situ keratomileusis. PLoS ONE 2014, 9, e107370. [Google Scholar] [CrossRef]
- Kim, J.H.; Seo, H.W.; Han, H.C.; Lee, J.H.; Choi, S.K.; Lee, D. The effect of bevacizumab versus ranibizumab in the treatment of corneal neovascularization: A preliminary study. Korean J. Ophthalmol. 2013, 27, 235–242. [Google Scholar] [CrossRef]
- Williams, A.; Grudzien, A. Constructing a canine ocular pain score. In BSAVA Congress Proceedings; BSAVA: Gloucester, UK, 2015; p. 508. [Google Scholar]
- Villatoro, A.J.; Claros, S.; Fernandez, V.; Alcoholado, C.; Farinas, F.; Moreno, A.; Becerra, J.; Andrades, J.A. Safety and efficacy of the mesenchymal stem cell in feline eosinophilic keratitis treatment. BMC Vet. Res. 2018, 14, 116. [Google Scholar] [CrossRef] [PubMed]
- Pressanti, C.; Ravailhe, E.; Castellote-Brun, J.; Amalric, N.; Lecru, L.A.; Kondratjeva, J.; Moog, F.; Combarros, D.; Douet, J.Y.; Cadiergues, M.C. Survey of cytokines on ocular surfaces of atopic dogs by multiplex analysis using two sampling methods—A pilot study. Vet. Dermatol. 2021, 32, 625-e167. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, K.; Nishida, T. Ocular allergic inflammation: Interaction between the cornea and conjunctiva. Cornea 2010, 29 (Suppl. S1), S62–S67. [Google Scholar] [CrossRef] [PubMed]
- Cameron, J.A. Shield ulcers and plaques of the cornea in vernal keratoconjunctivitis. Ophthalmology 1995, 102, 985–993. [Google Scholar] [CrossRef]
- Martinez, P.S.; Pucheu, C.M.; Liu, C.C.; Carter, R.T. Cytokine tear film profile determination in eyes of healthy dogs and those with inflammatory periocular and skin disorders. Vet. Immunol. Immunopathol. 2020, 221, 110012. [Google Scholar] [CrossRef]
- Lee, D.E.; Ayoub, N.; Agrawal, D.K. Mesenchymal stem cells and cutaneous wound healing: Novel methods to increase cell delivery and therapeutic efficacy. Stem Cell Res. Ther. 2016, 7, 37. [Google Scholar] [CrossRef]
- Muhammad, S.A. Mesenchymal stromal cell secretome as a therapeutic strategy for traumatic brain injury. Biofactors 2019, 45, 880–891. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.H.; Pulin, A.A.; Seo, M.J.; Kota, D.J.; Ylostalo, J.; Larson, B.L.; Semprun-Prieto, L.; Delafontaine, P.; Prockop, D.J. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 2009, 5, 54–63. [Google Scholar] [CrossRef]
- Oh, J.Y.; Kim, M.K.; Shin, M.S.; Lee, H.J.; Ko, J.H.; Wee, W.R.; Lee, J.H. The anti-inflammatory and anti-angiogenic role of mesenchymal stem cells in corneal wound healing following chemical injury. Stem Cells 2008, 26, 1047–1055. [Google Scholar] [CrossRef]
- Li, F.; Zhao, S.Z. Mesenchymal stem cells: Potential role in corneal wound repair and transplantation. World J. Stem Cells 2014, 6, 296–304. [Google Scholar] [CrossRef]
- Sebbag, L.; Allbaugh, R.A.; Weaver, A.; Seo, Y.J.; Mochel, J.P. Histamine-Induced Conjunctivitis and Breakdown of Blood-Tear Barrier in Dogs: A Model for Ocular Pharmacology and Therapeutics. Front. Pharmacol. 2019, 10, 752. [Google Scholar] [CrossRef] [PubMed]
- Labelle, P. The Eye. Pathol. Basis Vet. Dis. 2017, 1265–1318.e1. [Google Scholar]
Eye Number | Eye | Breed | Age (Years) | Sex | Concurrent Ocular Diseases | Other Diseases | Presence of Corneal Healing (Days) |
---|---|---|---|---|---|---|---|
1 | OD | Chihuahua | 1 | F | - | - | 7 |
2 | OD | Shih tzu | 12 | F | Mild KCS | - | 14 |
3 | OD | Yorkshire terrier | 15 | F | Mild KCS | AD | 21 |
4 | OD | Chihuahua | 5 | M | - | - | 7 |
5 | OS | Boston terrier | 10 | F | - | - | 7 |
6 | OD | Shih tzu | 13 | F | Moderate KCS | - | 14 |
7 | OS | Shih tzu | 15 | F | Moderate KCS | - | 7 |
8 | OD | French bulldog | 8 | M | - | AD | 14 |
9 | OS | Yorkshire terrier | 15 | F | Mild KCS | AD | 7 |
10 | OD | Siberian husky | 3 | F | - | OE, AD | 35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kengkla, P.; Panyasing, Y.; Thayananuphat, A.; Tuntivanich, N. Effect of Subconjunctival Injection of Canine Adipose-Derived Mesenchymal Stem Cells on Canine Spontaneous Corneal Epithelial Defects. Animals 2024, 14, 3270. https://doi.org/10.3390/ani14223270
Kengkla P, Panyasing Y, Thayananuphat A, Tuntivanich N. Effect of Subconjunctival Injection of Canine Adipose-Derived Mesenchymal Stem Cells on Canine Spontaneous Corneal Epithelial Defects. Animals. 2024; 14(22):3270. https://doi.org/10.3390/ani14223270
Chicago/Turabian StyleKengkla, Pechchalee, Yaowalak Panyasing, Aree Thayananuphat, and Nalinee Tuntivanich. 2024. "Effect of Subconjunctival Injection of Canine Adipose-Derived Mesenchymal Stem Cells on Canine Spontaneous Corneal Epithelial Defects" Animals 14, no. 22: 3270. https://doi.org/10.3390/ani14223270
APA StyleKengkla, P., Panyasing, Y., Thayananuphat, A., & Tuntivanich, N. (2024). Effect of Subconjunctival Injection of Canine Adipose-Derived Mesenchymal Stem Cells on Canine Spontaneous Corneal Epithelial Defects. Animals, 14(22), 3270. https://doi.org/10.3390/ani14223270