Monitoring Multiple Behaviors in Beef Calves Raised in Cow–Calf Contact Systems Using a Machine Learning Approach
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Housing
2.2. Behavioral Data Collection
2.3. Behavior Tag Processing
2.4. Behavioral Classification Models
2.5. Preprocessing and Labeling
2.6. Feature Extraction and Selection
- X[k] represents the complex representation of the signal in the frequency domain.
- x[n] is the n-th sample of the accelerometer and gyroscope signals.
- N is the length of the time-domain signal, representing the total number of frequency points in the DFT.
- j is an imaginary unit.
- Q1 is the first quartile, representing the lower 25% of the data.
- Q3 is the third quartile, representing the upper 75% of the data.
- is the n-th gradient of the signal.
- is the -th sample of the signal.
- is the -th sample of the signal.
- is the length of the signal.
- is the time interval between the previous sample and the current sample.
2.7. Algorithm and Validation
2.8. Evaluation
3. Results
3.1. Behavioral Classification Results
3.2. ROC Curves with AUC Results
3.3. Correlation Coefficient Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sedó, S.G.U.; Winder, C.B.; Renaud, D.L. Graduate Student Literature review: The problem of calf mortality on dairy farms. J. Dairy Sci. 2023, 106, 7164–7176. [Google Scholar] [CrossRef] [PubMed]
- Duthie, C.A.; Bowen, J.M.; Bell, D.J.; Miller, G.A.; Mason, C.; Haskell, M.J. Feeding behaviour and activity as early indicators of disease in pre-weaned dairy calves. Animal 2021, 15, 100150. [Google Scholar] [CrossRef]
- Marchesini, G.; Mottaran, D.; Contiero, B.; Schiavon, E.; Segato, S.; Garbin, E.; Tenti, S.; Andrighetto, I. Use of rumination and activity data as health status and performance indicators in beef cattle during the early fattening period. Vet. J. 2018, 231, 41–47. [Google Scholar] [CrossRef]
- Swartz, T.H.; Schramm, H.H.; Petersson-Wolfe, C.S. Short Communication: Association between neonatal calf diarrhea and lying behaviors. Vet. Anim. Sci. 2020, 9, 100111. [Google Scholar] [CrossRef]
- Sutherland, M.A.; Lowe, G.L.; Huddart, F.J.; Waas, J.R.; Stewart, M. Measurement of dairy calf behavior prior to onset of clinical disease and in response to disbudding using automated calf feeders and accelerometers. J. Dairy Sci. 2018, 101, 8208–8216. [Google Scholar] [CrossRef]
- Belaid, M.A.; Rodríguez-Prado, M.; Rodríguez-Prado, D.V.; Chevaux, E.; Calsamiglia, S. Using behavior as an early predictor of sickness in veal calves. J. Dairy Sci. 2020, 103, 1874–1883. [Google Scholar] [CrossRef] [PubMed]
- Toaff-Rosenstein, R.L. The Sickness Response in Bovine Respiratory Disease; University of California: Davis, CA, USA, 2016. [Google Scholar]
- Lago, A.; McGuirk, S.M.; Bennett, T.B.; Cook, N.B.; Nordlund, K.V. Calf Respiratory Disease and Pen Microenvironments in Naturally Ventilated Calf Barns in Winter. J. Dairy Sci. 2006, 89, 4014–4025. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Bach, A.; Weary, D.M.; von Keyserlingk, M.A.G. Invited review: Transitioning from milk to solid feed in dairy heifers. J. Dairy Sci. 2016, 99, 885–902. [Google Scholar] [CrossRef]
- Webb, L.E.; Bokkers, E.A.M.; Engel, B.; Gerrits, W.J.J.; Berends, H.; van Reenen, C.G. Behaviour and welfare of veal calves fed different amounts of solid feed supplemented to a milk replacer ration adjusted for similar growth. Appl. Anim. Behav. Sci. 2012, 136, 108–116. [Google Scholar] [CrossRef]
- Sun, D.; Webb, L.; van der Tol, P.P.J.; van Reenen, K. A Systematic Review of Automatic Health Monitoring in Calves: Glimpsing the Future From Current Practice. Front. Vet. Sci. 2021, 8, 761468. [Google Scholar] [CrossRef]
- Fan, B.; Bryant, R.; Greer, A. Behavioral Fingerprinting: Acceleration Sensors for Identifying Changes in Livestock Health. J 2022, 5, 435–454. [Google Scholar] [CrossRef]
- Trénel, P.; Jensen, M.B.; Decker, E.L.; Skjøth, F. Technical note: Quantifying and characterizing behavior in dairy calves using the IceTag automatic recording device. J. Dairy Sci. 2009, 92, 3397–3401. [Google Scholar] [CrossRef]
- Hill, T.; Suarez-Mena, F.; Hu, W.; Dennis, T.; Schlotterbeck, R.; Timms, L.; Hulbert, L. Evaluation of an ear-attached movement sensor to record rumination, eating, and activity behaviors in 1-month-old calves. Prof. Anim. Sci. 2017, 33, 743–747. [Google Scholar] [CrossRef]
- Burfeind, O.; Schirmann, K.; von Keyserlingk, M.A.G.; Veira, D.M.; Weary, D.M.; Heuwieser, W. Technical note: Evaluation of a system for monitoring rumination in heifers and calves. J. Dairy Sci. 2011, 94, 426–430. [Google Scholar] [CrossRef] [PubMed]
- Kour, H.; Patison, K.P.; Corbet, N.J.; Swain, D.L. Validation of accelerometer use to measure suckling behaviour in Northern Australian beef calves. Appl. Anim. Behav. Sci. 2018, 202, 1–6. [Google Scholar] [CrossRef]
- Costa, J.H.C.; Cantor, M.C.; Neave, H.W. Symposium review: Precision technologies for dairy calves and management applications*. J. Dairy Sci. 2021, 104, 1203–1219. [Google Scholar] [CrossRef]
- Lowe, G.L.; Schaefer, A.L.; Waas, J.R.; Wilson, M.T.; Sutherland, M.A.; Stewart, M. Brief Communication: The use of infrared thermography and feeding behaviour for early disease detection in New Zealand dairy calves. Proc. N. Z. Soc. Anim. Prod. 2016, 76, 177–179. [Google Scholar]
- Swartz, T.H.; McGilliard, M.L.; Petersson-Wolfe, C.S. Technical note: The use of an accelerometer for measuring step activity and lying behaviors in dairy calves. J. Dairy Sci. 2016, 99, 9109–9113. [Google Scholar] [CrossRef]
- Sirovnik, J.; Barth, K.; de Oliveira, D.; Ferneborg, S.; Haskell, M.J.; Hillmann, E.; Jensen, M.B.; Mejdell, C.M.; Napolitano, F.; Vaarst, M.; et al. Methodological terminology and definitions for research and discussion of cow-calf contact systems. J. Dairy Res. 2020, 87, 108–114. [Google Scholar] [CrossRef]
- Kack, M.; Ziemerink, J.; Forster-Technik, G.N. Benefits, function and operation of computer-controlled calf feeders. In Proceedings of the First North American Conference on Precision Dairy Management, Toronto, ON, Canada, 2–5 March 2010. [Google Scholar]
- Whalin, L.; Weary, D.M.; von Keyserlingk, M.A.G. Understanding Behavioural Development of Calves in Natural Settings to Inform Calf Management. Animals 2021, 11, 2446. [Google Scholar] [CrossRef]
- Meagher, R.K.; Beaver, A.; Weary, D.M.; von Keyserlingk, M.A.G. Invited review: A systematic review of the effects of prolonged cow–calf contact on behavior, welfare, and productivity. J. Dairy Sci. 2019, 102, 5765–5783. [Google Scholar] [CrossRef] [PubMed]
- Hansen, B.G.; Langseth, E.; Berge, C. Animal welfare and cow-calf contact-farmers’ attitudes, experiences and adoption barriers. J. Rural Stud. 2023, 97, 34–46. [Google Scholar] [CrossRef]
- Mac, S.E.; Lomax, S.; Clark, C.E.F. Dairy cow and calf behavior and productivity when maintained together on a pasture-based system. Anim. Biosci. 2023, 36, 322–332. [Google Scholar] [CrossRef]
- Eriksson, H.; Fall, N.; Ivemeyer, S.; Knierim, U.; Simantke, C.; Fuerst-Waltl, B.; Winckler, C.; Weissensteiner, R.; Pomiès, D.; Martin, B.; et al. Strategies for keeping dairy cows and calves together—A cross-sectional survey study. Animal 2022, 16, 100624. [Google Scholar] [CrossRef]
- Domecq, J.; Skidmore, A.; Lloyd, J.; Kaneene, J. Relationship between body condition scores and milk yield in a large dairy herd of high yielding Holstein cows. J. Dairy Sci. 1997, 80, 101–112. [Google Scholar] [CrossRef]
- Bailey, D.W.; Trotter, M.G.; Tobin, C.; Thomas, M.G. Opportunities to Apply Precision Livestock Management on Rangelands. Front. Sustain. Food Syst. 2021, 5, 611915. [Google Scholar] [CrossRef]
- Johnsen, J.F.; Zipp, K.A.; Kälber, T.; de Passillé, A.M.; Knierim, U.; Barth, K.; Mejdell, C.M. Is rearing calves with the dam a feasible option for dairy farms?—Current and future research. Appl. Anim. Behav. Sci. 2016, 181, 1–11. [Google Scholar] [CrossRef]
- Valletta, J.J.; Torney, C.; Kings, M.; Thornton, A.; Madden, J. Applications of machine learning in animal behaviour studies. Anim. Behav. 2017, 124, 203–220. [Google Scholar] [CrossRef]
- Benaissa, S.; Tuyttens, F.A.M.; Plets, D.; de Pessemier, T.; Trogh, J.; Tanghe, E.; Martens, L.; Vandaele, L.; Van Nuffel, A.; Joseph, W.; et al. On the use of on-cow accelerometers for the classification of behaviours in dairy barns. Res. Vet. Sci. 2019, 125, 425–433. [Google Scholar] [CrossRef]
- Balasso, P.; Marchesini, G.; Ughelini, N.; Serva, L.; Andrighetto, I. Machine Learning to Detect Posture and Behavior in Dairy Cows: Information from an Accelerometer on the Animal’s Left Flank. Animals 2021, 11, 2972. [Google Scholar] [CrossRef]
- Borchers, M.R.; Chang, Y.M.; Proudfoot, K.L.; Wadsworth, B.A.; Stone, A.E.; Bewley, J.M. Machine-learning-based calving prediction from activity, lying, and ruminating behaviors in dairy cattle. J. Dairy Sci. 2017, 100, 5664–5674. [Google Scholar] [CrossRef] [PubMed]
- Carslake, C.; Vázquez-Diosdado, J.A.; Kaler, J. Machine Learning Algorithms to Classify and Quantify Multiple Behaviours in Dairy Calves Using a Sensor: Moving beyond Classification in Precision Livestock. Sensors 2021, 21, 88. [Google Scholar] [CrossRef] [PubMed]
- Sim, J.; Wright, C.C. The Kappa Statistic in Reliability Studies: Use, Interpretation, and Sample Size Requirements. Phys. Ther. 2005, 85, 257–268. [Google Scholar] [CrossRef]
- Walton, E.; Casey, C.; Mitsch, J.; Vázquez-Diosdado, J.A.; Yan, J.; Dottorini, T.; Ellis, K.A.; Winterlich, A.; Kaler, J. Evaluation of sampling frequency, window size and sensor position for classification of sheep behaviour. R. Soc. Open Sci. 2018, 5, 171442. [Google Scholar] [CrossRef]
- Palshikar, G. Simple algorithms for peak detection in time-series. In Proceedings of the 1st International Conference on Advanced Data Analysis, Business Analytics and Intelligence, Ahmedabad, India, 6–7 June 2009. [Google Scholar]
- Figo, D.; Diniz, P.C.; Ferreira, D.R.; Cardoso, J.M.P. Preprocessing techniques for context recognition from accelerometer data. Pers. Ubiquitous Comput. 2010, 14, 645–662. [Google Scholar] [CrossRef]
- Cooley, J.W.; Tukey, J.W. An Algorithm for the Machine Calculation of Complex Fourier Series. Math. Comput. 1965, 19, 297–301. [Google Scholar] [CrossRef]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.-Y. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In Proceedings of the Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Akiba, T.; Sano, S.; Yanase, T.; Ohta, T.; Koyama, M. Optuna: A Next-generation Hyperparameter Optimization Framework. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 2623–2631. [Google Scholar]
- Bradley, A.P. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognit. 1997, 30, 1145–1159. [Google Scholar] [CrossRef]
- Schneidewind, S.J.; Al Merestani, M.R.; Schmidt, S.; Schmidt, T.; Thöne-Reineke, C.; Wiegard, M. Rumination Detection in Sheep: A Systematic Review of Sensor-Based Approaches. Animals 2023, 13, 3756. [Google Scholar] [CrossRef]
- Price, E.; Langford, J.; Fawcett, T.W.; Wilson, A.J.; Croft, D.P. Classifying the posture and activity of ewes and lambs using accelerometers and machine learning on a commercial flock. Appl. Anim. Behav. Sci. 2022, 251, 105630. [Google Scholar] [CrossRef]
- Riaboff, L.; Shalloo, L.; Smeaton, A.F.; Couvreur, S.; Madouasse, A.; Keane, M.T. Predicting livestock behaviour using accelerometers: A systematic review of processing techniques for ruminant behaviour prediction from raw accelerometer data. Comput. Electron. Agric. 2022, 192, 106610. [Google Scholar] [CrossRef]
- Kuźnicka, E.; Gburzyński, P. Automatic detection of suckling events in lamb through accelerometer data classification. Comput. Electron. Agric. 2017, 138, 137–147. [Google Scholar] [CrossRef]
- Rasby, R. Early Weaning Beef Calves. Vet. Clin. N. Am.-Food Anim. Pract. 2007, 23, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Eslamizad, M.; Tümmler, L.-M.; Derno, M.; Hoch, M.; Kuhla, B. Technical Note: Development of a pressure sensor-based system for measuring rumination time in pre-weaned dairy calves1. J. Anim. Sci. 2018, 96, 4483–4489. [Google Scholar] [CrossRef]
- Reynolds, M.A.; Borchers, M.R.; Davidson, J.A.; Bradley, C.M.; Bewley, J.M. Technical note: An evaluation of technology-recorded rumination and feeding behaviors in dairy heifers. J. Dairy Sci. 2019, 102, 6555–6558. [Google Scholar] [CrossRef]
- Roland, L.; Schweinzer, V.; Kanz, P.; Sattlecker, G.; Kickinger, F.; Lidauer, L.; Berger, A.; Auer, W.; Mayer, J.; Sturm, V.; et al. Technical note: Evaluation of a triaxial accelerometer for monitoring selected behaviors in dairy calves. J. Dairy Sci. 2018, 101, 10421–10427. [Google Scholar] [CrossRef]
- Decandia, M.; Rassu, S.P.G.; Psiroukis, V.; Hadjigeorgiou, I.; Fountas, S.; Molle, G.; Acciaro, M.; Cabiddu, A.; Mameli, M.; Dimauro, C.; et al. Evaluation of proper sensor position for classification of sheep behaviour through accelerometers. Small Rumin. Res. 2021, 201, 106445. [Google Scholar] [CrossRef]
- Mansbridge, N.; Mitsch, J.; Bollard, N.; Ellis, K.; Miguel-Pacheco, G.G.; Dottorini, T.; Kaler, J. Feature Selection and Comparison of Machine Learning Algorithms in Classification of Grazing and Rumination Behaviour in Sheep. Sensors 2018, 18, 3532. [Google Scholar] [CrossRef]
- Sakai, K.; Oishi, K.; Miwa, M.; Kumagai, H.; Hirooka, H. Behavior classification of goats using 9-axis multi sensors: The effect of imbalanced datasets on classification performance. Comput. Electron. Agric. 2019, 166, 105027. [Google Scholar] [CrossRef]
- Callan, R.J.; Garry, F.B. Biosecurity and bovine respiratory disease. Vet. Clin. Food Anim. Pract. 2002, 18, 57–77. [Google Scholar] [CrossRef]
- Swartz, T.H.; Findlay, A.N.; Petersson-Wolfe, C.S. Short communication: Automated detection of behavioral changes from respiratory disease in pre-weaned calves. J. Dairy Sci. 2017, 100, 9273–9278. [Google Scholar] [CrossRef] [PubMed]
- Cantor, M.C.; Casella, E.; Silvestri, S.; Renaud, D.L.; Costa, J.H.C. Using Machine Learning and Behavioral Patterns Observed by Automated Feeders and Accelerometers for the Early Indication of Clinical Bovine Respiratory Disease Status in Preweaned Dairy Calves. Front. Anim. Sci. 2022, 3, 852359. [Google Scholar] [CrossRef]
- Carpentier, L.; Berckmans, D.; Youssef, A.; Berckmans, D.; van Waterschoot, T.; Johnston, D.; Ferguson, N.; Earley, B.; Fontana, I.; Tullo, E.; et al. Automatic cough detection for bovine respiratory disease in a calf house. Biosyst. Eng. 2018, 173, 45–56. [Google Scholar] [CrossRef]
- Vandermeulen, J.; Bahr, C.; Johnston, D.; Earley, B.; Tullo, E.; Fontana, I.; Guarino, M.; Exadaktylos, V.; Berckmans, D. Early recognition of bovine respiratory disease in calves using automated continuous monitoring of cough sounds. Comput. Electron. Agric. 2016, 129, 15–26. [Google Scholar] [CrossRef] [PubMed]
- López, V.; Fernández, A.; García, S.; Palade, V.; Herrera, F. An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics. Inf. Sci. 2013, 250, 113–141. [Google Scholar] [CrossRef]
- Guevara-Mann, D.; Renaud, D.L.; Cantor, M.C. Activity behaviors and relative changes in activity patterns recorded by precision technology were associated with diarrhea status in individually housed calves. J. Dairy Sci. 2023, 106, 9366–9376. [Google Scholar] [CrossRef]
Behavior | Description |
---|---|
Natural suckling | The continuous action of a calf trying to suckle its mother’s milk. |
Feeding | The calf approaches the feed trough, lowers its head, chews the feed, and swallows. |
Rumination | The sequential action of regurgitating a feed bolus from the rumen, chewing it repeatedly, and then swallowing. |
Lying | A condition in which the legs, knees, lower abdomen, or thighs, excluding the bottoms of the hooves, are in sufficient contact with the ground. |
Standing | A condition in which the bottoms of the hooves touch the ground and fully support the calf’s body weight. |
Coughing | The sudden and forceful expulsion of air in response to mucus or foreign materials in the airways or lungs. The sides of the stomach momentarily swell and contract, and at the same time, the face extends forward and then retracts. The tongue may be momentarily exposed outside the mouth while coughing. |
Behavior Class | Accuracy (%) | TPR (%) | TNR (%) | PPV (%) | F1 Score (%) |
---|---|---|---|---|---|
Natural suckling | 99.10 | 96.75 | 99.50 | 97.01 | 96.88 |
Rumination | 97.36 | 93.74 | 98.71 | 96.43 | 95.07 |
Feeding | 95.76 | 91.68 | 97.20 | 92.10 | 91.89 |
Others | 93.79 | 91.80 | 94.74 | 89.26 | 90.51 |
Overall | 96.50 | 93.49 | 97.54 | 93.70 | 93.59 |
Behavior Class | Accuracy (%) | TPR (%) | TNR (%) | PPV (%) | F1 Score (%) |
---|---|---|---|---|---|
Lying | 97.98 | 98.82 | 96.43 | 98.08 | 98.45 |
Standing | 97.98 | 96.43 | 98.82 | 97.80 | 97.11 |
Overall | 97.98 | 97.63 | 97.63 | 97.94 | 97.78 |
Behavior Class | Accuracy (%) | TPR (%) | TNR (%) | PPV (%) | F1 Score (%) |
---|---|---|---|---|---|
Non-coughing | 88.88 | 92.57 | 78.41 | 92.41 | 92.49 |
Coughing | 88.88 | 78.41 | 92.57 | 78.82 | 78.61 |
Overall | 88.88 | 85.49 | 85.49 | 85.61 | 85.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-J.; Jin, X.-C.; Bharanidharan, R.; Kim, N.-Y. Monitoring Multiple Behaviors in Beef Calves Raised in Cow–Calf Contact Systems Using a Machine Learning Approach. Animals 2024, 14, 3278. https://doi.org/10.3390/ani14223278
Kim S-J, Jin X-C, Bharanidharan R, Kim N-Y. Monitoring Multiple Behaviors in Beef Calves Raised in Cow–Calf Contact Systems Using a Machine Learning Approach. Animals. 2024; 14(22):3278. https://doi.org/10.3390/ani14223278
Chicago/Turabian StyleKim, Seong-Jin, Xue-Cheng Jin, Rajaraman Bharanidharan, and Na-Yeon Kim. 2024. "Monitoring Multiple Behaviors in Beef Calves Raised in Cow–Calf Contact Systems Using a Machine Learning Approach" Animals 14, no. 22: 3278. https://doi.org/10.3390/ani14223278
APA StyleKim, S. -J., Jin, X. -C., Bharanidharan, R., & Kim, N. -Y. (2024). Monitoring Multiple Behaviors in Beef Calves Raised in Cow–Calf Contact Systems Using a Machine Learning Approach. Animals, 14(22), 3278. https://doi.org/10.3390/ani14223278