Effects of Genetic Polymorphism in the IFI27 Gene on Milk Fat Traits and Relevance to Lipid Metabolism in Bovine Mammary Epithelial Cells
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Milk Traits Analysis
2.2. Animal Cell Line
2.3. Primers Design and Polymerase Chain Reaction (PCR) Amplification
2.4. DNA Extraction
2.5. SNPs Detection of the IFI27 Gene
2.6. Correlation Analysis
2.7. Construction of pBI-CMV3-IFI27 and pb7sk-GFP-shRNA
2.8. bMECs Culture and Treatment
2.9. RT-qPCR
2.10. ELISA
2.11. Determination of TGs, CHOL, and NEFA Content in bMECs of IFI27 Gene
2.12. Statistical Analysis
3. Results
3.1. Six Polymorphisms Were Found in IFI27 Genes
3.2. Genetic Diversity of SNPs in the IFI27 Gene
3.3. The Association of IFI27 Polymorphisms with Milk Quality
3.4. The Linkage Analysis of IFI27 Polymorphisms Haplotype and Milk Quality
3.5. Construction and Transfection of pBI-CMV3-IFI27 and pb7sk-GFP-shRNA Vector
3.6. The IFI27 Gene Increases the Triglycerides (TGs) Content and Decreases the Cholesterol (CHOL) and Nonestesterified Fatty Acid (NEFA) Content in bMECs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fang, M.; Fu, W.; Jiang, D.; Zhang, Q.; Sun, D.; Ding, X.; Liu, J. A Multiple-SNP Approach for Genome-Wide Association Study of Milk Production Traits in Chinese Holstein Cattle. PLoS ONE 2014, 9, e99544. [Google Scholar] [CrossRef] [PubMed]
- Ibeagha-Awemu, E.M.; Peters, S.O.; Akwanji, K.A.; Imumorin, I.G.; Zhao, X. High Density Genome Wide Genotyping-by-Sequencing and Association Identifies Common and Low Frequency SNPs, and Novel Candidate Genes Influencing Cow Milk Traits. Sci. Rep. 2016, 6, 31109. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Liu, J.; Sun, D.; Ma, P.; Ding, X.; Yu, Y.; Zhang, Q. Genome Wide Association Studies for Milk Production Traits in Chinese Holstein Population. PLoS ONE 2010, 5, e13661. [Google Scholar] [CrossRef] [PubMed]
- Du, A.; Zhao, F.; Liu, Y.; Xu, L.; Chen, K.; Sun, D.; Han, B. Genetic Polymorphisms of PKLR Gene and Their Associations with Milk Production Traits in Chinese Holstein Cows. Front. Genet. 2022, 13, 1002706. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Gao, Q.; Zhang, Q.; Arbab, A.A.I.; Li, M.; Yang, Z.; Karrow, N.A.; Mao, Y. Polymorphisms of the ACSL1 Gene Influence Milk Production Traits and Somatic Cell Score in Chinese Holstein Cows. Animals 2020, 10, 2282. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Gao, Q.; Wang, M.; Liang, Y.; Sun, Y.; Chen, Z.; Zhang, H.; Karrow, N.A.; Yang, Z.; Mao, Y. Polymorphisms in Fatty Acid Desaturase 2 Gene Are Associated with Milk Production Traits in Chinese Holstein Cows. Animals 2020, 10, 671. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Jia, R.; Xu, L.; Su, D.; Li, Y.; Liu, L.; Ma, Z.; Sun, D.; Han, B. Fatty Acid Desaturase 2 Affects the Milk-production Traits in Chinese Holsteins. Anim. Genet. 2022, 53, 422–426. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Liang, W.; Liu, L.; Li, Y.; Sun, D. Determination of Genetic Effects of ATF3 and CDKN1A Genes on Milk Yield and Compositions in Chinese Holstein Population. BMC Genet. 2017, 18, 47. [Google Scholar] [CrossRef]
- Shi, L.; Liu, L.; Lv, X.; Ma, Z.; Yang, Y.; Li, Y.; Zhao, F.; Sun, D.; Han, B. Polymorphisms and Genetic Effects of PRLR, MOGAT1, MINPP1 and CHUK Genes on Milk Fatty Acid Traits in Chinese Holstein. BMC Genet. 2019, 20, 69. [Google Scholar] [CrossRef]
- Li, S.; Xie, Y.; Zhang, W.; Gao, J.; Wang, M.; Zheng, G.; Yin, X.; Xia, H.; Tao, X. Interferon Alpha-Inducible Protein 27 Promotes Epithelial–Mesenchymal Transition and Induces Ovarian Tumorigenicity and Stemness. J. Surg. Res. 2015, 193, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Jiao, B.; Yao, M.; Shi, X.; Zheng, Z.; Li, S.; Chen, L. ISG12a Inhibits HCV Replication and Potentiates the Anti-HCV Activity of IFN-α through Activation of the Jak/STAT Signaling Pathway Independent of Autophagy and Apoptosis. Virus Res. 2017, 227, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Papac-Milicevic, N.; Breuss, J.M.; Zaujec, J.; Ryban, L.; Plyushch, T.; Wagner, G.A.; Fenzl, S.; Dremsek, P.; Cabaravdic, M.; Steiner, M.; et al. The Interferon Stimulated Gene 12 Inactivates Vasculoprotective Functions of NR4A Nuclear Receptors. Circ. Res. 2012, 110, 8. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Long, Y.; Liu, B.; Yang, D.; Li, C.; Chen, T.; Wang, X.; Liu, C.; Zhu, H. ISG12a Mediates Cell Response to Newcastle Disease Viral Infection. Virology 2014, 462–463, 283–294. [Google Scholar] [CrossRef] [PubMed]
- Rosebeck, S.; Leaman, D.W. Mitochondrial Localization and Pro-Apoptotic Effects of the Interferon-Inducible Protein ISG12a. Apoptosis 2008, 13, 562–572. [Google Scholar] [CrossRef]
- Shen, B.; Zhang, L.; Lian, C.; Lu, C.; Zhang, Y.; Pan, Q.; Yang, R.; Zhao, Z. Deep Sequencing and Screening of Differentially Expressed MicroRNAs Related to Milk Fat Metabolism in Bovine Primary Mammary Epithelial Cells. Int. J. Mol. Sci. 2016, 17, 200. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Zhao, Y.; Iqbal, A.; Xia, L.; Bai, Z.; Sun, H.; Fang, X.; Yang, R.; Zhao, Z. Effects of Polymorphism of the GPAM Gene on Milk Quality Traits and Its Relation to Triglyceride Metabolism in Bovine Mammary Epithelial Cells of Dairy Cattle. Arch. Anim. Breed. 2021, 64, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Jelen, P. Handbook of Milk Composition. Int. Dairy J. 1995, 6, 1223–1224. [Google Scholar] [CrossRef]
- Wu, Y.; Sun, Y.; Zhang, Z.; Chen, J.; Dong, G. Effects of Peptidoglycan, Lipoteichoic Acid and Lipopolysaccharide on Inflammation, Proliferation and Milk Fat Synthesis in Bovine Mammary Epithelial Cells. Toxins 2020, 12, 497. [Google Scholar] [CrossRef]
- Kukula, M.; Kolarič, L.; Šimko, P. Decrease of Cholesterol Content in Milk by Sorption onto β-Cyclodextrin Crosslinked with Tartaric Acid; Considerations and Implications. Acta Chim. Slovaca 2020, 13, 55–60. [Google Scholar] [CrossRef]
- Kolarič, L.; Šimko, P. Application of β-Cyclodextrin in the Production of Low-Cholesterol Milk and Dairy Products. Trends Food Sci. Technol. 2022, 119, 13–22. [Google Scholar] [CrossRef]
Primer | Forward Sequences | Reverse Sequences | Target Sequence | Amplified Fragment (bp) | Annealing Temperature (°C) | |
---|---|---|---|---|---|---|
shRNA of IFI27 | 5′-AGAGGGCGGCCAAGATGATGTCAATTCAAGAGATTGACATCATCTTGGCCGCCTTTTTTG-3′ | 5′-GATCCAAAAAAGGCGGCCAAGATGATGTCAATCTCTTGAATTGACATCATCTTGGCCGCC-3′ | GGCGGCCAAGATGATGTCAAT | --- | --- | |
Polymorphism | UTR-(-127) C>A, UTR-(-105) T>A, UTR-(-87) G>A | 5′-AGCAGAGAAAGGTATGTGGCAG-3′ | 5′-AGTACACGGGAACTGATACAGG-3′ | --- | 958 | 60 |
I1-763 G>T, E2-77 G>A, E2-127 G>T | 5′-CTTCCCAAGCCCGCAT-3′ | 5′-GGAAATGGACCTGAATTGAAG-3′ | --- | 896 | 60 | |
Coding region of IFI27 | 5′-cgacgcgtGTTCTCAAACACAAGTTC-3′ | 5′-cccaagcttCACCTGGTCCTCTTCTC-3′ | --- | 657 | 60 |
Primer | Forward Sequences | Reverse Sequences | Sequence Number | Amplified Fragment (bp) |
---|---|---|---|---|
IFI27 | 5’-TGAGCACTTTGCCAGTAGGAG-3’ | 5’-CCAAGGAGGAGGCAGTGAT-3’ | NM_001038050.2 | 657 |
β-actin | 5’-AGAGCAAGAGAGGCATCC-3’ | 5’-TCGTTGTAGAAGGTGTGGT-3’ | NM_173979.3 | 133 |
Type | Frequency | He | Ne | PIC | X2 | ||||
---|---|---|---|---|---|---|---|---|---|
Genotype Frequency | Allele Frequency | ||||||||
UTR-(-127) C>A | CC(0.60) | CA(0.40) | --- | C(0.80) | A(0.20) | 0.32 | 1.47 | 0.27 | 2.45 |
UTR-(-105) T>A | TT(0.72) | TA(0.28) | --- | T(0.86) | A(0.14) | 0.24 | 1.32 | 0.21 | 0.74 |
UTR-(-87) G>A | GG(0.67) | GA(0.33) | --- | G(0.84) | A(0.16) | 0.27 | 1.38 | 0.34 | 1.52 |
I1-763 G>T | GG(0.82) | GT(0.18) | --- | G(0.91) | T(0.09) | 0.17 | 1.20 | 0.15 | 0.23 |
E2-77 G>A | AA(0.13) | AG(0.41) | GG(0.46) | A(0.33) | G(0.67) | 0.44 | 1.80 | 0.35 | 0.64 |
E2-127 G>T | GG(0.43) | GT(0.18) | TT(0.39) | G(0.52) | T(0.48) | 0.50 | 2.00 | 0.37 | 50.70 |
SNP Genotype | Milk Yield (kg) | Fat (%) | Protein (%) | Lactose (%) | Dry Matter (%) | SCC (104 mL−1) | BUN (mg/L) | FCM (kg) | |
---|---|---|---|---|---|---|---|---|---|
UTR-(-127) C>A | CC | 27.41 ± 0.66 | 4.50 ± 0.04 | 3.42 ± 0.02 | 4.79 ± 0.02 | 13.53 ± 0.08 | 34.91 ± 5.26 | 19.13 b ± 0.20 | 37.97 ± 1.12 |
CA | 26.89 ± 0.92 | 4.55 ± 0.05 | 3.50 ± 0.03 | 4.80 ± 0.02 | 13.69 ± 0.11 | 53.07 ± 10.57 | 19.81 a ± 0.22 | 41.16 ± 1.67 | |
UTR-(-105) T>A | TT | 27.39 ± 0.60 | 4.50 ± 0.04 | 3.44 ± 0.02 | 4.79 ± 0.02 | 13.55 ± 0.07 | 38.72 ± 5.63 | 19.19 b ± 0.17 | 38.46 ± 1.03 |
TA | 26.72 ± 1.14 | 4.58 ± 0.06 | 3.49 ± 0.04 | 4.79 ± 0.02 | 13.70 ± 0.13 | 51.17 ± 12.37 | 19.96 a ± 0.27 | 41.26 ± 2.13 | |
UTR-(-87) G>A | GG | 27.33 ± 0.60 | 4.50 ± 0.04 | 3.44 ± 0.02 | 4.79 ± 0.02 | 13.55 ± 0.07 | 34.04 b ± 4.75 | 19.21 ± 0.18 | 38.20 ± 1.05 |
GA | 26.94 ± 1.09 | 4.56 ± 0.06 | 3.48 ± 0.04 | 4.79 ± 0.03 | 13.67 ± 0.12 | 59.02 a ± 12.70 | 19.80 ± 0.25 | 41.41 ± 1.92 | |
I1-763 G>T | GG | 26.82 ± 0.52 | 4.50 ± 0.03 | 3.42 b ± 0.02 | 4.78 a ± 0.02 | 13.49 ± 0.07 | 41.62 ± 5.38 | 19.40 ± 0.15 | 38.83 ± 0.95 |
GT | 28.03 ± 1.26 | 4.60 ± 0.07 | 3.53 a ± 0.04 | 4.70 b ± 0.04 | 13.80 ± 0.14 | 44.55 ± 10.49 | 19.33 ± 0.30 | 39.20 ± 1.95 | |
E2-77 G>A | AA | 27.04 ± 1.69 | 4.54 ± 0.10 | 3.45 ± 0.05 | 4.75 ± 0.05 | 13.53 ± 0.20 | 51.76 ± 15.08 | 19.49 ± 0.36 | 37.68 ± 3.27 |
AG | 26.92 ± 0.76 | 4.60 a ± 0.04 | 3.48 a ± 0.03 | 4.76 ± 0.02 | 13.76 ± 0.08 | 38.66 ± 6.03 | 19.44 ± 0.21 | 39.39 ± 1.22 | |
GG | 25.81 ± 0.99 | 4.22 b ± 0.13 | 3.23 b ± 0.10 | 4.54 ± 0.14 | 12.70 ± 0.38 | 40.54 ± 7.61 | 18.37 ± 0.57 | 36.89 ± 1.58 | |
E2-127 G>T | GG | 26.82 ± 0.79 | 4.58 a ± 0.05 | 3.47 a ± 0.02 | 4.75 ± 0.02 | 13.70 a ± 0.09 | 42.59 ± 6.36 | 19.28 ± 0.20 | 38.13 ± 1.37 |
GT | 26.61 ± 1.23 | 4.48 ± 0.06 | 3.46 ± 0.06 | 4.77 ± 0.03 | 13.52 ± 0.14 | 45.15 ± 11.92 | 19.67 ± 0.32 | 38.25 ± 2.03 | |
TT | 25.90 ± 1.10 | 4.20 b ± 0.15 | 3.19 b ± 0.11 | 4.50 ± 0.16 | 12.62 b ± 0.45 | 37.95 ± 8.16 | 18.26 ± 0.66 | 37.74 ± 1.78 |
Haplotype Combination | Milk Yield (kg) | Fat (%) | Protein (%) | Lactose (%) | Dry Matter (%) | SCC (104 mL−1) | BUN (mg/L) | FCM (kg) |
---|---|---|---|---|---|---|---|---|
H1H1 | 27.41 ± 0.66 | 4.50 ± 0.04 | 3.42 ± 0.02 | 4.79 ± 0.02 | 13.53 ± 0.08 | 34.91 b ± 5.26 | 19.13 b ± 0.20 | 37.97 ± 1.12 |
H1H2 | 26.75 ± 1.18 | 4.58 ± 0.06 | 3.49 ± 0.04 | 4.79 ± 0.02 | 13.68 ± 0.13 | 52.62 ± 12.72 | 19.91 a ± 0.28 | 41.28 ± 2.20 |
H1H3 | 26.77 ± 1.59 | 4.47 ± 0.13 | 3.52 ± 0.10 | 4.83 ± 0.04 | 13.73 ± 0.29 | 29.57 b ± 8.22 | 19.67 ± 0.55 | 39.96 ± 3.83 |
H1H4 | 27.86 ± 2.99 | 4.45 ± 0.18 | 3.47 ± 0.12 | 4.76 ± 0.10 | 13.60 ± 0.38 | 89.97 a ± 42.28 | 19.23 ± 0.52 | 42.04 ± 3.93 |
H5H5 | 27.31 ± 0.66 | 4.42 b ± 0.04 | 3.38 b ± 0.03 | 4.79 ± 0.03 | 13.33 ± 0.10 | 40.35 ± 7.76 | 19.35 ± 0.20 | 38.84 ± 1.21 |
H5H6 | 26.17 ± 0.85 | 4.60 a ± 0.04 | 3.46 ± 0.03 | 4.77 ± 0.02 | 13.71 ± 0.09 | 37.59 ± 6.99 | 19.55 ± 0.25 | 38.97 ± 1.54 |
H5H7 | 28.77 ± 1.50 | 4.59 ± 0.08 | 3.52 a ± 0.06 | 4.72 ± 0.04 | 13.89 ± 0.18 | 41.31 ± 12.20 | 19.19 ± 0.39 | 40.41 ± 1.88 |
H6H6 | 26.47 ± 2.34 | 4.52 ± 0.15 | 3.46 ± 0.08 | 4.79 ± 0.04 | 13.58 ± 0.30 | 63.64 ± 23.17 | 19.19 ± 0.51 | 38.30 ± 4.38 |
H6H7 | 27.98 ± 2.48 | 4.58 ± 0.10 | 3.44 ± 0.04 | 4.69 ± 0.10 | 13.45 ± 0.25 | 31.96 ± 9.19 | 19.97 ± 0.41 | 36.64 ± 5.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, X.; Zhao, Z.; Chen, X.; Miao, F.; Li, J.; Yu, H.; Jiang, P.; Lin, Z. Effects of Genetic Polymorphism in the IFI27 Gene on Milk Fat Traits and Relevance to Lipid Metabolism in Bovine Mammary Epithelial Cells. Animals 2024, 14, 3284. https://doi.org/10.3390/ani14223284
Jiang X, Zhao Z, Chen X, Miao F, Li J, Yu H, Jiang P, Lin Z. Effects of Genetic Polymorphism in the IFI27 Gene on Milk Fat Traits and Relevance to Lipid Metabolism in Bovine Mammary Epithelial Cells. Animals. 2024; 14(22):3284. https://doi.org/10.3390/ani14223284
Chicago/Turabian StyleJiang, Xinyi, Zhihui Zhao, Xuanxu Chen, Fengshuai Miao, Jing Li, Haibin Yu, Ping Jiang, and Ziwei Lin. 2024. "Effects of Genetic Polymorphism in the IFI27 Gene on Milk Fat Traits and Relevance to Lipid Metabolism in Bovine Mammary Epithelial Cells" Animals 14, no. 22: 3284. https://doi.org/10.3390/ani14223284
APA StyleJiang, X., Zhao, Z., Chen, X., Miao, F., Li, J., Yu, H., Jiang, P., & Lin, Z. (2024). Effects of Genetic Polymorphism in the IFI27 Gene on Milk Fat Traits and Relevance to Lipid Metabolism in Bovine Mammary Epithelial Cells. Animals, 14(22), 3284. https://doi.org/10.3390/ani14223284