Biomechanical Evaluation of a Novel Ceramic Implant for Canine Cranial Cruciate Ligament Rupture Treatment: A Finite Element Analysis Approach
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Canine Specimens
3.2. Strain on Ligaments
3.3. Advancement of the Tibial Tuberosity
3.4. Pressure Maps
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
CCL | PT | |||
---|---|---|---|---|
Condition | Condition 1 | Condition 1 | Condition 2 | Condition 3 |
BW—Pearson’s correlation coefficient | 0.87436 <0.0001 | 0.73722 0.0017 | 0.83667 0.0001 | 0.80143 0.0003 |
advancement—Pearson’s correlation coefficient | 0.88952 <0.0001 | 0.80453 0.0003 | 0.82717 0.0001 | 0.91273 <0.0001 |
References
- Taylor-Brown, F.E.; Meeson, R.L.; Brodbelt, D.C.; Church, D.B.; McGreevy, P.D.; Thomson, P.C.; O’Neill, D.G. Epidemiology of Cranial Cruciate Ligament Disease Diagnosis in Dogs Attending Primary-Care Veterinary Practices in England. Vet. Surg. 2015, 44, 777–783. [Google Scholar] [CrossRef]
- Spinella, G.; Arcamone, G.; Valentini, S. Cranial Cruciate Ligament Rupture in Dogs: Review on Biomechanics, Etiopathogenetic Factors and Rehabilitation. Vet. Sci. 2021, 8, 186. [Google Scholar] [CrossRef]
- Hayashi, K.; Manley, P.A.; Muir, P. Cranial cruciate ligament pathophysiology in dogs with cruciate disease: A review. J. Am. Anim. Hosp. Assoc. 2004, 40, 385–390. [Google Scholar] [CrossRef]
- Niebauer, G.W.; Restucci, B. Etiopathogenesis of Canine Cruciate Ligament Disease: A Scoping Review. Animals 2023, 13, 187. [Google Scholar] [CrossRef]
- Heffron, L.E.; Campbell, J.R. Morphology, histology and functional anatomy of the canine cranial cruciate ligament. Vet. Rec. 1978, 102, 280–283. [Google Scholar] [CrossRef]
- Vasseur, P.B. Clinical Results Following Nonoperative Management for Rupture of the Cranial Cruciate Ligament in Dogs. Vet. Surg. 2008, 13, 243–246. [Google Scholar] [CrossRef]
- Duerr, F.M.; Martin, K.W.; Rishniw, M.; Palmer, R.H.; Selmic, L.E. Treatment of canine cranial cruciate ligament disease. A survey of ACVS Diplomates and primary care veterinarians. Vet. Comp. Orthop. Traumatol. 2014, 27, 478–483. [Google Scholar] [CrossRef]
- Kim, S.E.; Pozzi, A.; Kowaleski, M.P.; Lewis, D.D. Tibial osteotomies for cranial cruciate ligament insufficiency in dogs. Vet. Surg. 2008, 37, 111–125. [Google Scholar] [CrossRef]
- Slocum, B.; Slocum, T.D. Tibial plateau leveling osteotomy for repair of cranial cruciate ligament rupture in the canine. Vet. Clin. N. Am. Small Anim. Pract. 1993, 23, 777–795. [Google Scholar] [CrossRef]
- Montavon, P.M.; Damur, D.M.; Tepic, S. Advancement of the tibial tuberosity for the treatment of cranial cruciate deficient canine stifle. In Proceedings of the 1st World Orthopedic Veterinary Congress, Munich, Germany, 5–8 September 2002; p. 152. [Google Scholar]
- Aragosa, F.; Caterino, C.; Della Valle, G.; Fatone, G. Tibial Tuberosity Advancement Techniques (TTAT): A Systematic Review. Animals 2022, 12, 2114. [Google Scholar] [CrossRef]
- Samoy, Y.; Verhoeven, G.; Bosmans, T.; Van der Vekens, E.; de Bakker, E.; Verleyen, P.; Van Ryssen, B. TTA Rapid: Description of the Technique and Short Term Clinical Trial Results of the First 50 Cases. Vet. Surg. 2015, 44, 474–484. [Google Scholar] [CrossRef] [PubMed]
- Baino, F.; Minguella-Canela, J.; Korkusuz, F.; Korkusuz, P.; Kankilic, B.; Montealegre, M.A.; De Los Santos-Lopez, M.A.; Vitale-Brovarone, C. In Vitro Assessment of Bioactive Glass Coatings on Alumina/Zirconia Composite Implants for Potential Use in Prosthetic Applications. Int. J. Mol. Sci. 2019, 20, 722. [Google Scholar] [CrossRef]
- Sa, M.J.; Rezende, C.M.; Silva Junior, V.A.; Garcia, H.C.; Griffon, D.J.; Silva, V.V. In vivo behavior of zirconia hydroxyapatite (ZH) ceramic implants in dogs: A clinical, radiographic, and histological study. J. Biomater. Appl. 2007, 22, 5–31. [Google Scholar] [CrossRef] [PubMed]
- Pilz, M.; Staats, K.; Tobudic, S.; Assadian, O.; Presterl, E.; Windhager, R.; Holinka, J. Zirconium Nitride Coating Reduced Staphylococcus epidermidis Biofilm Formation on Orthopaedic Implant Surfaces: An In Vitro Study. Clin. Orthop. Relat. Res. 2019, 477, 461–466. [Google Scholar] [CrossRef]
- Molina-Manso, D.; del Prado, G.; Ortiz-Perez, A.; Manrubia-Cobo, M.; Gomez-Barrena, E.; Cordero-Ampuero, J.; Esteban, J. In vitro susceptibility to antibiotics of staphylococci in biofilms isolated from orthopaedic infections. Int. J. Antimicrob. Agents 2013, 41, 521–523. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.; Craig, D.; Cambridge, T.; Sebestyen, P.; Su, Y.; Fahie, M.A. Major complications of tibial tuberosity advancement in 1613 dogs. Vet. Surg. 2017, 46, 494–500. [Google Scholar] [CrossRef]
- Ferrell, C.L.; Barnhart, M.D.; Herman, E. Impact of postoperative antibiotics on rates of infection and implant removal after tibial tuberosity advancement in 1,768 canine stifles. Vet. Surg. 2019, 48, 694–699. [Google Scholar] [CrossRef]
- Gong, H.; Wang, L.; Zhang, M.; Fan, Y. 8—Computational modeling of bone and bone remodeling. In Computational Modelling of Biomechanics and Biotribology in the Musculoskeletal System; Jin, Z., Ed.; Woodhead Publishing: Sawston, UK, 2014; pp. 244–267. [Google Scholar]
- Matsui, A.; Shimizu, M.; Beale, B.; Takahashi, F.; Yamaguchi, S. Assessment of T2 Relaxation Times for Normal Canine Knee Articular Cartilage by T2 Mapping Using 1.5-T Magnetic Resonance Imaging. Vet. Comp. Orthop. Traumatol. 2017, 30, 391–397. [Google Scholar] [CrossRef]
- Wingfield, C.; Amis, A.A.; Stead, A.C.; Law, H.T. Comparison of the biomechanical properties of rottweiler and racing greyhound cranial cruciate ligaments. J. Small Anim. Pract. 2000, 41, 303–307. [Google Scholar] [CrossRef]
- Haut, R.C.; Lancaster, R.L.; DeCamp, C.E. Mechanical properties of the canine patellar tendon: Some correlations with age and the content of collagen. J. Biomech. 1992, 25, 163–173. [Google Scholar] [CrossRef]
- Dupuis, J.; Harari, J.; Blackketter, D.M.; Gallina, A.M. Evaluation of the lateral collateral ligament after fibular head transposition in dogs. Vet. Surg. 1994, 23, 456–465. [Google Scholar] [CrossRef] [PubMed]
- Dries, B. Quantification of Muscle Parameters in the Canine Hind Limb for Modeling Purposes. Ph.D. Thesis, Ghent University, Ghent, Belgium, 2018. [Google Scholar]
- Mostafa, A.A.; Griffon, D.J.; Thomas, M.W.; Constable, P.D. Proximodistal alignment of the canine patella: Radiographic evaluation and association with medial and lateral patellar luxation. Vet. Surg. 2008, 37, 201–211. [Google Scholar] [CrossRef]
- Behrens, B.A.; Nolte, I.; Bouguecha, A.; Helms, G.; Gerkhardt, E.; Meyer-Lindenberg, A. [Determination of the elastic properties of the compact bone in the femur of dogs]. Dtsch. Tierarztl. Wochenschr. 2006, 113, 24–27. [Google Scholar]
- Bartolin, P.B.; Boixadera, R.; Hudetz, D. Experimental testing and finite element method analysis of the anterior cruciate ligament primary repair with internal brace augmentation. Med. Eng. Phys. 2021, 95, 76–83. [Google Scholar] [CrossRef]
- Koh, Y.G.; Lee, J.A.; Kim, Y.S.; Lee, H.Y.; Kim, H.J.; Kang, K.T. Optimal mechanical properties of a scaffold for cartilage regeneration using finite element analysis. J. Tissue Eng. 2019, 10, 2041731419832133. [Google Scholar] [CrossRef]
- Trad, Z.; Barkaoui, A.; Chafra, M.; Tavares, J.M.R. Finite element analysis of the effect of high tibial osteotomy correction angle on articular cartilage loading. Proc. Inst. Mech. Eng. H 2018, 232, 553–564. [Google Scholar] [CrossRef] [PubMed]
- Hadjicharalambous, C.; Buyakov, A.; Buyakova, S.; Kulkov, S.; Chatzinikolaidou, M. Porous alumina, zirconia and alumina/zirconia for bone repair: Fabrication, mechanical and in vitro biological response. Biomed. Mater. 2015, 10, 025012. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.C.; Torres, B.T.; Budsberg, S.C. Evaluation of a three-dimensional kinematic model for canine gait analysis. Am. J. Vet. Res. 2010, 71, 1118–1122. [Google Scholar] [CrossRef]
- Brown, N.P.; Bertocci, G.E.; Marcellin-Little, D.J. Development of a Canine Stifle Computer Model to Evaluate Cranial Cruciate Ligament Deficiency. J. Mech. Med. Biol. 2013, 13, 1350043. [Google Scholar] [CrossRef]
- Sabanci, S.S.; Ocal, M.K. Categorization of the pelvic limb standing posture in nine breeds of dogs. Anat. Histol. Embryol. 2018, 47, 58–63. [Google Scholar] [CrossRef]
- Pietsch, S.; Steigmeier-Raith, S.; Reese, S.; Meyer-Lindenberg, A. Reliability of kinetic measurements of healthy dogs examined while walking on a treadmill. Am. J. Vet. Res. 2020, 81, 804–809. [Google Scholar] [CrossRef]
- Aitchison, G.A.; Hukins, D.W.; Parry, J.J.; Shepherd, D.E.; Trotman, S.G. A review of the design process for implantable orthopedic medical devices. Open Biomed. Eng. J. 2009, 3, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, F.M. The Use of Finite Element Analysis to Enhance Research and Clinical Practice in Orthopedics. J. Knee Surg. 2016, 29, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Castilho, M.; Rodrigues, J.; Vorndran, E.; Gbureck, U.; Quental, C.; Folgado, J.; Fernandes, P.R. Computational design and fabrication of a novel bioresorbable cage for tibial tuberosity advancement application. J. Mech. Behav. Biomed. Mater. 2017, 65, 344–355. [Google Scholar] [CrossRef]
- Evans, R. Evidence-based orthopaedics or ‘superstition in the pigeon’. Vet. Comp. Orthop. Traumatol. 2009, 22, 346–350. [Google Scholar] [CrossRef]
- Kim, S.E.; Pozzi, A.; Banks, S.A.; Conrad, B.P.; Lewis, D.D. Effect of tibial tuberosity advancement on femorotibial contact mechanics and stifle kinematics. Vet. Surg. 2009, 38, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.E.; Pozzi, A.; Banks, S.A.; Conrad, B.P.; Lewis, D.D. Effect of tibial plateau leveling osteotomy on femorotibial contact mechanics and stifle kinematics. Vet. Surg. 2009, 38, 23–32. [Google Scholar] [CrossRef]
- Hoffmann, D.E.; Kowaleski, M.P.; Johnson, K.A.; Evans, R.B.; Boudrieau, R.J. Ex vivo biomechanical evaluation of the canine cranial cruciate ligament-deficient stifle with varying angles of stifle joint flexion and axial loads after tibial tuberosity advancement. Vet. Surg. 2011, 40, 311–320. [Google Scholar] [CrossRef]
- Fischer, M.S.; Lilje, K.E. Hunde in Bewegung, 2nd ed.; Franckh KOSMOS Verlag: Stuttgart, Germany, 2011; Volume 1, pp. 137–201. [Google Scholar]
- Ragetly, C.A.; Griffon, D.J.; Mostafa, A.A.; Thomas, J.E.; Hsiao-Wecksler, E.T. Inverse dynamics analysis of the pelvic limbs in Labrador Retrievers with and without cranial cruciate ligament disease. Vet. Surg. 2010, 39, 513–522. [Google Scholar] [CrossRef]
- Guadalupi, M.; Crovace, A.M.; Monopoli Forleo, D.; Staffieri, F.; Lacitignola, L. Pressure-Sensitive Walkway System for Evaluation of Lameness in Dogs Affected by Unilateral Cranial Cruciate Ligament Rupture Treated with Porous Tibial Tuberosity Advancement. Vet. Sci. 2023, 10, 696. [Google Scholar] [CrossRef]
- Voss, K.; Damur, D.M.; Guerrero, T.; Haessig, M.; Montavon, P.M. Force plate gait analysis to assess limb function after tibial tuberosity advancement in dogs with cranial cruciate ligament disease. Vet. Comp. Orthop. Traumatol. 2008, 21, 243–249. [Google Scholar] [PubMed]
- Lee, D.V.; Bertram, J.E.; Todhunter, R.J. Acceleration and balance in trotting dogs. J. Exp. Biol. 1999, 202, 3565–3573. [Google Scholar] [CrossRef] [PubMed]
- Tokuriki, M. Electromyographic and joint-mechanical studies in quadrupedal locomotion. I. Walk. Jpn. J. Vet. Sci. 1973, 35, 433–436. [Google Scholar] [CrossRef] [PubMed]
- Mostafa, A.A.; Griffon, D.J.; Thomas, M.W.; Constable, P.D. Morphometric characteristics of the pelvic limb musculature of Labrador Retrievers with and without cranial cruciate ligament deficiency. Vet. Surg. 2010, 39, 380–389. [Google Scholar] [CrossRef]
- Withrow, T.J.; Huston, L.J.; Wojtys, E.M.; Ashton-Miller, J.A. Effect of varying hamstring tension on anterior cruciate ligament strain during in vitro impulsive knee flexion and compression loading. J. Bone Jt. Surg. Am. 2008, 90, 815–823. [Google Scholar] [CrossRef]
- Maquet, P. Advancement of the tibial tuberosity. Clin. Orthop. Relat. Res. 1976, 115, 225–230. [Google Scholar] [CrossRef]
- Rhode, M.; Harms, O.; Finck, Y.; Dautzenberg, P.; Schweizer, J.; Lupke, M.; Freise, F.; Fehr, M. Performing a Three-Dimensional Finite Element Analysis to Simulate and Quantify the Contact Pressure in the Canine Elbow Joint: A Pilot Study. Vet. Comp. Orthop. Traumatol. 2022, 35, 279–288. [Google Scholar] [CrossRef]
- Du, M.; Sun, J.; Liu, Y.; Wang, Y.; Yan, S.; Zeng, J.; Zhang, K. Tibio-Femoral Contact Force Distribution of Knee Before and After Total Knee Arthroplasty: Combined Finite Element and Gait Analysis. Orthop. Surg. 2022, 14, 1836–1845. [Google Scholar] [CrossRef]
- Dagneaux, L.; Canovas, F.; Jourdan, F. Finite element analysis in the optimization of posterior-stabilized total knee arthroplasty. Orthop. Traumatol. Surg. Res. 2023, 110, 103765. [Google Scholar] [CrossRef]
- Shu, L.; Yao, J.; Yamamoto, K.; Sato, T.; Sugita, N. In vivo kinematical validated knee model for preclinical testing of total knee replacement. Comput. Biol. Med. 2021, 132, 104311. [Google Scholar] [CrossRef]
- Chokhandre, S.; Schwartz, A.; Klonowski, E.; Landis, B.; Erdemir, A. Open Knee(s): A Free and Open Source Library of Specimen-Specific Models and Related Digital Assets for Finite Element Analysis of the Knee Joint. Ann. Biomed. Eng. 2023, 51, 10–23. [Google Scholar] [CrossRef] [PubMed]
- Benos, L.; Stanev, D.; Spyrou, L.; Moustakas, K.; Tsaopoulos, D.E. A Review on Finite Element Modeling and Simulation of the Anterior Cruciate Ligament Reconstruction. Front. Bioeng. Biotechnol. 2020, 8, 967. [Google Scholar] [CrossRef]
- Petitjean, N.; Canadas, P.; Royer, P.; Noel, D.; Le Floc’h, S. Cartilage biomechanics: From the basic facts to the challenges of tissue engineering. J. Biomed. Mater. Res. A 2023, 111, 1067–1089. [Google Scholar] [CrossRef]
- Hayes, G.M.; Langley-Hobbs, S.J.; Jeffery, N.D. Risk factors for medial meniscal injury in association with cranial cruciate ligament rupture. J. Small Anim. Pract. 2010, 51, 630–634. [Google Scholar] [CrossRef] [PubMed]
- Rey, J.; Fischer, M.S.; Böttcher, P. Sagittal joint instability in the cranial cruciate ligament insufficient canine stifle. Caudal slippage of the femur and not cranial tibial subluxation. Tierarztl. Prax. Ausg. K Kleintiere Heimtiere 2014, 42, 151–156. [Google Scholar] [CrossRef]
- Skinner, O.T.; Kim, S.E.; Lewis, D.D.; Pozzi, A. In vivo femorotibial subluxation during weight-bearing and clinical outcome following tibial tuberosity advancement for cranial cruciate ligament insufficiency in dogs. Vet. J. 2013, 196, 86–91. [Google Scholar] [CrossRef] [PubMed]
- Schwede, M.; Rey, J.; Bottcher, P. In vivo fluoroscopic kinematography of cranio-caudal stifle stability after tibial tuberosity advancement (TTA): A retrospective case series of 10 stifles. Open Vet. J. 2018, 8, 295–304. [Google Scholar] [CrossRef]
- Meise, H.F.; Lupke, M.; Seifert, H.; Harms, O. Development of a three-dimensional computer model of the canine pelvic limb including cruciate ligaments to simulate movement. Res. Vet. Sci. 2021, 136, 430–443. [Google Scholar] [CrossRef] [PubMed]
- Boudrieau, R.J. Tibial plateau leveling osteotomy or tibial tuberosity advancement? Vet. Surg. 2009, 38, 1–22. [Google Scholar] [CrossRef]
- Pérez-Guindal, E.; Musté-Rodríguez, M. The effect of Tibial Tuberosity Advancement on Patellar tendon force in Canine Stifle Joint under Caudal Femoral Drawer. Rev. Científica Fac. Cienc. Vet. 2021, XXXI, 87–92. [Google Scholar] [CrossRef]
- Brown, N.P.; Bertocci, G.E.; Marcellin-Little, D.J. Canine Stifle Biomechanics Associated With Tibial Tuberosity Advancement Predicted Using a Computer Model. Vet. Surg. 2015, 44, 866–873. [Google Scholar] [CrossRef] [PubMed]
- Shirazi-Adl, A.; Mesfar, W. Effect of tibial tubercle elevation on biomechanics of the entire knee joint under muscle loads. Clin. Biomech. 2007, 22, 344–351. [Google Scholar] [CrossRef] [PubMed]
- Mattern, K.L.; Berry, C.R.; Peck, J.N.; De Haan, J.J. Radiographic and ultrasonographic evaluation of the patellar ligament following tibial plateau leveling osteotomy. Vet. Radiol. Ultrasound 2006, 47, 185–191. [Google Scholar] [CrossRef] [PubMed]
- DeSandre-Robinson, D.M.; Tano, C.A.; Fiore, K.L.; Prytherch, B. Radiographic evaluation and comparison of the patellar ligament following tibial plateau leveling osteotomy and tibial tuberosity advancement in dogs: 106 cases (2009–2012). J. Am. Vet. Med. Assoc. 2017, 250, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Pettitt, R.; Cripps, P.; Baker, M.; Hattersley, R.; Lorenz, N.; McConnell, F. Radiographic and ultrasonographic changes of the patellar ligament following tibial tuberosity advancement in 25 dogs. Vet. Comp. Orthop. Traumatol. 2014, 27, 216–221. [Google Scholar] [CrossRef]
- Kuhn, K.; Ohlerth, S.; Makara, M.; Hassig, M.; Guerrero, T.G. Radiographic and ultrasonographic evaluation of the patellar ligament following tibial tuberosity advancement. Vet. Radiol. Ultrasound 2011, 52, 466–471. [Google Scholar] [CrossRef]
- Valino-Cultelli, V.; Varela-Lopez, O.; Gonzalez-Cantalapiedra, A. Incidence of Patellar Desmopathy in the Modified Maquet Technique with and without PRGF. Vet. Sci. 2022, 9, 180. [Google Scholar] [CrossRef]
- Pacchiana, P.D.; Morris, E.; Gillings, S.L.; Jessen, C.R.; Lipowitz, A.J. Surgical and postoperative complications associated with tibial plateau leveling osteotomy in dogs with cranial cruciate ligament rupture: 397 cases (1998–2001). J. Am. Vet. Med. Assoc. 2003, 222, 184–193. [Google Scholar] [CrossRef]
Material | Density (g/cm3) | Young’s Modulus (MPa) | Poisson’s Ratio | Reference |
---|---|---|---|---|
bone | 2.06 | 0.3 | Behrens et al. (2006) [26], Bartolin et al. (2021) [27] | |
cartilage | 1 | 15 | 0.49 | Koh et al. (2019) [28] |
meniscus | 1.1 | 59 | 0.47 | Trad et al. (2018) [29] |
implant | 1.029 | 3000 | 0.24 | Hadjicharalambous et al. (2015) [30] |
CCL | PT | |||||||
---|---|---|---|---|---|---|---|---|
Condition | Condition 1 | Condition 1 | Condition 2 | Condition 3 | ||||
Site | Left | Right | Left | Right | Left | Right | Left | Right |
dog 1 | 39.68 23% | 36.07 21% | 10.2 6% | 13.78 8% | 30.12 18% | 24.04 14% | 44.5 26% | 38.57 23% |
dog 2 | 27.13 23% | 32.54 28% | 12.48 11% | 27.65 23% | 24.04 20% | 40.37 23% | 38.22 34% | 42.42 36% |
dog 3 | 30.12 30% | 38.73 39% | 6.209 6% | 22.35 23% | 15.28 15% | 25.6 26% | 31.95 32% | 35 35% |
dog 4 | 18.51 42% | - - | 7.978 18% | - - | 18.66 42% | - - | 16.35 37% | - - |
dog 5 | 9.09 11% | 14.85 17% | 0.398 0% | 7.755 9% | 2.072 2% | 7.362 9% | 3.979 5% | 14.5 17% |
dog 6 | 46.56 24% | 45.66 24% | 25.49 13% | 38.53 20% | 44.66 23% | 55.57 29% | 58.54 31% | 60.34 32% |
dog 7 | 15.28 36% | 9.449 30% | 2.635 6% | 4.62 × 10−14 0% | 0.1069 0% | 1.747 6% | 4.824 11% | 3.216 10% |
dog 8 | 9.786 16% | 8.333 14% | 1.817 3% | 4.245 7% | 9.861 16% | 10.26 17% | 11.95 20% | 11.77 19% |
MV ± SD | 25% ± 9.1% | 10% ± 7.7% | 18% ± 11.6% | 25% ± 10.4% |
Condition 1 | Condition 2 | Condition 3 | ||||
---|---|---|---|---|---|---|
Site | Left | Right | Left | Right | Left | Right |
dog 1 | 1.923 | 1.444 | 2.9 51% | 2.4 66% | 2.399 25% −17% | 1.614 12% −33% |
dog 2 | 1.8 | 1.854 | 2.474 37% | 2.412 30% | 2.117 18% −14% | 2.129 15% −12% |
dog 3 | 1.36 | 1.454 | 2.459 81% | 2.98 105% | 2.053 51% −17% | 2.318 59% −22% |
dog 4 | 0.743 | - | 1.453 96% | - | 1.146 54% −21% | - |
dog 5 | 1.126 | 1.063 | 1.302 16% | 1.323 24% | 1.084 −4% −17% | 1.094 3% −17% |
dog 6 | 2.328 | 2.097 | 3.585 54% | 2.793 33% | 2.271 −2% −37% | 2.242 7% −20% |
dog 7 | 0.635 | 0.568 | 1.185 87% | 1.1012 78% | 0.829 31% −30% | 0.796 40% −21% |
dog 8 | 0.689 | 0.855 | 1.027 49% | 0.979 15% | 0.892 29% −13% | 0.85 −1% −13% |
MV ± SD | 55% ± 31.5% | 21% ± 21.1% −19% ± 7.5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lang, M.L.; Lüpke, M.; Götz, M.; Volk, H.A.; Klasen, J.; Harms, O. Biomechanical Evaluation of a Novel Ceramic Implant for Canine Cranial Cruciate Ligament Rupture Treatment: A Finite Element Analysis Approach. Animals 2024, 14, 3296. https://doi.org/10.3390/ani14223296
Lang ML, Lüpke M, Götz M, Volk HA, Klasen J, Harms O. Biomechanical Evaluation of a Novel Ceramic Implant for Canine Cranial Cruciate Ligament Rupture Treatment: A Finite Element Analysis Approach. Animals. 2024; 14(22):3296. https://doi.org/10.3390/ani14223296
Chicago/Turabian StyleLang, Mark Leon, Matthias Lüpke, Maximilian Götz, Holger A. Volk, Jan Klasen, and Oliver Harms. 2024. "Biomechanical Evaluation of a Novel Ceramic Implant for Canine Cranial Cruciate Ligament Rupture Treatment: A Finite Element Analysis Approach" Animals 14, no. 22: 3296. https://doi.org/10.3390/ani14223296
APA StyleLang, M. L., Lüpke, M., Götz, M., Volk, H. A., Klasen, J., & Harms, O. (2024). Biomechanical Evaluation of a Novel Ceramic Implant for Canine Cranial Cruciate Ligament Rupture Treatment: A Finite Element Analysis Approach. Animals, 14(22), 3296. https://doi.org/10.3390/ani14223296