Effect of Oat Hay as a Substitute for Alfalfa Hay on the Gut Microbiome and Metabolites of Yak Calves
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Animals and Group Design
2.2. Breeding Management and Test Diet
2.3. Sample Collection and Processing
2.4. DNA Extraction, 16S rDNA Gene Amplification, High-Throughput Sequencing, and Bioinformatics Analysis
2.5. Untargeted Metabolomics Data Processing and Metabolite Identification
2.6. Statistical Analysis
3. Results
3.1. Effects of Oat Hay as a Substitute for Alfalfa Hay on the Growth Performance of Yak Calves
3.2. Effect of Oat Hay as a Substitute for Alfalfa Hay on the Intestinal Microbial Diversity of Yak Calves
3.3. Effect of Oat Hay as a Substitute for Alfalfa Hay on the Gut Metabolic Profiles of Yak Calves
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ding, L.; Long, R.; Wang, C.; Shang, Z. Grazing behavior of lactating and non-lactating yaks in the summer season of the Qinghai-Tibetan Plateau. Isr. J. Ecol. Evol. 2006, 52, 141–149. [Google Scholar] [CrossRef]
- Ma, J.; Shah, A.M.; Wang, Z.S.; Hu, R.; Zou, H.W.; Wang, X.Y.; Cao, G.; Peng, Q.H.; Xue, B.; Wang, L.Z.; et al. Comparing the gastrointestinal barrier function between growth-retarded and normal yaks on the Qinghai-Tibetan Plateau. PeerJ 2020, 8, e9851. [Google Scholar] [CrossRef] [PubMed]
- Degen, A.A.; El-Meccawi, S.; Kam, M. Milk and Dung Production by Yaks (Poephagus grunniens): Important Products for theLivelihood of the Herders and for Carbon Recycling on the Qinghai-Tibetan Plateau. In Carbon Management for Promoting Local Livelihood in the Hindu Kush Himalayan (HKH) Region; Springer: Cham, Switzerland, 2020; Chapter 8; pp. 145–162. [Google Scholar] [CrossRef]
- Daneshvar, D.; Khorvash, M.; Ghasemi, E.; Mahdavi, A.; Moshiri, B.; Mirzaei, M.; Pezeshki, A.; Ghaffari, M. The effect of restricted milk feeding through conventional or step-down methods with or without forage provision in starter feed on performance of Holstein bull calves. J. Anim. Sci. 2015, 93, 3979–3989. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z.; Wu, S.; Li, J.; Yang, Q.-E.; Chai, S.; Wang, L.; Wang, X.; Zhang, X.; Liu, S.; Yao, J. Effect of Alfalfa Hay and Starter Feeding Intervention on Gastrointestinal Microbial Community, Growth and Immune Performance of Yak Calves. Front. Microbiol. 2020, 11, 994. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xia, H.Z.; Yang, Q.; Yang, D.Y.; Liu, S.J.; Cui, Z.H. Evaluating Starter Feeding on Ruminal Function in Yak Calves: Combined 16S rRNA Sequencing and Metabolomics. Front. Microbiol. 2022, 13, 821613. [Google Scholar] [CrossRef]
- Jiao, Y.; Liu, S.J.; Zhou, Y.A.; Yang, D.Y.; Li, J.L.; Cui, Z.H. The Effect of Supplemental Concentrate Feeding on the Morphological and Functional Development of the Pancreas in Early Weaned Yak Calves. Animals 2022, 12, 2563. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, W.-H.F.R. Priorities for the development of alfalfa pasture in northern China. Fundam. Res. 2023, 3, 225–228. [Google Scholar] [CrossRef]
- Celi, P.; Cowieson, A.; Fru-Nji, F.; Steinert, R.; Kluenter, A.-M.; Verlhac, V. Gastrointestinal functionality in animal nutrition and health: New opportunities for sustainable animal production. Anim. Feed. Sci. Technol. 2017, 234, 88–100. [Google Scholar] [CrossRef]
- Estruch, G.; Martínez-Llorens, S.; Tomás-Vidal, A.; Monge-Ortiz, R.; Jover-Cerdá, M.; Brown, P.B.; Peñaranda, D.S. Impact of high dietary plant protein with or without marine ingredients in gut mucosa proteome of gilthead seabream (Sparus aurata, L.). J. Proteom. 2020, 216, 103672. [Google Scholar] [CrossRef]
- Wang, Y.P.; Fu, Y.H.; He, Y.Y.; Kulyar, M.; Iqbal, M.; Li, K.; Liu, J.G. Longitudinal Characterization of the Gut Bacterial and Fungal Communities in Yaks. J. Fungi 2021, 7, 559. [Google Scholar] [CrossRef]
- Du, Y.F.; Gao, Y.; Hu, M.Y.; Hou, J.X.; Yang, L.H.; Wang, X.H.; Du, W.J.; Liu, J.X.; Xu, Q.B. Colonization and development of the gut microbiome in calves. J. Anim. Sci. Biotechnol. 2023, 14, 15. [Google Scholar] [CrossRef] [PubMed]
- Bi, Y.L.; Tu, Y.; Zhang, N.F.; Wang, S.Q.; Zhang, F.; Suen, G.; Shao, D.F.; Li, S.L.; Diao, Q.Y. Multiomics analysis reveals the presence of a microbiome in the gut of fetal lambs. Gut 2021, 70, 853–864. [Google Scholar] [CrossRef] [PubMed]
- Leticia, A.; Waddams, K.E.; Gonzalo, M.-F.; Ignacio, M.-G.A.; Eva, R.M.; Jamie, N.C. An Antimethanogenic Nutritional Intervention in Early Life of Ruminants Modifies Ruminal Colonization by Archaea. Archaea 2014, 2014, 841463. [Google Scholar] [CrossRef]
- De Barbieri, I.; Hegarty, R.S.; Silveira, C.; Gulino, L.M.; Oddy, V.H.; Gilbert, R.A.; Klieve, A.V.; Ouwerkerk, D. Programming rumen bacterial communities in newborn Merino lambs. Small Rumin. Res. 2015, 129, 48–59. [Google Scholar] [CrossRef]
- Vandenplas, Y.; Carnielli, V.P.; Ksiazyk, J.; Luna, M.S.; Migacheva, N.; Mosselmans, J.M.; Picaud, J.C.; Possner, M.; Singhal, A.; Wabitsch, M. Factors affecting early-life intestinal microbiota development. Nutrition 2020, 78, 110812. [Google Scholar] [CrossRef]
- Wang, S.; Diao, Q.; Hu, F.; Bi, Y.; Piao, M.; Jiang, L.; Sun, F.; Li, H.; Tu, Y. Development of ruminating behavior in Holstein calves between birth and 30 days of age. J. Dairy Sci. 2021, 105, 572–584. [Google Scholar] [CrossRef]
- Carroll, E.; Hungate, R. The magnitude of the microbial fermentation in the bovine rumen. Appl. Microbiol. 1954, 2, 205–214. [Google Scholar] [CrossRef]
- Stobo, I.J.F.; Roy, J.H.B.; Gaston, H.J. Rumen development in the calf: 2. The effect of diets containing different proportions of concentrates to hay on digestive efficiency. Br. J. Nutr. 1966, 20, 189. [Google Scholar] [CrossRef]
- Xiao, J.; Alugongo, G.M.; Li, J.; Wang, Y.; Li, S.; Cao, Z. Review: How Forage Feeding Early in Life Influences the Growth Rate, Ruminal Environment, and the Establishment of Feeding Behavior in Pre-Weaned Calves. Animals 2020, 10, 188. [Google Scholar] [CrossRef]
- Thomas, D.B.; Hinks, C. The effect of changing the physical form of roughage on the performance of the early-weaned calf. Anim. Sci. 1982, 35, 375–384. [Google Scholar] [CrossRef]
- Jiao, Y.; Zhou, Y.A.; Liu, S.J.; Yang, D.Y.; Li, J.L.; Sun, L.; Cui, Z.H. The Effect of Oat Hay, Alfalfa Hay, and Their Combined Diets on the Morphology and Function of the Pancreas in Preweaning Yak Calves. Animals 2023, 13, 293. [Google Scholar] [CrossRef] [PubMed]
- Seoyoung, J.; Sinyong, J.; Mingyung, L.; Jakyeom, S.; Keun, K.D.; Hoon, K.J.; Jaehwa, P.; Seongwon, S. Effects of reducing inclusion rate of roughages by changing roughage sources and concentrate types on intake, growth, rumen fermentation characteristics, and blood parameters of Hanwoo growing cattle (Bos Taurus coreanae). Asian Australas. J. Anim. Sci. 2019, 32, 1705–1714. [Google Scholar] [CrossRef]
- Li, J.; Lian, H.; Zheng, A.; Zhang, J.; Dai, P.; Niu, Y.; Gao, T.; Li, M.; Zhang, L.; Fu, T. Effects of Different Roughages on Growth Performance, Nutrient Digestibility, Ruminal Fermentation, and Microbial Community in Weaned Holstein Calves. Front. Vet. Sci. 2022, 9, 864320. [Google Scholar] [CrossRef] [PubMed]
- Sheehan, D.; Shanahan, F. The Gut Microbiota in Inflammatory Bowel Disease. Gastroenterol. Clin. N. Am. 2017, 46, 143–154. [Google Scholar] [CrossRef] [PubMed]
- Ley, R.E.; Hamady, M.; Lozupone, C.; Turnbaugh, P.J.; Ramey, R.R.; Bircher, J.S.; Schlegel, M.L.; Tucker, T.A.; Schrenzel, M.D.; Knight, R.; et al. Evolution of Mammals and Their Gut Microbes. Science 2008, 320, 1647–1651. [Google Scholar] [CrossRef]
- Qiu, Q.; Gao, C.; Rahman, M.; Cao, B.; Su, H.J.M. Digestive Ability, Physiological Characteristics, and Rumen Bacterial Community of Holstein Finishing Steers in Response to Three Nutrient Density Diets as Fattening Phases Advanced. Microorganisms 2020, 8, 335. [Google Scholar] [CrossRef]
- Mao, S.; Zhang, M.; Liu, J.; Zhu, W. Characterising the bacterial microbiota across the gastrointestinal tracts of dairy cattle: Membership and potential function. Sci. Rep. 2015, 5, 16116. [Google Scholar] [CrossRef]
- de Oliveira, M.N.V.; Jewell, K.A.; Freitas, F.S.; Benjamin, L.A.; Tótola, M.R.; Borges, A.C.; Moraes, C.A.; Suen, G. Characterizing the microbiota across the gastrointestinal tract of a Brazilian Nelore steer. Vet. Microbiol. 2013, 164, 307–314. [Google Scholar] [CrossRef]
- Chen, Y.; Penner, G.B.; Li, M.; Oba, M.; Guan, L.L. Changes in Bacterial Diversity Associated with Epithelial Tissue in the Beef Cow Rumen during the Transition to a High-Grain Diet. Appl. Environ. Microbiol. 2011, 77, 5770–5781. [Google Scholar] [CrossRef]
- Thoetkiattikul, H.; Mhuantong, W.; Laothanachareon, T.; Tangphatsornruang, S.; Pattarajinda, V.; Eurwilaichitr, L.; Champreda, V. Comparative Analysis of Microbial Profiles in Cow Rumen Fed with Different Dietary Fiber by Tagged 16S rRNA Gene Pyrosequencing. Curr. Microbiol. 2013, 67, 130–137. [Google Scholar] [CrossRef]
- Ahmad, A.A.; Yang, C.; Zhang, J.; Kalwar, Q.; Liang, Z.; Li, C.; Du, M.; Yan, P.; Long, R.; Han, J.; et al. Effects of Dietary Energy Levels on Rumen Fermentation, Microbial Diversity, and Feed Efficiency of Yaks (Bos grunniens). Front. Microbiol. 2020, 11, 625. [Google Scholar] [CrossRef] [PubMed]
- Koliada, A.; Syzenko, G.; Moseiko, V.; Budovska, L.; Puchkov, K.; Perederiy, V.; Gavalko, Y.; Dorofeyev, A.; Romanenko, M.; Tkach, S.; et al. Association between body mass index and Firmicutes/Bacteroidetes ratio in an adult Ukrainian population. BMC Microbiol. 2017, 17, 120. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Li, F.; Fischer-Tlustos, A.J.; Neves, A.L.A.; He, Z.; Steele, M.A.; Guan, L.L. Metagenomic analysis revealed the individualized shift in ileal microbiome of neonatal calves in response to delaying the first colostrum feeding. J. Dairy Sci. 2021, 104, 8783–8797. [Google Scholar] [CrossRef] [PubMed]
- Makkar, H.P.S.; Blümmel, M.; Becker, K. Formation of complexes between polyvinyl pyrrolidones or polyethylene glycols and tannins, and their implication in gas production and true digestibility in in vitro techniques. Br. J. Nutr. 1995, 73, 897–913. [Google Scholar] [CrossRef] [PubMed]
- Xue, D.; Chen, H.; Zhao, X.; Xu, S.; Hu, L.; Xu, T.; Jiang, L.; Zhan, W. Rumen prokaryotic communities of ruminants under different feeding paradigms on the Qinghai-Tibetan Plateau. Syst. Appl. Microbiol. 2017, 40, 227–236. [Google Scholar] [CrossRef]
- Li, W.; Han, Y.; Yuan, X.; Wang, G.; Wang, Z.; Pan, Q.; Gao, Y.; Qu, Y. Metagenomic analysis reveals the influences of milk containing antibiotics on the rumen microbes of calves. Arch. Microbiol. 2017, 199, 433–443. [Google Scholar] [CrossRef]
- Jiang, C.; Ding, L.; Dong, Q.; Wang, X.; Wei, H.; Hu, C.; Ma, C.; Yan, Q.; Zhou, Y.; Degen, A.A. Effects of root extracts of three traditional Chinese herbs as dietary supplements on dry matter intake, average daily gain, rumen fermentation and ruminal microbiota in early weaned yak calves. Anim. Feed. Sci. Technol. 2021, 278, 115002. [Google Scholar] [CrossRef]
- Faniyi, T.O.; Adegbeye, M.J.; Elghandour, M.M.M.Y.; Pilego, A.B.; Salem, A.Z.M.; Olaniyi, T.A.; Adediran, O.; Adewumi, M.K. Role of diverse fermentative factors towards microbial community shift in ruminants. J. Appl. Microbiol. 2019, 127, 2–11. [Google Scholar] [CrossRef]
- Mangifesta, M.; Mancabelli, L.; Milani, C.; Gaiani, F.; de’Angelis, N.; de’Angelis, G.L.; van Sinderen, D.; Ventura, M.; Turroni, F. Mucosal microbiota of intestinal polyps reveals putative biomarkers of colorectal cancer. Sci. Rep. 2018, 8, 13974. [Google Scholar] [CrossRef]
- Louis, P.; Scott, K.P.; Duncan, S.H.; Flint, H.J. Understanding the effects of diet on bacterial metabolism in the large intestine. J. Appl. Microbiol. 2007, 102, 1197–1208. [Google Scholar] [CrossRef]
- Walter, J.; Hertel, C.; Tannock, G.W.; Lis, C.M.; Munro, K.; Hammes, W.P. Detection of Lactobacillus, Pediococcus, Leuconostoc, and Weissella Species in Human Feces by Using Group-Specific PCR Primers and Denaturing Gradient Gel Electrophoresis. Appl. Environ. Microbiol. 2001, 67, 2578–2585. [Google Scholar] [CrossRef] [PubMed]
- David, R.-C.; Patricia, R.M.; Abelardo, M.; Miguel, G.; Nuria, S. Intestinal short chain fatty acids and their link with diet and human health. Front. Microbiol. 2016, 7, 185. [Google Scholar] [CrossRef]
- Gao, X.-J.; Li, T.; Wei, B.; Yan, Z.-X.; Yan, R. Regulatory mechanisms of gut microbiota on intestinal CYP3A and P-glycoprotein in rats with dextran sulfate sodium-induced colitis. Yao Xue Xue Bao 2017, 52, 34–43. [Google Scholar] [PubMed]
- Corbett, J.L.; Freer, M. Past and Present Definitions of the Energy and Protein Requirements of Ruminants. Asian Australas. J. Anim. Sci. 2003, 16, 609–624. [Google Scholar] [CrossRef]
- Gershon, M.D.; Tack, J. The Serotonin Signaling System: From Basic Understanding to Drug Development for Functional GI Disorders. Gastroenterology 2007, 132, 397–414. [Google Scholar] [CrossRef]
- Maas, W.K.; Vogel, H. alpha-Ketoisovaleric acid, a precursor of pantothenic acid in Escherichia coli. J. Bacteriol. 1953, 65, 388–393. [Google Scholar] [CrossRef]
- Brody, T.O.M. (Ed.) Inorganic nutrients. In Nutritional Biochemistry, 2nd ed.; Academic Press: San Diego, CA, USA, 1999; pp. 693–878. [Google Scholar]
- Duncan, S.H.; Louis, P.; Thomson, J.M.; Flint, H.J. The role of pH in determining the species composition of the human colonic microbiota. Environ. Microbiol. 2010, 11, 2112–2122. [Google Scholar] [CrossRef]
- Kamata, N.; Watanabe, K.; Sogawa, M.; Yamagami, H.; Arakawa, T. [Antibiotic associated diarrhea (AAD)]. Nihon rinsho. Jpn. J. Clin. Med. 2012, 70 (Suppl. S1), 610–613. [Google Scholar]
- Hill, J.H.; Franzosa, E.A.; Huttenhower, C.; Guillemin, K. A conserved bacterial protein induces pancreatic beta cell expansion during zebrafish development. eLife 2016, 5, e20145. [Google Scholar] [CrossRef]
- Bruce, C.R.; Dyck, D.J. Cytokine regulation of skeletal muscle fatty acid metabolism: Effect of interleukin-6 and tumor necrosis factor-α. Am. J. Physiol. Endocrinol. Metab. 2004, 287, E616–E621. [Google Scholar] [CrossRef]
- Brinton, E.A.; Mason, R.P. Prescription omega-3 fatty acid products containing highly purified eicosapentaenoic acid (EPA). Lipids Health Dis. 2017, 16, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Ling, C.; Li, F.; Zhao, J.; Wen, M.; Han, X. Research progress of nervonic acid biosynthesis. J. Oleo Sci. 2023, 72, 889–900. [Google Scholar] [CrossRef] [PubMed]
- Drouin, G.; Rioux, V.; Legrand, P. The n-3 docosapentaenoic acid (DPA): A new player in the n-3 long chain polyunsaturated fatty acid family. Biochimie 2019, 159, 36–48. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Diao, Q.; Tu, Y.; Zhang, N.; Xu, X. The limiting sequence and proper ratio of lysine, methionine and threonine for calves fed milk replacers containing soy protein. Asian Australas. Anim. Sci. 2012, 25, 224–233. [Google Scholar] [CrossRef] [PubMed]
- Ragaller, V.; Lebzien, P.; Bigalke, W.; Südekum, K.-H.; Hüther, L.; Flachowsky, G. Effects of folic acid supplementation to rations differing in the concentrate to roughage ratio on ruminal fermentation, nutrient flow at the duodenum, and on serum and milk variables of dairy cows. Arch. Anim. Nutr. 2010, 64, 484–503. [Google Scholar] [CrossRef]
- Hall, G.; Cheng, E.W.; Burrows, W. B-vitamins and other factors stimulatory to cellulose digestion by washed suspensions of rumen microorganisms. J. Anim. Sci. 1953, 12, 918–919. [Google Scholar]
- Sumer, T.; Turkmen, M.B.; Öcal, N.; İmrak, K.G. Neurohistopathological study on Neospora caninum infected calves: Special emphasis to dopaminergic activity. In Proceedings of the 2nd International Conference on Advances in Veterinary Sciences & Technics, Skopje, Macedonia, 4–8 October 2017. [Google Scholar]
Items | Milk Replacer | Alfalfa Hay | Oat Hay | Starter Feed |
---|---|---|---|---|
Dry matter (DM) | 95.00 | 95.00 | 93.00 | 87.90 |
Crude protein (CP) | 26.24 | 14.19 | 4.08 | 20.00 |
Ether extract (EE) | 27.90 | 3.39 | 4.20 | 4.70 |
Neutral detergent fiber (NDF) | - | 46.65 | 57.52 | 10.90 |
Acid detergent fiber (ADF) | - | 37.50 | 31.51 | 4.10 |
Calcium (Ca) | 2.50 | 1.55 | 1.05 | 0.80 |
Phosphorus (P) | 1.40 | 0.74 | 0.15 | 0.45 |
Starch | - | 2.34 | 2.72 | 34.35 |
Items | Group | |||
---|---|---|---|---|
AH | OH | AO | p-Value | |
Initial body mass/kg | 36.00 ± 1.58 | 35.80 ± 0.84 | 37.60 ± 0.55 | 0.053 |
Final body mass/kg | 71.20 ± 1.79 b | 70.60 ± 0.55 b | 74.80 ± 3.11 a | 0.017 |
Average daily weight gain/(g/d) | 293.33 ± 3.12 | 290.00 ± 3.12 | 310.00 ± 10.00 | 0.095 |
Feed-to-gain ratio | 2.68 ± 0.03 a | 2.69 ± 0.01 a | 2.55 ± 0.048 b | 0.018 |
Dry matter intake/(kg/d) | 1.00 | 1.00 | 1.00 | 1.000 |
Items | Group | |||
---|---|---|---|---|
AH | OH | AO | p-Value | |
Jejunum | ||||
OTUs | 965.20 ± 89.90 b | 1058.80 ± 100.65 a,b | 1136.00 ± 44.75 a | 0.021 |
Chao1 index | 966.75 ± 91.20 b | 1060.3 ± 101.15 a,b | 1138.97 ± 45.64 a | 0.021 |
Shannon index | 8.33 ± 0.33 | 8.49 ± 0.28 | 8.73 ± 0.13 | 0.094 |
Simpson index | 0.98 ± 0.005 | 0.99 ± 0.004 | 0.9933 ± 0.003 | 0.419 |
Colon | ||||
OTUs | 688.80 ± 78.92 b | 903.00 ± 106.30 a | 857.40 ± 120.65 a | 0.016 |
Chao1 index | 690.68 ± 79.05 b | 905.45 ± 105.92 a | 860.33 ± 121.23 a | 0.016 |
Shannon index | 6.73 ± 0.46 b | 7.47 ± 0.40 a | 7.49 ± 0.24 a | 0.012 |
Simpson index | 0.97 ± 0.02 | 0.98 ± 0.006 | 0.97 ± 0.01 | 0.225 |
Items | Map Title | p-Value | Metabolites |
---|---|---|---|
Positive ion mode | |||
AH vs. OH | Inflammatory mediator regulation of TRP channels | 0.012 | Serotonin↑ |
Gap junction | 0.036 | ||
Synaptic vesicle cycle | 0.036 | ||
Taste transduction | 0.047 | ||
AH vs. AO | Pantothenate and CoA biosynthesis | 0.027 | 3-Methyl-2-oxobutanoic acid↓ D-Panthenol↓ |
Fatty acid degradation | 0.048 | L-Palmitoylcarnitine↓ | |
Valine, leucine, and isoleucine degradation | 0.048 | 3-Methyl-2-oxobutanoic acid↓ | |
Fatty acid metabolism | 0.048 | L-Palmitoylcarnitine↓ | |
Negative ion mode | |||
AH vs. AO | Aminoacyl-tRNA biosynthesis | <0.01 | Methionine↓ L-Serine↓ |
Cysteine and methionine metabolism | <0.01 | ||
Protein digestion and absorption | <0.01 | ||
Biosynthesis of amino acids | 0.020 | ||
Glycine, serine, and threonine metabolism | 0.030 | L-Serine↓ | |
Sphingolipid metabolism | 0.030 | ||
Sphingolipid signaling pathway | 0.030 |
Items | Map Title | p-Value | Metabolites |
---|---|---|---|
Positive ion mode | |||
AH vs. OH | Biosynthesis of unsaturated fatty acids | <0.01 | Adrenic acid↑ Eicosapentaenoic acid↑ Nervonic acid↑ Docosapentaenoic acid↑ |
Lysine degradation | <0.01 | N6,N6,N6-Trimethyl-l-lysine↑ 5-Hydroxy-l-lysine↑ l-Hydroxylysine↑ l-Pipecolate↑ | |
Negative ion mode | |||
AH vs. OH | Folate biosynthesis | 0.020 | 4-Hydroxybenzoic acid↑ 7,8-Dihydrofolate↓ |
Dopaminergic synapse | 0.020 | 3-Methoxy-4-hydroxyphenylacetate↑ | |
AH vs. AO | Folate biosynthesis | <0.01 | 4-Hydroxybenzoic acid↑ 7,8-Dihydrofolate↓ |
Dopaminergic synapse | <0.01 | 3-Methoxy-4-hydroxyphenylacetate↑ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, Y.; An, L.; Zhou, Y.; Xue, G.; Jiao, Y.; Yang, D.; Liu, S.; Cui, Z. Effect of Oat Hay as a Substitute for Alfalfa Hay on the Gut Microbiome and Metabolites of Yak Calves. Animals 2024, 14, 3329. https://doi.org/10.3390/ani14223329
Gu Y, An L, Zhou Y, Xue G, Jiao Y, Yang D, Liu S, Cui Z. Effect of Oat Hay as a Substitute for Alfalfa Hay on the Gut Microbiome and Metabolites of Yak Calves. Animals. 2024; 14(22):3329. https://doi.org/10.3390/ani14223329
Chicago/Turabian StyleGu, Yingchao, Lele An, Yanan Zhou, Guoliang Xue, Yang Jiao, Deyu Yang, Shujie Liu, and Zhanhong Cui. 2024. "Effect of Oat Hay as a Substitute for Alfalfa Hay on the Gut Microbiome and Metabolites of Yak Calves" Animals 14, no. 22: 3329. https://doi.org/10.3390/ani14223329
APA StyleGu, Y., An, L., Zhou, Y., Xue, G., Jiao, Y., Yang, D., Liu, S., & Cui, Z. (2024). Effect of Oat Hay as a Substitute for Alfalfa Hay on the Gut Microbiome and Metabolites of Yak Calves. Animals, 14(22), 3329. https://doi.org/10.3390/ani14223329