Growth Performance, Carcass Quality, and Lipid Metabolism in Krškopolje Pigs and Modern Hybrid Pigs: Comparison of Genotypes and Evaluation of Dietary Protein Reduction
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals Trial
2.2. Modeling of Nutritional Requirements
2.3. Slaughter, Carcass and Meat Quality Evaluation and Sampling
2.4. Histological Analyses
2.5. Biochemical Analyses
2.5.1. Muscle Chemical Composition
2.5.2. Protein and Lipid Oxidation
2.5.3. Myoglobin
2.5.4. Collagen
2.5.5. Fatty Acid Composition
2.5.6. Lipogenic Enzymes
2.6. Statistical Analysis
3. Results
3.1. Nutritional Needs and Growth Performance
3.2. Carcass and Meat Quality Traits
3.3. Chemical Composition
3.4. Lipogenic Enzyme Activity
3.5. Histo-Morphological Traits
4. Discussion
4.1. Nutritional Needs and Growth Performance
4.2. Carcass, Meat Quality and Chemical Composition
4.3. Lipogenic Enzyme Activities
4.4. Histo-Morphological Traits of Adipose Tissue
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kastelic, A.; Čandek-Potokar, M. Application of quality issues in support of conservation of local breeds—A challenge for Slovenian Krškopolje pig. Acta Agric. Slov. 2013, 4, 205–209. [Google Scholar]
- Nieto, R.; Lara, L.; Aguilera, J.F. The effect of dietary protein content and feeding level on protein and energy metabolism in growing Iberian pigs from 50 to 100 kg body weight. Brit. J. Nutr. 2002, 88, 645–653. [Google Scholar] [CrossRef]
- Kouba, M.; Sellier, P. A review of the factors influencing the development of intermuscular adipose tissue in the growing pig. Meat Sci. 2011, 88, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Brossard, L.; Nieto, R.; Charneca, R.; Araujo, J.P.; Pugliese, C.; Radović, Č.; Čandek-Potokar, M. Modelling nutritional growth requirements of growing pigs from local breeds using InraPorc. Animals 2019, 9, 169. [Google Scholar] [CrossRef]
- Moughan, P.J. An overview of energy and protein utilisaton during growth in simple-stomached animals. Anim. Prod. Sci. 2018, 58, 646–654. [Google Scholar] [CrossRef]
- Douglas, S.L.; Szyszka, O.; Stoddart, K.; Edwards, S.A.; Kyriazakis, I. Animal and management factors influencing grower and finisher performance and efficiency in European systems: A meta-analysis. Animal 2015, 9, 1210–1220. [Google Scholar] [CrossRef] [PubMed]
- Lovatto, P.A.; Sauvant, D.; Noblet, J.; van Milgen, J.; Dubois, S. Effects of feed restriction and feeding level on energy utilization in growing pigs. J. Anim. Sci. 2006, 84, 3329–3336. [Google Scholar] [CrossRef]
- Lebret, B. Effects of feeding and rearing systems on growth, carcass composition and meat quality in pigs. Animal 2008, 2, 1548–1558. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, J.; Wang, G.; Cai, S.; Zeng, X.; Qiao, S. Advances in low-protein diets for swine. J. Anim. Sci. Biotechnol. 2018, 9, 1–14. [Google Scholar] [CrossRef]
- Rocha, G.C.; Duarte, M.E.; Kim, S.W. Advances, implications and limitations of low-crude-protein diets in pig production. Animals 2022, 12, 3478. [Google Scholar] [CrossRef]
- Bossi, P.; Russo, V. The production of heavy pig for high quality processed products. It. J. Anim. Sci. 2004, 3, 309–321. [Google Scholar] [CrossRef]
- Čandek-Potokar, M.; Škrlep, M. Factors in pig production that impact the quality of dry-cured ham: A review. Animal 2012, 6, 327–338. [Google Scholar] [CrossRef] [PubMed]
- Palma-Granados, P.; Seiquer, I.; Benítez, R.; Óvilo, C.; Nieto, R. Effects of lysine deficiency on carcass composition and activity and gene expression of lipogenic enzymes in muscles and backfat adipose tissue of fatty and lean piglets. Animal 2019, 10, 2406–2418. [Google Scholar] [CrossRef] [PubMed]
- Tejeda, J.F.; Hernández-Matamoros, A.; Paniagua, M.; González, E. Effects of free-range and low protein concentrated diets on growth performance, carcass traits, and meat composition of Iberian pig. Animals 2020, 10, 273. [Google Scholar] [CrossRef] [PubMed]
- Tejeda, J.F.; Hernández-Matamoros, A.; González, E. Free-range and low protein concentrated diets in Iberian pigs: Effects on plasma insulin and leptin concentration, lipogenic enzyme activity, and fatty acid composition of adipose tissue. Animals 2020, 10, 1917. [Google Scholar] [CrossRef]
- Sirtori, F.; Crovetti, A.; Pugliese, C.; Bozzi, R.; Campodoni, G.; Franci, O. Effect of dietary protein level on carcass and meat properties of Cinta Senese pigs. Animal 2014, 8, 1987–1995. [Google Scholar] [CrossRef]
- Aquilani, C.; Sirtori, F.; Franci, O.; Acciaioli, A.; Bozzi, R. Effects of different protein levels on the nitrogen balance, performance and slaughtering traits of Cinta Senese growing pigs. Animals 2019, 9, 1021. [Google Scholar] [CrossRef]
- Pugliese, C.; Sirtori, F.; Franci, O. Feeding strategies for local breeds in view of product quality. Acta Agric. Slov. 2013, Supplement 4, 69–75. [Google Scholar] [CrossRef]
- Fernández-Fígares, I.; Lachica, M.; Nieto, R.; Rivera-Ferrs, M.G.; Aguilera, J.F. Serum profile of metabolites and hormones in obese (Iberian) and lean (Landrace) growing gilts fed balanced or lysine deficient diets. Livest. Sci. 2007, 110, 73–81. [Google Scholar] [CrossRef]
- Čandek-Potokar, M.; Žlender, B.; Kramar, Z.; Šegula, B.; Fazarinc, G.; Uršič, M. Evaluation of Slovene local pig breed for carcass and meat quality. Czech J. Anim. Sci. 2003, 8, 120–128. [Google Scholar]
- Tomažin, U.; Batorek-Lukač, N.; Škrlep, M.; Prevolnik-Povše, M.; Čandek-Potokar, M. Meat and fat quality of Krškopolje pigs reared in conventional and organic production systems. Animal 2019, 13, 1103–1110. [Google Scholar] [CrossRef] [PubMed]
- Fazarinc, G.; Vrecl, M.; Poklukar, K.; Škrlep, M.; Batorek-Lukač, N.; Brankovič, J.; Tomažin, U.; Čandek-Potokar, M. Expression of myosin heavy chain and some energy-related genes in the lomgissimus dorsi muscle of Krškopolje pigs: Effects of the production system. Front. Vet. Sci. 2020, 7, 533936. [Google Scholar] [CrossRef] [PubMed]
- Poklukar, K.; Čandek-Potokar, M.; Batorek-Lukač, N.; Škrlep, M. Biochemical and gene expression differences associated with higher fat deposition in Krškopolje pigs in comparison with lean hybrid pigs. Livest. Sci. 2023, 272, 105247. [Google Scholar] [CrossRef]
- Poklukar, K.; Čandek-Potokar, M.; Batorek-Lukač, N.; Tomažin, U.; Škrlep, M. Lipid deposition and metabolism in local and modern pig breeds: A review. Animals 2020, 10, 424. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Swine: Eleventh Revised Edition; The National Academies Press: Washington, DC, USA, 2012. [Google Scholar]
- Association of Official Analytical Chemists. Official Methods of Analysis, 17th ed.; AOAC International: Gaithersburgh, MD, USA, 2000; Volume 17. [Google Scholar]
- van Milgen, J.; Valancogne, A.; Dubois, S.; Dourmad, J.-Y.; Sève, B.; Noblet, J. InraPorc: A model and decisions support tool for the nutrition of growing pigs. Anim. Feed. Sci. Techn. 2008, 143, 387–405. [Google Scholar] [CrossRef]
- Commission decision of 18 February 2008 amending Decision 2005/879/EC authorising methods for grading pig carcases in Slovenia. Off. J. Eur. Union 2008, L56/28.
- Batorek, N.; Škrlep, M.; Prunier, A.; Louveau, I.; Noblet, J.; Bonneau, M.; Čandek-Potokar, M. Effect of feed restriction on hormones, performance, carcass traits, and meat quality in immunocastrated pigs. J. Anim. Sci. 2012, 90, 4593–4603. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasbad, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Lynch, S.M.; Frei, B. Mechanisms of copper-and iron-dependent oxidative modification of human low density lipoprotein. J. Lipid Res. 1993, 34, 1745–1753. [Google Scholar] [CrossRef]
- Rezar, V.; Salobir, J.; Levart, A.; Tomažin, U.; Škrlep, M.; Batorek Lukač, N.; Čandek Potokar, M. Supplementing entire male pig diet with hydrolysable tannins: Effect on carcass traits, meat quality and oxidative stability. Meat Sci. 2017, 133, 95–102. [Google Scholar] [CrossRef]
- Trout, G.R. A rapid method for measuring pigment concentration in porcine and other low pigmented muscles. In Proceedings of the 37th International Congress of Meat Science and Technology, Kulmbach, Germany, 1–6 September 1991. [Google Scholar]
- ISO 3496; Meat and Meat Products–Determination of Hydroxyproline Content. International Organizaiton for Standardization: Geneve, Switzerland, 1994.
- Škrlep, M.; Poklukar, K.; Kress, K.; Vrecl, M.; Fazarinc, G.; Batorek Lukač, N.; Weiler, U.; Stefanski, V.; Čandek-Potokar, M. Effect of immunocastration and housing conditions on pig carcass and meat quality traits. Transl. Anim. Sci. 2020, 4, 1224–1237. [Google Scholar] [CrossRef] [PubMed]
- Park, P.W.; Goins, R.E. In situ preparation of fatty acid methyl esters for analysis of fatty acid composition in foods. J. Food Sci. 1994, 59, 1262–1266. [Google Scholar] [CrossRef]
- Bazin, R.; Ferré, P. Assays of lipogenic enzymes. In Adipose Tissue Protocols, Methods in Molecular Biology; Ailhaud, G., Ed.; Springer: New York, NJ, USA, 2001; pp. 121–127. [Google Scholar]
- Sirtori, F.; Acciaioli, A.; Pugliese, C.; Bozzi, R.; Campodoni, G.; Franci, O. Effect of dietary protein level (as substitution of maize with soybean meal) on growth rate and feed efficiency of cinta senese pig in the growing-fattening period. It. J. Anim. Sci. 2010, 9, 30. [Google Scholar]
- Wang, B.; Mi, M.M.; Zhang, Q.Y.; Bao, N.; Pan, L.; Zhao, Y.; Qin, G.X. Relationship between the amino acid release kinetics of feed proteins and nitrogen balance in finishing pigs. Animal 2021, 15, 100359. [Google Scholar] [CrossRef]
- Barea, R.; Nieto, R.; Vitari, F.; Domeneghini, C.; Aguilera, J.F. Effects of pig genotype (Iberian vs. Landrace x Large White) on nutrient digestibility, relative organ weights and small intestine structure at two stages of growth. Animal 2011, 5, 547–557. [Google Scholar] [CrossRef]
- Pugliese, C.; Sirtori, F. Quality of meat and meat products produced from southern European pig breeds. Meat Sci. 2012, 90, 511–518. [Google Scholar] [CrossRef]
- Čandek-Potokar, M.; Batorek Lukač, N.; Tomažin, U.; Škrlep, M.; Nieto, R. Analytical review of productive performance of local pig breeds. In European Local Pig Breeds–Diversity and Performance; Čandek-Potokar, M., Nieto Linan, R., Eds.; IntechOpen: London, UK, 2019; pp. 281–303. [Google Scholar]
- Lebret, B.; Dourmad, J.Y.; Mourot, J.; Pollet, P.Y.; Gondret, F. Production performance, carcass composition, and adipose tissue traits of heavy pigs: Influence of breed and production system. J. Anim. Sci. 2014, 92, 3543–3556. [Google Scholar] [CrossRef] [PubMed]
- Serra, X.; Pérez-Enciso, M.; Oliver, M.A.; Vázquez, J.M.; Gispert, M.; Díaz, I.; Moreno, F.; Latorre, R.; Noguera, J.L. A comparison of carcass, meat quality and histochemical characteristics of Iberian (Guadyerbas line) and Landrace pigs. Livest. Prod. Sci. 1998, 56, 215–223. [Google Scholar] [CrossRef]
- Renaudeau, D.; Mourot, J. A comparison of carcass and meat quality characteristic of Creole and Large White pigs slaughtered at 90 kg BW. Meat Sci. 2007, 76, 165–171. [Google Scholar] [CrossRef]
- Acciaioli, A.; Pugliese, C.; Bozzi, R.; Campodoni, G.; Franci, O.; Gandini, G. Productivity of Cinta Senese and Large White x Cinta Senese pigs reared outdoor on woodlands and indoor. It. J. Anim. Sci. 2002, 1, 171–180. [Google Scholar] [CrossRef]
- Bailey, A.J. The role of collagen in the development of muscle and its relationship to eating quality. J. Anim. Sci. 1985, 60, 1580–1587. [Google Scholar] [CrossRef]
- Lepetit, J. Collagen contribution to meat toughness: Theoretical aspects. Meat Sci. 2008, 80, 960–967. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Chen, G.; Chai, M.; Shi, C.; Geng, Y.; Che, Y.; Li, Y.; Liu, S.; Gao, Y.; Hou, H. Effects of dietary protein levels on production performance, meat quality and flavor of fattening pigs. Front. Nutr. 2022, 9, 91051. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.P.; Zhou, P.; Li, J.L.; Zhang, L.; Gao, F.; Zhou, G.H. Effects of adding cysteamine to low-protein amino acid balanced diet on growing pork quality and related gene expression. J. Anim. Husb. Vet. Med. 2017, 48, 660–668. [Google Scholar]
- Zhang, S.H.; Chu, L.C.; Qiao, S.Y.; Mao, X.; Zeng, X. Effects of dietary leucine supplementation in low crude protein diets on performance, nitrogen balance, whole-body protein turnover, carcass characteristics and meat quality of finishing pigs. Anim. Sci. J. 2016, 87, 911–920. [Google Scholar] [CrossRef]
- Madeira, M.S.; Costa, P.; Alfaia, C.M.; Lopes, P.A.; Bessa, R.J.; Lemos, J.P.; Prates, J.A. The increased intramuscular fat promoted by dietary lysine restriction in lean but not in fatty pig genotypes improves pork sensory attributes. J. Anim. Sci. 2013, 91, 3177–3187. [Google Scholar] [CrossRef]
- Palma-Granados, P.; García-Casco, J.M.; Font-i-Furnols, M.; Muñoz, M.; Fernández-Barroso, M.A.; Carballo, C.; López-García, A.; Brun, A.; Gispert, M.; González-Sánchez, E. Effect of protein-restricted diet during growing period on performance and carcass quality traits of Duroc x Iberian crossbred barrows under different management conditions. Livest. Sci. 2024, 279, 105374. [Google Scholar] [CrossRef]
- Teye, G.A.; Sheard, P.R.; Whittington, F.M.; Nute, G.R.; Stewart, A.; Wood, J.D. Influence of dietary oils and protein level on pork quality. 1. Effects on muscle fatty acid composition, carcass, meat and eating quality. Meat Sci. 2006, 73, 157–165. [Google Scholar] [CrossRef]
- Suarez-Belloch, J.; Latorre, M.A.; Guada, J.A. The effect of protein restriction during the growing period on carcass, meat and fat quality of heavy barrows and gilts. Meat Sci. 2016, 112, 16–23. [Google Scholar] [CrossRef]
- Wood, J.D.; Enser, M.; Fisher, A.V.; Nute, G.R.; Sheard, P.R.; Richardson, R.I.; Hugher, S.I.; Whittington, F.M. Fat deposition, fatty acid composition and meat quality: A review. Meat Sci. 2008, 78, 343–358. [Google Scholar] [CrossRef]
- Gispert, M.; Font i Furnols, M.; Gil, M.; Velarde, A.; Diestre, A.; Carrión, D.; Sosnicki, A.A.; Plastow, G.S. Relationships between carcass quality parameters and genetic types. Meat Sci. 2007, 77, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.M.; Ren, L.J.; Chen, L.; Zhang, X.; Cheng, M.L.; Li, W.Z.; Zhang, Y.Y.; Gao, S.Z. Differential expression of lipid metabolism related genes in porcine muscle tissue leading to different intramuscular fat deposition. Lipids 2009, 44, 1029–1037. [Google Scholar] [CrossRef]
- de Smet, S.; Raes, K.; Demeyer, D. Meat fatty acid composition as affected by fatness and genetic factors: A review. Anim. Res. 2004, 53, 81–98. [Google Scholar] [CrossRef]
- Doran, O.; Moule, S.K.; Teye, G.A.; Whittington, F.M.; Hallett, K.G.; Wood, J.D. A reduced protein diet induces stearoyl-CoA desaturase protein expression in pig muscle but not in subcutaneous adipose tissue: Relationship with intramuscular lipid formation. Br. J. Nutr. 2006, 95, 609–617. [Google Scholar] [CrossRef] [PubMed]
- Dougan, M.E.R.; Vahmani, P.; Turner, T.D.; Mapiye, C.; Juárez, M.; Prieto, N.; Beaulieu, A.D.; Zijlstra, R.T.; Patience, J.F.; Aalhus, J.L. Pork as a source of omega-3 (n-3) fatty acids. J. Clin. Med. 2015, 4, 1999–2011. [Google Scholar] [CrossRef]
- Wojtysiak, D.; Połtowicz, K. Carcass quality, physico-chemical parameters, muscle fibre traits and myosin heavy chain composition of m. longissimus lumborum from Puławska and Polish Large White pigs. Meat Sci. 2014, 97, 395–403. [Google Scholar] [CrossRef]
- Park, B.Y.; Kim, N.K.; Lee, C.S.; Hwang, I.H. Effect of fiber type on postmortem proteolysis in longissimus muscle of Landrace and Korean native black pigs. Meat Sci. 2007, 77, 482–491. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.D.; Jeong, J.Y.; Hur, S.J.; Yang, H.S.; Jeon, J.T.; Joo, S.T. The relationship between meat colour (CIE L* and a*), myoglobin content, and their influence on muscle fiber characteristics and pork quality. Korean J. Food Sci. Anim. Resour. 2010, 30, 626–633. [Google Scholar] [CrossRef]
- Faustman, C.; Sun, Q.; Mancini, R.; Suman, S.P. Myoglobin and lipid oxidation interactions: Mechanistic bases and control. Meat Sci. 2010, 86, 86–94. [Google Scholar] [CrossRef]
- Baron, C.P.; Andersen, H.J. Myoglobin-induced lipid oxidation. A Review. J. Agric. Food Chem. 2002, 50, 3887–3897. [Google Scholar] [CrossRef]
- Ventanas, S.; Estévez, M.; Andrés, A.I.; Ruiz, J. Analysis of volatile compounds of Iberian dry-cured loins with different intramuscular fat contents using SPME–DED. Meat Sci. 2008, 79, 172–180. [Google Scholar] [CrossRef]
- Fuentes, V.; Utrera, M.; Estévez, M.; Ventanas, J.; Ventanas, S. Impact of high pressure treatment and intramuscular fat content on colour changes and protein and lipid oxidation in sliced and vacuum-packaged Iberian dry-cured ham. Meat Sci. 2014, 97, 468–474. [Google Scholar] [CrossRef]
- Dunshea, F.R.; D’Souza, D.N.; Pethick, D.W.; Harper, G.S.; Warner, R.D. Effects of dietary factors and other metabolic modifiers on quality and nutritional value of meat. Meat Sci. 2005, 71, 8–38. [Google Scholar] [CrossRef]
- Wood, J.D.; Richardson, R.I.; Nute, G.R.; Fisher, A.V.; Campo, M.M.; Kasapidou, E.; Enser, M. Effects of fatty acids on meat quality: A review. Meat Sci. 2004, 66, 21–32. [Google Scholar] [CrossRef]
- Huff-Lonergan, E.; Lonergan, S.M. Mechanisms of water-holding capacity of meat: The role of postmortem biochemical and structural changes. Meat Sci. 2005, 71, 194–204. [Google Scholar] [CrossRef]
- Huff-Lonergan, E.; Zhang, W.; Lonergan, S.M. Biochemistry of postmortem muscle—Lessons on mechanisms of meat tenderization. Meat Sci. 2010, 86, 184–195. [Google Scholar] [CrossRef]
- Barbut, S.; Sosnicki, A.A.; Lonergan, S.M.; Knapp, T.; Ciobanu, D.C.; Gatcliffe, L.J.; Huff-Lonergan, E.; Wilson, E.W. Progress in reducing the pale, soft andexudative (PSE) problem in pork and poultry meat. Meat Sci. 2008, 79, 46–63. [Google Scholar] [CrossRef]
- García-Esteban, M.; Ansorena, D.; Astiasarán, I. Comparison of modified atmosphere packaging and vacuum packaging for long period storage of dry-cured ham: Effects on colour, texture and microbiological quality. Meat Sci. 2004, 67, 57–63. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, J.; Song, X.; Zhang, X.; Ge, C.; Gao, S. Impact of dietary protein on lipid metabolism-related gene expression in porcine adipose tissue. Nutr. Metab. 2010, 7, 6. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, S.M.; Song, X.L.; Pan, H.B.; Li, W.Z.; Zhang, Y.Y.; Gao, S.Z.; Chen, D.W. Low protein diet up-regulate intramuscular lipogenic gene expression and down-regulate lipolytic gene expression in growth–finishing pigs. Livest. Sci. 2012, 148, 119–128. [Google Scholar] [CrossRef]
- Tejeda, J.F.; Hernández-Matamoros, A.; González, E. Characterstics, lipogenic enzyme activity, and fatty acid composition of muscles in the Iberian pig: Effects of protein restriction and free-range feeding. Livest. Sci. 2023, 267, 105142. [Google Scholar] [CrossRef]
- Muñoz, R.; Estany, J.; Tor, M.; Doran, O. Hepatic lipogenic enzyme expression in pigs is affected by selection for decreased backfat thickness at constant intramuscular fat content. Meat Sci. 2013, 93, 746–751. [Google Scholar] [CrossRef]
- Mourot, J.; Kouba, M.; Peiniau, P. Comparative study of in vitro lipogenesis in various adipose tissues in the growing domestic pig (Sus domesticus). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 1995, 111, 379–384. [Google Scholar] [CrossRef]
- Mourot, J.; Kouba, M.; Salvatori, G. Facteurs de variation de la lipogenèse dans les adipocytes et les tissus adipeux chez le porc. INRA Prod. Anim. 1999, 12, 311–318. [Google Scholar] [CrossRef]
- Freire, J.P.; Mourot, J.; Cunha, L.F.; Almeida, J.A.; Aumaitre, A. Effect of the source of dietary fat on postweaning lipogenesis in lean and fat pigs. Ann. Nutr. Metab. 1998, 42, 90–95. [Google Scholar] [CrossRef]
- Alfonso, L.; Mourot, J.; Insausti, K.; Mendizabal, J.A.; Arana, A. Comparative description of growth, fat deposition, carcass and meat quality characteristics of Basque and Large White pigs. Anim. Res. 2005, 54, 33–42. [Google Scholar] [CrossRef]
- Mourot, J.; Kouba, M.; Bonneau, M. Comparative study of in vitro lipogenesis in various adipose tissues in the growing meishan pig: Comparison with the large white pig (Sus domesticus). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 1996, 115, 383–388. [Google Scholar] [CrossRef]
- Nakajima, I.; Oe, M.; Ojima, K.; Muroya, S.; Shibata, M.; Chikuni, K. Cellularity of developing subcutaneous adipose tissue in Landrace and Meishan pigs: Adipocyte size differences between two breeds. Anim. Sci. J. 2011, 82, 144–149. [Google Scholar] [CrossRef]
- Hood, R.L.; Allen, C.E. Cellularity of porcine adipose tissue: Effects of growth and adiposity. J. Lipid Res. 1977, 18, 275–286. [Google Scholar] [CrossRef]
- Mersmann, H.J.; Goodman, J.R.; Brown, L.J. Development of swine adipose tissue: Morphology and chemical composition. J. Lipid Res. 1975, 16, 269–272. [Google Scholar] [CrossRef]
- Horwitz, A.; Birk, R. Adipose tissue hyperplasia and hypertrophy in common and syndromic obesity—The case of BBS obesity. Nutrients 2023, 15, 3445. [Google Scholar] [CrossRef]
- Sun, K.; Kusminski, C.M.; Scherer, P.E. Adipose tissue remodeling and obesity. J. Clin. Investig. 2011, 121, 2094–2101. [Google Scholar] [CrossRef]
- Anderson, D.B.; Kauffman, R.G.; Kastenschmidt, L.L. Lipogenic enzyme activities and cellularity of porcine adipose tissue from various anatomical locations. J. Lipid Res. 1972, 13, 593–599. [Google Scholar] [CrossRef]
- Lefaucheur, L.; Le Dividich, J.; Mourot, J.; Monin, G.; Ecolan, P.; Krauss, D. Influence of environmental temperature on growth, muscle and adipose tissue metabolism, and meat quality in swine. J. Anim. Sci. 1991, 69, 2844–2854. [Google Scholar] [CrossRef]
- Bee, G.; Gebert, S.; Messikommer, R. Effect of dietary energy supply and fat source on the fatty acid pattern of adipose and lean tissues and lipogenesis in the pig. J. Anim. Sci. 2002, 80, 1564–1574. [Google Scholar] [CrossRef]
Item | Feed 1 | Feed 2 | Feed 3 | Feed 4 | Feed 5 |
---|---|---|---|---|---|
Ingredient (%) | |||||
Maize | 31.08 | 23.93 | 30.00 | 32.00 | 26.35 |
Barley | 23.00 | 32.00 | 40.00 | 45.00 | 55.76 |
Wheat | 18.00 | 20.00 | 10.00 | 10.00 | 9.81 |
Wheat feed flour | . | . | 5.00 | 4.88 | . |
Soybean meal | 17.82 | 10.52 | 5.39 | 2.90 | . |
Sunflower meal | 1.50 | 2.00 | 2.60 | . | 1.20 |
Rapeseed meal | 3.73 | 7.26 | 2.00 | . | . |
Soybean oil | 0.22 | . | 0.38 | 0.25 | 0.45 |
Molasses | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Calcium carbonate | 1.05 | 1.04 | 1.04 | 1.07 | 1.01 |
Monocalcium phosphate | 0.97 | 0.52 | 0.60 | 0.70 | 0.81 |
Sodium chloride | 0.50 | 0.50 | 0.48 | 0.48 | 0.48 |
Magnesium oxide | 0.20 | 0.10 | 0.10 | 0.10 | 0.10 |
L-lysine-HCl | 0.19 | 0.23 | 0.44 | 0.60 | 0.37 |
DL-methionine | . | . | 0.01 | 0.07 | 0.08 |
L-threonine | . | . | 0.06 | 0.06 | . |
L-tryptophan | . | . | 0.01 | 0.01 | . |
Zeolite | . | . | . | . | 1.50 |
Vitamins and trace mineral mixture | 0.75 | 0.90 | 0.89 | 0.89 | 0.89 |
Chemical composition (%) | |||||
Dry matter | 87.2 | 87.5 | 88.2 | 88.1 | 88.6 |
Crude protein | 16.7 | 14.6 | 12.6 | 10.4 | 9.3 |
Crude fat | 2.4 | 2.4 | 2.7 | 2.6 | 2.4 |
Crude fiber | 3.6 | 4.1 | 3.9 | 3.5 | 2.9 |
Ash | 5.4 | 4.5 | 5.4 | 4.5 | 5.1 |
Nutritional values | |||||
Metabolic energy 1, MJ/kg | 12.8 | 12.7 | 12.8 | 12.9 | 12.6 |
Net energy 1, MJ/kg | 9.45 | 9.53 | 9.64 | 9.91 | 9.73 |
Lysine, g/kg | 9.27 | 8.61 | 8.38 | 8.12 | 6.15 |
Methionine, g/kg | 2.70 | 2.60 | 2.27 | 2.47 | 2.40 |
Cystine, g/kg | 3.17 | 3.13 | 2.58 | 2.23 | 2.14 |
Tryptophan, g/kg | 1.90 | 1.77 | 1.42 | 1.18 | 1.03 |
Threonine, g/kg | 6.07 | 5.56 | 4.95 | 4.03 | 3.21 |
Phenylalanine, g/kg | 7.83 | 7.03 | 5.72 | 4.65 | 4.44 |
Tyrosine, g/kg | 5.38 | 4.77 | 3.74 | 2.99 | 2.88 |
Leucine, g/kg | 12.88 | 11.48 | 9.65 | 8.08 | 7.48 |
Isoleucine, g/kg | 6.70 | 5.99 | 4.62 | 3.55 | 3.34 |
Valine, g/kg | 7.91 | 7.35 | 5.96 | 4.89 | 4.65 |
Histidine, g/kg | 4.18 | 3.77 | 3.01 | 2.39 | 2.19 |
Arginine, g/kg | 10.11 | 8.90 | 6.77 | 5.03 | 4.53 |
Trait | Phase 1 | Phase 2 | Phase 3 |
---|---|---|---|
Duration, days | 56 | 59 | 63 |
Feed intake, kg/pig/day | 1.64 | 2.42 | 2.81 |
Treatment group | |||
MH | Feed 1 | Feed 2 | Feed 3 |
MM | Feed 1 | Feed 3 | Feed 4 |
KM | Feed 1 | Feed 3 | Feed 4 |
KL | Feed 1 | Feed 4 | Feed 5 |
Protein Level Difference | Breed Difference | ||||||||
---|---|---|---|---|---|---|---|---|---|
Trait 1 | MH | MM | KM | KL | MH-MM (p-Value) | KM-KL (p-Value) | MM-KM (p-Value) | RMSE | Significance (p-Value) |
Weight 1, kg | 27.8 | 27.0 | 26.8 | 27.1 | 0.6686 | 0.8836 | 0.9017 | 3.640 | 0.9485 |
Weight 2, kg | 66.4 | 66.6 | 59.1 | 61.0 | 0.9500 | 0.5371 | 0.0262 | 5.905 | 0.0542 |
Weight 3, kg | 114.5 | 111.0 | 95.8 | 97.5 | 0.4638 | 0.7070 | 0.0032 | 8.729 | 0.0005 |
Weight 4, kg | 164.5 | 155.3 | 135.6 | 136.7 | 0.1111 | 0.8903 | 0.0015 | 10.365 | <0.0001 |
BFT 1, mm | 4.0 | 4.2 | 7.4 | 7.8 | 0.7349 | 0.4593 | <0.0001 | 1.171 | <0.0001 |
BFT 2, mm | 5.9 | 5.7 | 12.5 | 12.1 | 0.8416 | 0.6922 | <0.0001 | 1.959 | <0.0001 |
BFT 3, mm | 10.3 | 10.0 | 22.3 | 23.4 | 0.8306 | 1.4306 | <0.0001 | 2.720 | <0.0001 |
BFT 4, mm | 15.2 | 14.2 | 32.6 | 32.3 | 0.6387 | 0.8486 | <0.0001 | 3.936 | <0.0001 |
LLT 1, mm | 26.1 | 25.2 | 20.6 | 18.9 | 0.4664 | 1.1751 | 0.0011 | 2.348 | <0.0001 |
LLT 2, mm | 38.9 | 38.2 | 30.6 | 31.5 | 0.7223 | 0.6079 | 0.0006 | 3.451 | <0.0001 |
LLT 3, mm | 52.3 | 48.5 | 36.9 | 38.2 | 0.0307 | 0.4055 | <0.0001 | 3.115 | <0.0001 |
LLT 4, mm | 61.2 | 54.2 | 42.6 | 44.1 | 0.0024 | 0.4666 | <0.0001 | 3.873 | <0.0001 |
BFG 1–2, mm/day | 0.03 | 0.03 | 0.11 | 0.08 | 0.7068 | 0.1698 | 0.0020 | 0.0404 | 0.0053 |
BFG 2–3, mm/day | 0.07 | 0.07 | 0.17 | 0.19 | 0.7195 | 0.1465 | <0.0001 | 0.0327 | <0.0001 |
BFG 3–4, mm/day | 0.08 | 0.07 | 0.16 | 0.14 | 0.6403 | 0.2958 | 0.0003 | 0.0429 | 0.0004 |
BFG 1–4, mm/day | 0.06 | 0.06 | 0.14 | 0.14 | 0.5808 | 0.6684 | <0.0001 | 0.0230 | <0.0001 |
LLG 1–2, mm/day | 0.23 | 0.23 | 0.18 | 0.23 | 0.9339 | 0.2232 | 0.2089 | 0.0725 | 0.5035 |
LLG 2–3, mm/day | 0.23 | 0.17 | 0.11 | 0.11 | 0.0298 | 0.7759 | 0.0378 | 0.0484 | 0.0002 |
LLG 3–4, mm/day | 0.14 | 0.09 | 0.09 | 0.09 | 0.0760 | 0.9487 | 0.9710 | 0.0510 | 0.2037 |
LLG 1–4, mm/day | 0.20 | 0.16 | 0.12 | 0.14 | 0.0179 | 0.1858 | 0.0080 | 0.0252 | <0.0001 |
ADG 1–2, g/day | 687.6 | 706.0 | 577.4 | 606.4 | 0.6494 | 0.4623 | 0.0036 | 74.926 | 0.0082 |
ADG 2–3, g/day | 815.4 | 753.7 | 621.2 | 618.0 | 0.1587 | 0.9389 | 0.0045 | 79.398 | <0.0001 |
ADG 3–4, g/day | 793.8 | 703.1 | 632.9 | 617.4 | 0.0079 | 0.6140 | 0.0343 | 58.682 | <0.0001 |
ADG 1–4, g/day | 767.5 | 720.8 | 611.5 | 614.2 | 0.1457 | 0.9313 | 0.0017 | 58.123 | <0.0001 |
Protein Level Difference | Breed Difference | ||||||||
---|---|---|---|---|---|---|---|---|---|
Trait | MH | MM | KM | KL | MH-MM (p-Value) | KM-KL (p-Value) | MM-KM (p-Value) | RMSE | Significance (p-Value) |
Carcass weight, kg | 133.0 | 125.5 | 108.9 | 109.3 | 0.1356 | 0.926 | 0.0022 | 9.11 | <0.0001 |
Dressing, % | 80.9 | 80.8 | 80.2 | 80.1 | 0.9180 | 0.8525 | 0.5149 | 1.59 | 0.7076 |
Muscle GM, mm | 83.4 | 77.6 | 66.1 | 70.1 | 0.0352 | 0.1304 | 0.0002 | 4.92 | <0.0001 |
BFT GM, mm | 19.9 | 18.6 | 37.0 | 39.3 | 0.6622 | 0.4318 | 0.0001 | 5.44 | <0.0001 |
BFT withers, mm | 40.4 | 41.8 | 55.8 | 57.0 | 0.6478 | 0.6790 | 0.0001 | 5.77 | <0.0001 |
BFT last rib, mm | 31.3 | 27.9 | 38.7 | 38.5 | 0.2118 | 0.9415 | 0.0004 | 4.90 | 0.0004 |
LEA, cm2 | 76.8 | 63.9 | 38.3 | 37.8 | 0.0002 | 0.7747 | <0.0001 | 5.63 | <0.0001 |
LEA fat, cm2 | 25.1 | 22.2 | 40.3 | 39.2 | 0.4543 | 0.8704 | <0.0001 | 7.13 | <0.0001 |
CL, cm | 91.3 | 90.7 | 87.0 | 88.5 | 0.6911 | 0.2862 | 0.0150 | 2.66 | 0.0197 |
pH45 | 6.16 | 6.04 | 6.14 | 6.37 | 0.4202 | 0.1049 | 0.5219 | 0.267 | 0.1375 |
pH24 | 5.36 | 5.40 | 5.47 | 5.53 | 0.2606 | 0.1105 | 0.0212 | 0.059 | <0.0001 |
Color score, 1–6 | 2.4 | 2.5 | 3.8 | 3.5 | 0.9105 | 0.2579 | 0.0002 | 0.58 | 0.0001 |
Marbling score, 1–7 | 1.3 | 1.4 | 3.1 | 2.7 | 0.8767 | 0.4318 | 0.0009 | 0.85 | 0.0005 |
L* | 56.5 | 54.8 | 54.4 | 53.7 | 0.2060 | 0.6101 | 0.7414 | 2.42 | 0.1869 |
a* | 7.3 | 7.5 | 10.4 | 8.4 | 0.7845 | 0.0231 | 0.0022 | 1.60 | 0.0042 |
b* | 7.2 | 7.0 | 8.2 | 7.2 | 0.6872 | 0.0385 | 0.0193 | 0.87 | 0.0752 |
Drip loss 24h, % | 7.3 | 6.9 | 5.4 | 5.4 | 0.7481 | 0.9752 | 0.2346 | 2.30 | 0.2905 |
Drip loss 48h, % | 9.4 | 9.0 | 7.5 | 7.8 | 0.7406 | 0.8123 | 0.2411 | 2.31 | 0.3582 |
Thawing loss, % | 11.9 | 11.4 | 11.2 | 11.4 | 0.6787 | 0.8361 | 0.8401 | 2.36 | 0.9367 |
Cooking loss, % | 29.4 | 29.1 | 28.7 | 28.8 | 0.7968 | 0.9055 | 0.7315 | 2.16 | 0.9311 |
Shear force, n | 52.9 | 55.9 | 52.0 | 49.3 | 0.4835 | 0.5087 | 0.3635 | 7.85 | 0.4563 |
Protein Level Difference | Breed Difference | ||||||||
---|---|---|---|---|---|---|---|---|---|
Trait | MH | MM | KM | KL | MH-MM (p-Value) | KM-KL (p-Value) | MM-KM (p-Value) | RMSE | Significance (p-Value) |
Longissimus lumborum muscle | |||||||||
IMF, % | 1.0 | 1.4 | 3.6 | 4.1 | 0.3294 | 0.3038 | 0.0001 | 0.91 | <0.0001 |
Proteins, % | 23.8 | 23.7 | 23.5 | 23.3 | 0.5085 | 0.3990 | 0.3385 | 1.5 | 0.0811 |
Moisture, % | 73.7 | 73.3 | 71.9 | 71.8 | 0.4721 | 0.8928 | 0.0114 | 0.99 | 0.0013 |
SFA, g/100 g fatty acids | 37.90 | 37.84 | 42.40 | 41.47 | 0.9572 | 0.3764 | 0.0002 | 2.0005 | 0.0002 |
MUFA, g/100 g fatty acids | 37.80 | 39.70 | 45.49 | 47.20 | 0.3276 | 0.3649 | 0.0055 | 3.5658 | <0.0001 |
PUFA, g/100 g fatty acids | 24.31 | 22.46 | 12.10 | 11.33 | 0.4769 | 0.7579 | 0.0004 | 4.779 | <0.0001 |
Myoglobin, mg/g | 1.21 | 1.31 | 1.84 | 1.58 | 0.3975 | 0.0186 | <0.0001 | 0.202 | <0.0001 |
TBARS, raw, µg MDA/kg | 0.44 | 0.45 | 0.58 | 0.56 | 0.8003 | 0.4845 | 0.0004 | 0.063 | 0.0001 |
Carbonyl raw, nmol/mg protein | 1.03 | 1.11 | 1.15 | 1.18 | 0.1231 | 0.6135 | 0.4170 | 0.097 | 0.0355 |
Collagen, total, mg/g | 0.41 | 0.46 | 0.43 | 0.47 | 0.2310 | 0.3296 | 0.5570 | 0.072 | 0.3974 |
Collagen solubility, % | 24.4 | 17.4 | 14.0 | 12.9 | 0.0767 | 0.7691 | 0.3705 | 7.086 | 0.0207 |
Semispinalis capitis muscle | |||||||||
IMF, % | 10.5 | 10.8 | 17.9 | 17.2 | 0.9109 | 0.7285 | 0.0020 | 3.82 | 0.0011 |
Proteins, % | 20.1 | 19.4 | 19.0 | 18.8 | 0.2887 | 0.6895 | 0.5827 | 1.15 | 0.2284 |
Moisture, % | 68.8 | 68.4 | 62.7 | 63.3 | 0.8237 | 0.6950 | 0.0026 | 1.19 | 0.0013 |
Subcutaneous fat | |||||||||
SFA, g/100 g fatty acids | 43.62 | 43.22 | 45.59 | 46.71 | 0.7045 | 0.2780 | 0.0328 | 1.9627 | 0.0059 |
MUFA, g/100 g fatty acids | 41.49 | 41.20 | 43.45 | 42.92 | 0.6805 | 0.4414 | 0.0035 | 1.3039 | 0.0077 |
PUFA, g/100 g fatty acids | 14.89 | 15.59 | 10.97 | 10.36 | 0.3537 | 0.4034 | <0.0001 | 1.3711 | <0.0001 |
Protein Level Difference | Breed Difference | ||||||||
---|---|---|---|---|---|---|---|---|---|
Enzymes | MH | MM | KM | KL | MH-MM (p-Value) | KM-KL (p-Value) | MM-KM (p-Value) | RMSE | Significance (p-Value) |
Subcutaneous fat | |||||||||
ME | 1132.5 | 1011.9 | 992.3 | 1080.7 | 0.2726 | 0.4038 | 0.8570 | 201.15 | 0.5473 |
G6PD | 1019.7 | 993.0 | 885.2 | 907.8 | 0.6457 | 0.6892 | 0.0728 | 107.60 | 0.0739 |
CCL | 172.3 | 145.9 | 283.2 | 311.5 | 0.4677 | 0.4198 | 0.0007 | 66.82 | <0.0001 |
FAS | 15.4 | 13.5 | 40.0 | 35.7 | 0.7840 | 0.4956 | 0.0004 | 12.19 | 0.0004 |
Longissimus lumborum muscle | |||||||||
ME | 219.1 | 225.7 | 271.8 | 292.1 | 0.8339 | 0.5066 | 0.1501 | 58.10 | 0.0633 |
G6PD | 25.7 | 27.0 | 30.8 | 29.9 | 0.8894 | 0.9279 | 0.6984 | 17.85 | 0.9425 |
Semispinalis capitis muscle | |||||||||
ME | 334.0 | 291.6 | 370.3 | 414.1 | 0.3575 | 0.3286 | 0.0944 | 84.76 | 0.0595 |
G6PD | 99.0 | 100.6 | 161.9 | 171.3 | 0.9467 | 0.6952 | 0.0187 | 45.60 | 0.0058 |
CCL | 77.2 | 54.5 | 41.6 | 96.3 | 0.3945 | 0.0412 | 0.6287 | 49.13 | 0.1696 |
Liver | |||||||||
ME | 197.3 | 163.8 | 217.0 | 226.9 | 0.2903 | 0.7438 | 0.0983 | 57.97 | 0.1971 |
G6PD | 2330.4 | 2534.1 | 2106.0 | 2166.7 | 0.2121 | 0.6969 | 0.0125 | 297.6 | 0.0520 |
CCL | 12.3 | 8.8 | 13.5 | 16.1 | 0.4481 | 0.6204 | 0.3700 | 165.27 | 0.4771 |
FAS | 24.2 | 18.3 | 26.9 | 21.9 | 0.4032 | 0.4698 | 0.2223 | 12.37 | 0.6416 |
Protein Level Difference | Breed Difference | ||||||||
---|---|---|---|---|---|---|---|---|---|
Trait | MH | MM | KM | KL | MH-MM (p-Value) | KM-KL (p-Value) | MM-KM (p-Value) | RMSE | Significance (p-Value) |
Outer backfat layer | |||||||||
ADP cross-sectional area (µm2) | 2938.3 | 3338.9 | 3748.8 | 3658.2 | 0.3693 | 0.8324 | 0.3583 | 819.57 | 0.2581 |
0.0580 | |||||||||
Number of ADP (per ROI) | 223.1 | 191.7 | 182.6 | 167.6 | 0.0824 | 0.3827 | 0.6033 | 32.50 | 0.0222 |
Inner backfat layer | |||||||||
ADP cross-sectional area (µm2) | 3429.7 | 3526.4 | 4574.4 | 4814.3 | 0.8545 | 0.6390 | 0.0555 | 976.10 | 0.0208 |
0.0108 | |||||||||
Number of ADP (per ROI) | 184.7 | 186.1 | 142.3 | 138.3 | 0.9315 | 0.8021 | 0.0133 | 30.79 | 0.0060 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Škrlep, M.; Poklukar, K.; Vrecl, M.; Brankovič, J.; Čandek-Potokar, M. Growth Performance, Carcass Quality, and Lipid Metabolism in Krškopolje Pigs and Modern Hybrid Pigs: Comparison of Genotypes and Evaluation of Dietary Protein Reduction. Animals 2024, 14, 3331. https://doi.org/10.3390/ani14223331
Škrlep M, Poklukar K, Vrecl M, Brankovič J, Čandek-Potokar M. Growth Performance, Carcass Quality, and Lipid Metabolism in Krškopolje Pigs and Modern Hybrid Pigs: Comparison of Genotypes and Evaluation of Dietary Protein Reduction. Animals. 2024; 14(22):3331. https://doi.org/10.3390/ani14223331
Chicago/Turabian StyleŠkrlep, Martin, Klavdija Poklukar, Milka Vrecl, Jana Brankovič, and Marjeta Čandek-Potokar. 2024. "Growth Performance, Carcass Quality, and Lipid Metabolism in Krškopolje Pigs and Modern Hybrid Pigs: Comparison of Genotypes and Evaluation of Dietary Protein Reduction" Animals 14, no. 22: 3331. https://doi.org/10.3390/ani14223331
APA StyleŠkrlep, M., Poklukar, K., Vrecl, M., Brankovič, J., & Čandek-Potokar, M. (2024). Growth Performance, Carcass Quality, and Lipid Metabolism in Krškopolje Pigs and Modern Hybrid Pigs: Comparison of Genotypes and Evaluation of Dietary Protein Reduction. Animals, 14(22), 3331. https://doi.org/10.3390/ani14223331