Effect of the Lactation Phases on the Amplitude of Variation in Blood Serum Steroid Hormones and Some Hematochemical Analytes in Three Dairy Cow Breeds
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Housing and Management
2.2. Blood Samples
2.3. Hormonal and Analytic Analyses
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. Steroid Hormones
4.2. Analytes (Na+, Cl−, K+, Fe++, Ca++, Pi, and Mg++)
4.3. Hematochemical Analytes (AST, ALT, LDH, CK, Total Bilirubin, Urea)
5. Conclusions
- (1)
- Lactation induces significant changes in the blood serum concentrations of P4, cortisol, Na+, and Mg++;
- (2)
- The breeds used in this study showed a significant effect on AST, ALT, and LDH activities and the concentration of Ca++, Mg++; and Fe++, most probably related to the milking yield potential of the breed, but the variations throughout the lactation period were similar for all the breeds;
- (3)
- Significant correlations were recorded for P4 with cortisol, Cl−,and K+ and for cortisol with Ca++ and LDH.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Spaans, O.K.; Kuhn-Sherlock, B.; Hickey, A.; Crookenden, M.A.; Heiser, A.; Burke, C.R.; Phyn, C.V.C.; Roche, J.R. Temporal profiles describing markers of inflammation and metabolism during the transition period of pasture-based, seasonal-calving dairy cows. J. Dairy Sci. 2022, 105, 2669–2698. [Google Scholar] [CrossRef] [PubMed]
- Walter, L.L.; Gärtner, T.; Gernand, E.; Wehrend, A.; Donat, K. Effects of parity and stage of lactation on trend and variability of metabolic markers in dairy cows. Animals 2022, 12, 1008. [Google Scholar] [CrossRef]
- Bruckmaier, R.M.; Gross, J.J. Lactational challenges in transition dairy cows. Anim. Prod. Sci. 2017, 57, 1471–1481. [Google Scholar] [CrossRef]
- Kindahl, H.; Kornmatitsuk, B.; Gustafsson, H. The cow in endocrine focus before and after calving. Reprod. Domest. Anim. 2004, 39, 217–221. [Google Scholar] [CrossRef] [PubMed]
- Kindahl, H.; Kornmatitsuk, B.; Königsson, K.; Gustafsson, H. Endocrine changes in late bovine pregnancy with special emphasis on fetal well-being. Domest. Anim. Endocrinol. 2002, 23, 321–328. [Google Scholar] [CrossRef]
- Sangsritavong, S.; Combs, D.K.; Sartori, R.; Armentano, L.E.; Wiltbank, M.C. High feed intake increases liver blood flow and metabolism of progesterone and estradiol-17beta in dairy cattle. J. Dairy Sci. 2002, 85, 2831–2842. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Xu, M.; Wang, J.; Xie, J. Effect of estrogen on iron metabolism in mammals. Sheng Li Xue Bao [Acta Physiol. Sin.] 2016, 68, 637–643. [Google Scholar] [CrossRef]
- Satué, K.; Fazio, E.; Cravana, C.; Medica, P. Hepcidin, ferritin and iron homeostasis in pregnant Spanish Purebred mares. Theriogenology 2023, 206, 78–86. [Google Scholar] [CrossRef]
- Satué, K.; Fazio, E.; La Fauci, D.; Medica, P. Changes of Hepcidin, Ferritin and Iron levels in cycling Purebred Spanish Mares. Animals 2023, 13, 1229. [Google Scholar] [CrossRef]
- Satué, K.; Fazio, E.; Medica, P. Estrogen-iron axis in cyclic mares: Effect of age. Theriogenology 2023, 209, 178–183. [Google Scholar] [CrossRef]
- Hamad, M.; Bajbouj, K.; Taneera, J. The Case for an Estrogen-iron Axis in Health and Disease. Exp. Clin. Endocrinol. Diabetes 2020, 128, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Zhang, S.; Guo, W.; Ma, J.; Chen, Y.; Wang, L.; Zhao, M.; Liu, S. Polychlorinated biphenyls (PCBs) inhibit hepcidin expression through an estrogen-like effect associated with disordered systemic iron homeostasis. Chem. Res. Toxicol. 2015, 28, 629–640. [Google Scholar] [CrossRef] [PubMed]
- Dobson, H.; Ghuman, S.; Prabhakar, S.; Smith, R. A conceptual model of the influence of stress on female reproduction. Reproduction 2003, 125, 151–163. [Google Scholar] [CrossRef] [PubMed]
- Kupczyński, R.; Chudoba-Drozdowska, B. Values of selected biochemical parameters of cows’ blood during their drying-off and the beginning of lactation. Electron. J. Pol. Agric. Univ. 2002, 5, 1. [Google Scholar]
- Liggins, G.C. The role of cortisol in preparing the fetus for birth. Reprod. Fertil. Dev. 1994, 6, 141–150. [Google Scholar] [CrossRef]
- Nathanielsz, P.W. A time to be born: How the fetus signals to the mother that it is time to leave the uterus. Cornell Vet. 1993, 83, 181–187. [Google Scholar]
- Dang, A.K.; Jamwal, M.; Kaur, M.; Kimothi, S.P.; Pal, S.; De, K.; Pathan, M.M.; Swain, D.K.; Mohapatra, S.K.; Kapila, S.; et al. Effect of micronutrient supplementation around calving on the plasma cortisol levels of Murrah buffaloes and Sahiwal and Karan Fries cows. Trop. Anim. Health Prod. 2013, 45, 1047–1050. [Google Scholar] [CrossRef]
- Fiore, E.; Barberio, A.; Morgante, M.; Rizzo, M.; Giudice, E.; Piccione, G.; Lora, M.; Gianesella, M. Glucose infusion response to some biochemical parameters in dairy cows during the transition period. Anim. Sci. Pap. Rep. 2015, 33, 129–136. [Google Scholar]
- Grala, T.M.; Kuhn-Sherlock, B.; Roche, J.R.; Jordan, O.M.; Phyn, C.V.C.; Burke, C.R.; Meier, S. Changes in plasma electrolytes, minerals, and hepatic markers of health across the transition period in dairy cows divergent in genetic merit for fertility traits and postpartum anovulatory intervals. J. Dairy Sci. 2022, 105, 1754–1767. [Google Scholar] [CrossRef]
- Bellová, V.; Pechová, A.; Dvořák, R.; Pavlata, L. Influence of full-fat soybean seeds and hydrolyzed palm oil on the metabolism of lactating dairy cows. Acta Vet. Brno 2009, 78, 431–440. [Google Scholar] [CrossRef]
- Bionda, A.; Lopreiato, V.; Crepaldi, P.; Chiofalo, V.; Fazio, E.; Oteri, M.; Amato, A.; Liotta, L. Diet supplemented with olive cake as a model of circular economy: Metabolic response in beef cattle. Front. Sustain. Food Syst. 2022, 6, 1077363. [Google Scholar] [CrossRef]
- Fazio, E.; Bionda, A.; Chiofalo, V.; La Fauci, D.; Randazzo, C.; Pino, A.; Crepaldi, P.; Attard, G.; Liotta, L.; Lopreiato, V.; et al. Effects of dietary enrichment with olive cake on the thyroid and adrenocortical responses in growing beef calves. Animals 2023, 13, 2120. [Google Scholar] [CrossRef] [PubMed]
- Bertoni, G.; Trevisi, E.; Han, X.; Bionaz, M. Effects of inflammatory conditions on liver activity in puerperium period and consequences for performance in dairy cows. J. Dairy Sci. 2008, 91, 3300–3310. [Google Scholar] [CrossRef] [PubMed]
- National Research Council (U.S.). Committee on Physiological Effects of Environmental Factors on Animals. Guide to Environmental Research on Animals; National Academy of Sciences: Washington, DC, USA, 1971. [Google Scholar]
- Astiti, L.G.S.; Panjaitan, T. Serum Progesterone concentration in Bali cow during pregnancy. Open Sci. Repos. Vet. Med. Online 2013, e70081943. [Google Scholar] [CrossRef]
- Duong, H.T.; Piotrowska-Tomala, K.K.; Acosta, T.J.; Bah, M.M.; Sinderewicz, E.; Majewska, M.; Jankowska, K.; Okuda, K.; Skarzynski, D.J. Effects of cortisol on pregnancy rate and corpus luteum function in heifers: An in vivo study. J. Reprod. Dev. 2012, 58, 223–230. [Google Scholar] [CrossRef]
- Yanhong, Y.; Yuin, C.; Sijiu, Y. Histological characteristics of corpus luteum in Yak during early pregnancy. In Proceedings of the Fourth International Congress on Yak, Chengdu, China, 20–26 September 2004; p. 44. [Google Scholar]
- Dodamani, M.S.; Mohteshamuddin, K.; Awati, S.D.; Tandle, M.K.; Honnappagol, S.S. Evaluation of serum profile during various stages of gestation in crossbred Deoni Cows. Vet. World 2009, 2, 398–399. [Google Scholar]
- Knight, C.H. Lactation and gestation in dairy cows: Flexibility avoids nutritional extremes. Proc. Nutr. Soc. 2001, 60, 527–537. [Google Scholar] [CrossRef]
- Moretti, P.; Paltrinieri, S.; Trevisi, E.; Probo, M.; Ferrari, A.; Minuti, A.; Giordano, A. Reference intervals for hematological and biochemical parameters, acute phase proteins and markers of oxidation in Holstein dairy cows around 3 and 30 days after calving. Res. Vet. Sci. 2017, 114, 322–331. [Google Scholar] [CrossRef] [PubMed]
- Engida, T.; Lobago, F.; Lemma, A.; Yenehun, A.M.; Mekete, B. Validation of the Human Progesterone Assay Kit for Cattle as a Pregnancy Diagnosis Tool. Vet. Med. Int. 2022, 2022, 4610830. [Google Scholar] [CrossRef]
- Myles, K.; Funder, J. Progesterone binding to mineralocorticoid receptors: In vitro and in vivo studies. Am. J. Physiol. Endocrinol. Metab. 1996, 270, E601–E607. [Google Scholar] [CrossRef]
- Wenner, M.; Stachenfeld, N. Sex hormones and environmental factors affecting exercise. In Sex Hormones, Exercise and Women; Hackey, A.C., Ed.; Springer: Cham, Switzerland, 2017; pp. 151–170. [Google Scholar] [CrossRef]
- Svennersten-Sjaunja, K.; Olsson, K. Endocrinology of milk production. Domest. Anim. Endocrinol. 2005, 29, 241–258. [Google Scholar] [CrossRef] [PubMed]
- Benfield, R.D.; Newton, E.R.; Tanner, C.J.; Heitkemper, M.M. Cortisol as a biomarker of stress in term human labor: Physiological and methodological issues. Biol. Res. Nurs. 2014, 16, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Peters, R.R.; Kohn, R.A. Effect of a transition diet on production performance and metabolism in periparturient dairy cows. J. Dairy Sci. 2007, 90, 5247–5258. [Google Scholar] [CrossRef]
- Gladden, N.; McKeegan, D.; Viora, L.; Ellis, K.A. Postpartum ketoprofen treatment does not alter stress biomarkers in cows and calves experiencing assisted and unassisted parturition: A randomised controlled trial. Vet. Rec. 2018, 183, 414. [Google Scholar] [CrossRef]
- Echternkamp, S.E. Relationship between LH and cortisol in acutely stressed beef cows. Theriogenology 1984, 22, 305–311. [Google Scholar] [CrossRef]
- Tallo-Parra, O.; Carbajal, A.; Monclús, L.; Manteca, X.; Lopez-Bejar, M. Hair cortisol and progesterone detection in dairy cattle: Interrelation with physiological status and milk production. Domest. Anim. Endocrinol. 2018, 64, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Kurpińska, A.; Skrzypczak, W. Hormonal changes in dairy cows during periparturient period. Acta Sci. Pol. Zootech. 2020, 18, 13–22. [Google Scholar] [CrossRef]
- Baulieu, E.E.; Robel, P.; Schumacher, M. Neurosteroids: Beginning of the story. Int. Rev. Neurobiol. 2001, 46, 1–32. [Google Scholar] [CrossRef]
- Martinez, N.; Risco, C.A.; Lima, F.S.; Bisinotto, R.S.; Greco, L.F.; Ribeiro, E.S.; Maunsell, F.; Galvão, K.; Santos, J.E.P. Evaluation of peripartal calcium status, energetic profile, and neutrophil function in dairy cows at low or high risk of developing uterine disease. J. Dairy Sci. 2012, 95, 7158–7172. [Google Scholar] [CrossRef]
- Goff, J.P. The monitoring, prevention, and treatment of milk fever and subclinical hypocalcemia in dairy cows. Vet. J. 2008, 176, 50–57. [Google Scholar] [CrossRef]
- Chen, S.; Wang, X.H.; Zhang, X.Z.; Wang, W.C.; Liu, D.W.; Long, Z.Y.; Dai, W.; Chen, Q.; Xu, M.H.; Zhou, J.H. High-dose glucocorticoids induce decreases calcium in hypothalamus neurons via plasma membrane Ca(2+) pumps. Neuroreport 2011, 22, 660–663. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.H.; Lee, G.S.; Jung, E.M.; Choi, K.C.; Oh, G.T.; Jeung, E.B. Dexamethasone differentially regulates renal and duodenal calcium-processing genes in calbindin-D9k and -D28k knockout mice. Exp. Physiol. 2009, 94, 138–151. [Google Scholar] [CrossRef] [PubMed]
- Joëls, M.; Karst, H. Corticosteroid effects on calcium signaling in limbic neurons. Cell Calcium 2012, 51, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Panettieri, R.A.; Schaafsma, D.; Amrani, Y.; Koziol-White, C.; Ostrom, R.; Tliba, O. Non-genomic Effects of Glucocorticoids: An Updated View. Trends Pharmacol. Sci. 2019, 40, 38–49. [Google Scholar] [CrossRef]
- Sobiech, P.; Kuleta, Z.; Jalynski, M. Serum LDH isoenzyme activity in dairy and beef cows. Acta Sci. Pol. Med. Vet. 2002, 1, 39–43. [Google Scholar]
- Kuo, T.; McQueen, A.; Chen, T.C.; Wang, J.C. Regulation of Glucose Homeostasis by Glucocorticoids. Adv. Exp. Med. Biol. 2015, 872, 99–126. [Google Scholar] [CrossRef]
- Safwate, A.; Davicco, M.J.; Barlet, J.P.; Delost, P. Sodium and potassium in blood and milk and plasma aldosterone levels in high-yield dairy cows. Reprod. Nutr. Dev. 1981, 21, 601–610. [Google Scholar] [CrossRef]
- Yokus, B.; Cakir, U.D. Seasonal and physiological variations in serum chemistry and mineral concentrations in cattle. Biol. Trace Elem. Res. 2006, 109, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Batchelder, C.A.; Bertolini, M.; Mason, J.B.; Moyer, A.L.; Hoffert, K.A.; Petkov, S.G.; Famula, T.R.; Angelos, J.; George, L.W.; Anderson, G.B. Perinatal physiology in cloned and normal calves: Hematologic and biochemical profiles. Cloning Stem Cells 2007, 9, 83–96. [Google Scholar] [CrossRef]
- Skrzypczak, W.; Kurpinska, A.; Stanski, L.; Jarosz, A. Sodium, potassium and chloride homeostasis in cows during pregnancy and first months of lactation. Acta Biol. Cracoviensia Ser. Zool. 2014, 55–56, 58–64. [Google Scholar]
- Jarosz, A. Identification of Proteins with Variable Expression in Plasma Proteome of Heifers Before Insemination and During Pregnancy; University of Szczecin: Szczecin, Poland, 2013. [Google Scholar]
- Grünwaldt, E.G.; Guevara, J.C.; Estévez, O.R.; Vicente, A.; Rousselle, H.; Alcuten, N.; Aguerregaray, D.; Stasi, C.R. Biochemical and haematological measurements in beef cattle in Mendoza plain rangelands (Argentina). Trop. Anim. Health Prod. 2005, 37, 527–540. [Google Scholar] [CrossRef] [PubMed]
- Nozad, S.; Ramin, A.-G.; Moghadam, G.; Asri-Rezaei, S.; Babapour, A.; Ramin, S. Relationship between blood urea, protein, creatinine, triglycerides and macro-mineral concentrations with the quality and quantity of milk in dairy Holstein cows. Vet. Res. Forum 2012, 3, 55–59. [Google Scholar] [PubMed]
- Sattler, N.; Fecteau, G.; Couture, Y.; Tremblay, A. [Determination of the potassium balances in dairy cows and the examination of daily and lactation period-associated variations]. Can. Vet. J. 2001, 42, 107–115. [Google Scholar] [PubMed]
- DeGaris, P.J.; Lean, I.J. Milk fever in dairy cows: A review of pathophysiology and control principles. Vet. J. 2008, 176, 58–69. [Google Scholar] [CrossRef]
- Martens, H.; Stumpff, F. Assessment of magnesium intake according to requirement in dairy cows. J. Anim. Physiol. Anim. Nutr. 2019, 103, 1023–1029. [Google Scholar] [CrossRef]
- Shappell, N.W.; Herbein, J.H.; Deftos, L.J.; Aiello, R.J. Effects of dietary calcium and age on parathyroid hormone, calcitonin and serum and milk minerals in the periparturient dairy cow. J. Nutr. 1987, 117, 201–207. [Google Scholar] [CrossRef]
- Martens, H.; Leonhard-Marek, S.; Röntgen, M.; Stumpff, F. Magnesium homeostasis in cattle: Absorption and excretion. Nutr. Res. Rev. 2018, 31, 114–130. [Google Scholar] [CrossRef]
- Głowiñska, B.; Oler, A. Biochemical and hormonal characteristics of peripheral blood in bulls in relation to genotype. Folia Biol. 2013, 61, 73–77. [Google Scholar] [CrossRef]
- Singh, A.; Srinivas, B. Plasticity of gut and metabolic limitations of Deoni calves in comparison to crossbred calves on a high plane of nutrition. Trop. Anim. Health Prod. 2020, 52, 3365–3371. [Google Scholar] [CrossRef]
- Boonprong, S.; Sribhen, C.; Choothesa, A.; Parvizi, N.; Vajrabukka, C. Blood biochemical profiles of Thai indigenous and simmental × brahman crossbred cattle in the central Thailand. J. Vet. Med. A Physiol. Pathol. Clin. Med. 2007, 54, 62–65. [Google Scholar] [CrossRef]
- Antanaitis, R.; Malašauskienė, D.; Televičius, M.; Juozaitiene, V.; Rutkauskas, A.; Palubinskas, G. Inline changes in lactate dehydrogenase, milk concentration according to the stage and number of lactation periods, including the status of reproduction and milk yield in dairy cows. Pol. J. Vet. Sci. 2020, 23, 153–156. [Google Scholar] [CrossRef] [PubMed]
- Marai, I.F.M.; Habeeb, A.A.M.; Farghaly, H.M. Productive, physiological and biochemical changes in imported and locally born Friesian and Holstein lactating cows under hot summer conditions of Egypt. Trop. Anim. Health Prod. 1999, 31, 233–243. [Google Scholar] [CrossRef]
- Stojević, Z.; Piršljin, J.; Milinković-Tur, S.; Zdelar-Tuk, M.; Ljubić, B.B. Activities of AST, ALT and GGT in clinically healthy dairy cows during lactation and in the dry period. Vet. Arhiv. 2005, 75, 67–73. [Google Scholar]
- Kramer, J.W.; Hoffman, W.E. Clinical Enzymology. In Clinical Biochemistry of Domestic Animals; Kaneko, J.J., Harvey, J.W., Bruss, M.L., Eds.; Academic Press: San Diego, CA, USA, 1997; pp. 303–325. [Google Scholar] [CrossRef]
- Scheck, K.; Weigert, P.; Lemmer, B.; Noreisch, W. [Laboratory diagnostic studies of Haflinger horses and mules (pack-animals of the West German Army). 3. Substrates in serum]. Tierarztl. Prax. 1980, 8, 537–542. [Google Scholar]
- Forenbacher, S. Klinička Patologija Probave i Mijene Tvari Domaćih Životinja; Sveučilišna naklada Liber: Zagreb, Croatia, 1983; pp. 88–96. [Google Scholar]
- Doornenbal, H.; Tong, A.K.; Murray, N.L. Reference values of blood parameters in beef cattle of different ages and stages of lactation. Can. J. Vet. Res. 1988, 52, 99–105. [Google Scholar]
- Gonano, C.V.; Montanholi, Y.R.; Schenkel, F.S.; Smith, B.A.; Cant, J.P.; Miller, S.P. The relationship between feed efficiency and the circadian profile of blood plasma analytes measured in beef heifers at different physiological stages. Animal 2014, 8, 1684–1698. [Google Scholar] [CrossRef]
- Tainturier, D.; Braun, J.P.; Rico, A.G.; Thouvenot, J.P. Variations in blood composition in dairy cows during pregnancy and after calving. Res. Vet. Sci. 1984, 37, 129–131. [Google Scholar] [CrossRef] [PubMed]
- Asmare, A.; Kovac, G.; Reichel, P.; Buleca, J.; Scurokova, E. Serum isoenzyme activity of lactate dehydrogenase in dairy cows at different stages of milk production. Folia Vet. 1998, 42, 77–81. [Google Scholar]
- Clark, J.F. The creatine kinase system in smooth muscle. Mol. Cell. Biochem. 1994, 134, 221–232. [Google Scholar] [CrossRef]
- Latimer, K.S. Duncan and Prasse’s Veterinary Laboratory Medicine: Clinical Pathology, 5th ed.; Wiley-Blackwell: West Sussex, UK, 2011. [Google Scholar]
- Flück, M.; Hoppeler, H. Molecular basis of skeletal muscle plasticity--from gene to form and function. Rev. Physiol. Biochem. Pharmacol. 2003, 146, 159–216. [Google Scholar] [CrossRef]
- Okonkwo, J.C.C.; Omeje, I.S.; Okonkwo, I.F.F.; Umeghalu, I.C.E.C.E. Effects of breed, sex and source within breed on the blood bilirubin, cholesterol and glucose concentrations of Nigerian goats. Pak. J. Nutr. 2010, 9, 120–124. [Google Scholar] [CrossRef]
- Hisadomi, S.; Haruno, A.; Fujieda, T.; Sugino, T.; Oba, M. Effects of rumen-protected glutamate supplementation during the periparturient period on digestibility, inflammation, metabolic responses, and performance in dairy cows. J. Dairy Sci. 2022, 105, 3129–3141. [Google Scholar] [CrossRef] [PubMed]
- Marcato, F.; van den Brand, H.; Jansen, C.A.; Rutten, V.P.M.G.; Kemp, B.; Engel, B.; Wolthuis-Fillerup, M.; van Reenen, K. Effects of pre-transport diet, transport duration and transport condition on immune cell subsets, haptoglobin, cortisol and bilirubin in young veal calves. PLoS ONE 2021, 16, e0246959. [Google Scholar] [CrossRef] [PubMed]
- Mayasari, N.; Trevisi, E.; Ferrari, A.; Kemp, B.; Parmentier, H.K.; van Knegsel, A.T.M. Relationship between inflammatory biomarkers and oxidative stress with uterine health in dairy cows with different dry period lengths. Transl. Anim. Sci. 2019, 3, 607–619. [Google Scholar] [CrossRef] [PubMed]
- Andjelić, B.; Djoković, R.; Cincović, M.; Bogosavljević-Bošković, S.; Petrović, M.; Mladenović, J.; Čukić, A. Relationships between milk and blood biochemical parameters and metabolic status in dairy cows during lactation. Metabolites 2022, 12, 733. [Google Scholar] [CrossRef]
- Bertoni, G.; Trevisi, E. Use of the liver activity index and other metabolic variables in the assessment of metabolic health in dairy herds. Vet. Clin. N. Am. Food Anim. Pract. 2013, 29, 413–431. [Google Scholar] [CrossRef]
- Quiroz-Rocha, G.F.; LeBlanc, S.J.; Duffield, T.F.; Wood, D.; Leslie, K.E.; Jacobs, R.M. Reference limits for biochemical and hematological analytes of dairy cows one week before and one week after parturition. Can. Vet. J. 2009, 50, 383–388. [Google Scholar]
Lactation Phase | Breed | Lactation Phase × Breed | R2 | |
---|---|---|---|---|
Progesterone (ng/mL) | 0.0166 | 0.2022 | 0.9877 | 0.29 |
17β-estradiol (pg/mL) | 0.1141 | 0.9186 | 0.6323 | 0.27 |
Cortisol (μg/dL) | 0.0074 | 0.1110 | 0.9416 | 0.37 |
Ca++ (mg/dL) | 0.4525 | 0.0064 | 0.9574 | 0.27 |
Pi (mg/dL) | 0.6123 | 0.0901 | 0.4070 | 0.30 |
Mg++ (mg/dL) | 0.0003 | 0.0024 | 0.5275 | 0.56 |
Fe++ (μg/dL) | 0.2396 | 0.0002 | 0.4080 | 0.44 |
Na+ (mEq/L) | 0.0414 | 0.1317 | 0.2354 | 0.35 |
K+ (mEq/L) | 0.2653 | 0.0457 | 0.1647 | 0.34 |
Cl− (mg/dL) | 0.1766 | 0.2066 | 0.2128 | 0.34 |
AST (UI/L) | 0.5437 | 0.0042 | 0.5502 | 0.33 |
ALT (UI/L) | 0.3022 | 0.0084 | 0.4277 | 0.24 |
LDH (UI/L) | 0.0659 | <0.0001 | 0.1478 | 0.56 |
Total bilirubin (mg/dL) | 0.1044 | 0.3581 | 0.5391 | 0.26 |
CK (UI/L) | 0.5270 | 0.3071 | 0.5625 | 0.29 |
Urea (mg/dL) | 0.1135 | 0.5938 | 0.2517 | 0.31 |
Holstein | Brown Swiss | Modicana | ||
---|---|---|---|---|
Average daily milk yield (Mean ± SD) | 28.8 ± 3.3 kg | 27.3 ± 3.1 kg | 15.0 ± 2.0 kg | |
Progesterone (ng/mL) | Mean ± SE | 3.5 ± 0.48 | 4.12 ± 0.64 | 4.04 ± 0.68 |
17β-oestradiol (pg/mL) | Mean ± SE | 10.00 ± 0.64 | 10.29 ± 0.91 | 9.82 ± 0.51 |
Cortisol (μg/dL) | Mean ± SE | 0.79 ± 0.07 | 0.84 ± 0.10 | 1.01 ± 0.08 |
Ca++ (mg/dL) | Mean ± SE | 8.91 ± 0.13 A | 8.96 ± 0.12 A | 8.25 ± 0.19 B |
Pi (mg/dL) | Mean ± SE | 4.93 ± 0.13 | 4.81 ± 0.12 | 5.24 ± 0.14 |
Mg++ (mg/dL) | Mean ± SE | 2.31 ± 0.10 A | 2.43 ± 0.11 A | 1.98 ± 0.08 B |
Fe++ (μg/dL) | Mean ± SE | 157.50 ± 4.08 A | 142.28 ± 3.87 B | 135.67 ± 3.48 B |
Na+ (mEq/L) | Mean ± SE | 140.05 ± 1.19 | 142.39 ± 1.18 | 141.03 ± 0.92 |
K+ (mEq/L) | Mean ± SE | 4.77 ± 0.19 A | 4.40 ± 0.13 A | 4.44 ± 0.12 A |
Cl− (mg/dL) | Mean ± SE | 107.09 ± 0.85 | 109.00 ± 0.70 | 108.87 ± 0.92 |
AST (UI/L) | Mean ± SE | 90.95 ± 2.43 A | 90.72 ± 3.74 A | 80.37 ± 2.44 B |
ALT (UI/L) | Mean ± SE | 53.00 ± 2.28 A | 62.94 ± 3.16 A | 53.03 ± 2.35 B |
LDH (UI/L) | Mean ± SE | 2314.24 ± 87.16 A | 2467.61 ± 92.46 A | 1945.53 ± 65.86 B |
Total bilirubin (mg/dL) | Mean ± SE | 0.28 ± 0.01 | 0.27 ± 0.01 | 0.28 ± 0.01 |
CK (UI/L) | Mean ± SE | 244.33 ± 20.91 | 199.89 ± 15.91 | 233.97 ± 22.88 |
Urea (mg/dL) | Mean ± SE | 12.95 ± 0.52 | 13.17 ± 0.66 | 12.10 ± 0.34 |
Lactation Phase (Days) | 0–60 | >60–120 | >120–180 | >180–240 | >240–300 | >300 |
---|---|---|---|---|---|---|
Progesterone (ng/mL) | 1.01 ± 0.43 B | 2.98 ± 0.88 AB | 5.35 ± 1.04 A | 3.74 ± 0.71 AB | 2.95 ± 0.76 AB | 5.28 ± 0.43 A |
17β-oestradiol (pg/mL) | 10.45 ± 2.35 | 10.12 ± 0.53 | 9.31 ± 0.42 | 8.67 ± 0.36 | 11.96 ± 1.38 | 11.46 ± 1.39 |
Cortisol (μg/dL) | 1.04 ± 0.10 A | 1.09 ± 0.08 A | 0.84 ± 0.10 AB | 0.89 ± 0.06 AB | 1.00 ± 0.20 A | 0.42 ± 0.04 B |
Ca++ (mg/dL) | 8.03 ± 0.27 | 8.65 ± 0.33 | 8.46 ± 0.16 | 8.68 ± 0.19 | 8.74 ± 0.18 | 8.94 ± 0.32 |
Pi (mg/dL) | 4.96 ± 0.44 | 4.87 ± 0.17 | 5.03 ± 0.16 | 5.23 ± 0.17 | 4.73 ± 0.16 | 5.23 ± 0.22 |
Mg++ (mg/dL) | 2.40 ± 0.20 ABC | 2.55 ± 0.08 A | 2.01 ± 0.08 BC | 2.00 ± 0.16 ABC | 2.51 ± 0.08 AB | 1.86 ± 0.15 C |
Fe++ (μg/dL) | 143.29 ± 4.51 | 145.80 ± 3.31 | 142 ± 5.66 | 144.20 ± 6.29 | 153.33 ± 7.80 | 132.13 ± 9.24 |
Na+ (mEq/L) | 137.43 ± 2.10 A | 4.77 ± 0.19 A | 142.36 ± 0.90 A | 143.47 ± 1.37 A | 140 ± 1.18 A | 141.63 ± 2.24 A |
K+ (mEq/L) | 4.77 ± 0.26 | 4.77 ± 0.19 | 4.46 ± 0.09 | 4.47 ± 0.20 | 4.80 ± 0.31 | 4.19 ± 0.08 |
Cl− (mg/dL) | 105.86 ± 2.76 | 107.09 ± 0.85 | 109.86 ± 1.51 | 106.73 ± 0.67 | 109.78 ± 1.19 | 108.50 ± 0.94 |
AST (UI/L) | 82.86 ± 4.89 | 90.95 ± 2.43 | 90.36 ± 4.09 | 83.13 ± 3.67 | 89.11 ± 4.51 | 86.63 ± 6.05 |
ALT (UI/L) | 61.14 ± 7.06 | 53.00 ± 2.28 | 53.57 ± 2.00 | 56.00 ± 3.84 | 56.89 ± 3.44 | 46.50 ± 2.69 |
LDH (UI/L) | 1930.57 ± 117.48 | 2314.24 ± 87.16 | 2353.14 ± 96.20 | 2095.47 ± 99.76 | 2364.00 ± 160.62 | 2354.43 ± 253.91 |
Total bilirubin (mg/dL) | 0.26 ± 0.02 | 0.28 ± 0.01 | 0.29 ± 0.02 | 0.28 ± 0.01 | 0.29 ± 0.02 | 0.23 ± 0.02 |
CK (UI/L) | 217.71 ± 21.34 | 244.33 ± 20.91 | 294.57 ± 43.06 | 186.43 ± 20.20 | 243.78 ± 18.81 | 185.38 ± 18.47 |
Urea (mg/dL) | 13.00 ± 0.87 | 12.95 ± 0.52 | 11.71 ± 0.29 | 12.67 ± 0.85 | 13.44 ± 0.65 | 12.25 ± 0.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fazio, E.; Bionda, A.; Attard, G.; Medica, P.; La Fauci, D.; Amato, A.; Liotta, L.; Lopreiato, V. Effect of the Lactation Phases on the Amplitude of Variation in Blood Serum Steroid Hormones and Some Hematochemical Analytes in Three Dairy Cow Breeds. Animals 2024, 14, 3336. https://doi.org/10.3390/ani14223336
Fazio E, Bionda A, Attard G, Medica P, La Fauci D, Amato A, Liotta L, Lopreiato V. Effect of the Lactation Phases on the Amplitude of Variation in Blood Serum Steroid Hormones and Some Hematochemical Analytes in Three Dairy Cow Breeds. Animals. 2024; 14(22):3336. https://doi.org/10.3390/ani14223336
Chicago/Turabian StyleFazio, Esterina, Arianna Bionda, George Attard, Pietro Medica, Deborah La Fauci, Annalisa Amato, Luigi Liotta, and Vincenzo Lopreiato. 2024. "Effect of the Lactation Phases on the Amplitude of Variation in Blood Serum Steroid Hormones and Some Hematochemical Analytes in Three Dairy Cow Breeds" Animals 14, no. 22: 3336. https://doi.org/10.3390/ani14223336
APA StyleFazio, E., Bionda, A., Attard, G., Medica, P., La Fauci, D., Amato, A., Liotta, L., & Lopreiato, V. (2024). Effect of the Lactation Phases on the Amplitude of Variation in Blood Serum Steroid Hormones and Some Hematochemical Analytes in Three Dairy Cow Breeds. Animals, 14(22), 3336. https://doi.org/10.3390/ani14223336