Measuring and Modeling Mechanical Ventilation for Long-Term Environmental Monitoring in Large Commercial Laying Hen House
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.1.1. Laying Hen House
2.1.2. House Ventilation System
2.1.3. Ventilation Fans
2.1.4. Mobile Lab and On-Site Computer System
2.2. Continuous and Real-Time Ventilation Monitoring
2.2.1. Fan Rotational Speed Measurement
2.2.2. Differential Pressure Measurement
2.2.3. Weather Measurement
2.3. Development of a Portable Fan Tester
2.3.1. Full-Size Portable Fan Tester
2.3.2. Data Acquisition of the PFT
2.3.3. Calibration of Anemometers
2.3.4. Calculation of Airflow Through the PFT
2.4. Fan Characterization and House Ventilation Determination
2.4.1. On-Site Fan Testing
2.4.2. Data Processing and Fan Model Development
2.4.3. House Ventilation Calculation
3. Results and Discussion
3.1. Differential Pressure
3.1.1. Mean, Range, and Frequency of Differential Pressure
3.1.2. Effect of Wind on Differential Pressure
3.1.3. Effect of Fan Operation and Inlet Opening on Differential Pressure
3.1.4. Impact of Differential Pressure on Fan Efficiency and Ventilation Measurement
3.2. Fan Rotational Speeds
3.3. Wall Fan Ventilation Modeling
3.3.1. Operation of the PFT
3.3.2. Valid Fan Test Dataset
3.3.3. Fan Ventilation Models
3.4. House Ventilation Rate
3.4.1. House Ventilation Rate at Different Time Scale
3.4.2. Outdoor Temperature and House Ventilation Rate
3.4.3. Ventilation Monitoring Data Completeness
3.4.4. Ventilation Rate and Monitoring Technique
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations. World Population Prospects 2022: Summary of Results; UN DESA/POP/2022/TR/NO. 3; United Nations, Department of Economic and Social Affairs, Population Division: New York, NY, USA, 2022. [Google Scholar]
- NRC. Air Emissions from Animal Feeding Operations: Current Knowledge, Future Needs; The National Academies Press: Washington, DC, USA, 2003; p. 286. [Google Scholar]
- Scislo, L.; Szczepanik-Scislo, N. Influence of mechanical ventilation and cooling systems on vibrations of high precision machines. In Proceedings of the E3S Web of Conferences, Polanica-Zdrój, Poland, 8–10 April 2019; p. 00080. [Google Scholar] [CrossRef]
- Chen, S.W.; Yong, Y.H.; Ju, X.H. Effect of heat stress on growth and production performance of livestock and poultry: Mechanism to prevention. J. Therm. Biol. 2021, 99, 14. [Google Scholar] [CrossRef] [PubMed]
- Donham, K.; Aherin, R.; Baker, D.; Hetzel, G. Safety in Swine Production Systems; PIH 16-01-02; Purdue Extension: West Lafayette, Indiana, 2010; p. 7. [Google Scholar]
- Ni, J.-Q.; Erasmus, M.A.; Croney, C.C.; Li, C.; Li, Y. A critical review of advancement in scientific research on food animal welfare-related air pollution. J. Hazard. Mater. 2021, 408, 124468. [Google Scholar] [CrossRef] [PubMed]
- Strøm, J.S.; Zhang, G. Keynote paper: Thermal control in animal buildings. In Agricultural Engineering Volume 2: Agricultural Buildings; CRC Press: Boca Raton, FL, USA, 2022; pp. 1265–1278. [Google Scholar]
- Chai, L.; Ni, J.-Q.; Diehl, C.A.; Kilic, I.; Heber, A.J.; Chen, Y.; Cortus, E.L.; Bogan, B.W.; Lim, T.-T.; Ramirez-Dorronsoro, J.-C.; et al. Ventilation rates at large commercial layer houses with two-year continuous monitoring. Brit. Poultry Sci. 2012, 53, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Ni, J.-Q.; Liu, S.; Lopes, I.M.; Xie, Q.; Zheng, P.; Diehl, C.A. Monitoring, modeling, and characterizing single-speed ventilation fans for an animal building. Build. Environ. 2017, 118, 225–233. [Google Scholar] [CrossRef]
- Berckmans, D.; Vandenbroeck, P.; Goedseels, V. Sensor for continuous measurement of the ventilation rate in livestock buildings. Indoor Air 1991, 3, 323–336. [Google Scholar] [CrossRef]
- Cabaraux, J.F.; Philippe, F.X.; Laitat, M.; Canart, B.; Vandenheede, M.; Nicks, B. Gaseous emissions from weaned pigs raised on different floor systems. Agric. Ecosyst. Environ. 2009, 130, 86–92. [Google Scholar] [CrossRef]
- Zong, C.; Zhang, G.; Feng, Y.; Ni, J.-Q. Carbon dioxide production from a fattening pig building with partial pit ventilation system. Biosyst. Eng. 2014, 126, 56–68. [Google Scholar] [CrossRef]
- Fournel, S.; Pelletier, F.; Godbout, S.; Lagace, R.; Feddes, J.J.R. Odour emissions, hedonic tones and ammonia emissions from three cage layer housing systems. Biosyst. Eng. 2012, 112, 181–191. [Google Scholar] [CrossRef]
- Simmons, J.D.; Hannigan, T.E.; Lott, B.D. A portable anemometer to determine the output of large in-place ventilation fans. Appl. Eng. Agric. 1998, 14, 649–653. [Google Scholar] [CrossRef]
- Lim, T.-T.; Ni, J.-Q.; Heber, A.J.; Jin, Y. Applications and calibrations of the fans and traverse methods for barn airflow rate measurement. In Proceedings of the International Symposium on Air Quality and Manure Management for Agriculture, Dallas, TX, USA, 13–16 September 2010. [Google Scholar] [CrossRef]
- Li, H.; Xin, H.; Li, S.; Burns, R.T. Upstream vs. downstream placement of FANS device to determine ventilation fan performance in situ. Trans. ASABE 2009, 52, 2087–2090. [Google Scholar] [CrossRef]
- Morello, G.M.; Overhults, D.G.; Day, G.B.; Gates, R.S.; Lopes, I.M.; Earnest, J.W. Using the fan assessment numeration system (FANS) in situ: A procedure for minimizing errors during fan tests. Trans. ASABE 2014, 57, 199–209. [Google Scholar] [CrossRef]
- Lin, X.; Zhang, R.; Jiang, S.; El-Mashad, H.M.; Xin, H. Fan and ventilation rate monitoring of cage-free layer houses in California. Trans. ASABE 2018, 61, 1939–1950. [Google Scholar] [CrossRef]
- Mehmood, M.U.; Chun, D.; Zeeshan; Han, H.; Jeon, G.; Chen, K. A review of the applications of artificial intelligence and big data to buildings for energy-efficiency and a comfortable indoor living environment. Energy Build. 2019, 202, 13. [Google Scholar] [CrossRef]
- Bao, J.; Xie, Q.J. Artificial intelligence in animal farming: A systematic literature review. J. Clean. Prod. 2022, 331, 13. [Google Scholar] [CrossRef]
- Ford, S.E.; Christianson, L.L.; Riskowski, G.L.; Funk, T.L. Agricultural Ventilation Fans—Performance and Efficiencies; UIUC Eng 99-7001; Bioenvironmental and Structural Systems Laboratory, University of Illinois: Champaign, IL, USA, 1999; p. 115. [Google Scholar]
- Jacobson, L.D.; Hetchler, B.; Schmidt, D.R.; Nicolai, R.E.; Heber, A.J.; Ni, J.-Q.; Hoff, S.J.; Koziel, J.A.; Parker, D.B.; Zhang, Y.; et al. Quality assured measurements of animal building emissions: Odor concentrations. J. Air Waste Manag. Assoc. 2008, 58, 806–811. [Google Scholar] [CrossRef]
- Heber, A.J.; Bogan, B.W.; Ni, J.-Q.; Lim, T.-T.; Cortus, E.L.; Ramirez-Dorronsoro, J.C.; Diehl, C.A.; Hanni, S.M.; Xiao, C.; Casey, K.D.; et al. The National Air Emissions Monitoring Study: Overview of barn sources. In Proceedings of the The Eighth International Livestock Environment Symposium (ILES VIII), Iguassu Falls, Brazil, 1–5 September 2008; pp. 199–205. [Google Scholar] [CrossRef]
- Ni, J.-Q.; Diehl, C.A.; Chai, L.; Chen, Y.; Heber, A.J.; Lim, T.-T.; Bogan, B.W. Factors and characteristics of ammonia, hydrogen sulfide, carbon dioxide, and particulate matter emissions from two manure-belt layer hen houses. Atmos. Environ. 2017, 156, 113–124. [Google Scholar] [CrossRef]
- Heber, A.J.; Bogan, B.W.; Ramirez-Dorronsoro, J.C.; Ni, J.-Q.; Lim, T.-T.; Cortus, E.L.; Diehl, C.A.; Hanni, S.M. Quality Assurance Project Plan for the National Air Emissions Monitoring Study (Barns Component); Revision 2.0; Agriculture Air Research Council; Purdue Agricultural Air Quality Laboratory, Department of Agricultural and Biological Engineering, Purdue University: West Lafayette, IN, USA, 24 January 2008; p. 140. [Google Scholar]
- ANSI/AMCA Standard 210-16; ASHRAE Standard 51-16; Laboratory Methods of Testing Fans for Certified Aerodynamic Performance Rating. AMCA: Arlington Heights, IL, USA, 2016.
- R. M. Young Company. Model 27106T Gill Propeller Anemometer Manual; Manual PN: 27106T-90, Rev: B030106; R. M. Young Company: Traverse City, MI, USA, 1998. [Google Scholar]
- Rosa, E.; Arriaga, H.; Calvet, S.; Merino, P. Assessing ventilation rate measurements in a mechanically ventilated laying hen facility. Poult. Sci. 2019, 98, 1211–1221. [Google Scholar] [CrossRef]
- Alberdi, O.; Arriaga, H.; Calvet, S.; Estelles, F.; Merino, P. Ammonia and greenhouse gas emissions from an enriched cage laying hen facility. Biosyst. Eng. 2016, 144, 1–12. [Google Scholar] [CrossRef]
- USEPA. Direct Measurement of Gas Velocity and Volumetric Flow Rate under Cyclonic Flow Conditions (Propeller Anemometer). EPA Conditional Test Method Preliminary Method 001; U.S. Environmental Protection Agency. Emission Measurement Branch EMTIC CTM-019, WPF, Technical Support Division, OAQPS: Washington, DC, USA, 1986. [Google Scholar]
- R. M. Young Company. Wind System Calibration—Recommended Calibration Interval, Procedure, and Test Equipment (Model. 18860-90); PN 18860-90, Rev: B062309; R. M. Young Company: Traverse City, MI, USA, 2004. [Google Scholar]
- Li, H.; Xin, H.; Liang, Y.; Gates, R.S.; Wheeler, E.F.; Heber, A.J. Comparison of direct vs. indirect ventilation rate determinations in layer barns using manure belts. Trans. ASAE 2005, 48, 367–372. [Google Scholar] [CrossRef]
- Heber, A.J.; Lim, T.-T.; Ni, J.-Q.; Tao, P.C.; Diehl, C.; Sun, H.; Zhao, L. Ammonia and Particulate Matter Emissions from a Belt-Battery Layer Barn; Final Report; Agricultural and Biological Engineering Department, Purdue University: West Lafayette, IN, USA, 2006; p. 19. [Google Scholar]
- Oliveira, J.L.; Ramirez, B.C.; Xin, H.W.; Wang, Y.; Hoff, S.J. Ventilation performance and bioenergetics of dekalb white hens in a modern aviary system. Biosyst. Eng. 2020, 199, 149–161. [Google Scholar] [CrossRef]
- Standard. Design of Ventilation Systems for Poultry and Livestock Shelters; ASABE: St. Joseph, Ml, USA, 2017. [Google Scholar]
- Kaiser, K.; Heber, A.; Hosni, M.; Eakin, G. Performance of new ceiling and wall ventilation air inlets. Appl. Eng. Agric. 1996, 12, 237–242. [Google Scholar] [CrossRef]
- Chastain, J.P. Discharge coefficients for adjustable slot inlets used to ventilate animal production buildings. In International Congress on Agricultural Mechanization and Energy in Agriculture; Springer: Berlin/Heidelberg, Germany, 2023; pp. 227–239. [Google Scholar]
- Bleier, F.P. Fan Handbook: Selection, Application, and Design; McGraw-Hill: New York, NY, USA, 1997. [Google Scholar]
- Casey, K.D.; Gates, R.S.; Wheeler, E.F.; Xin, H.; Liang, Y.; Pescatore, A.J.; Ford, M.J. On-farm ventilation fan performance evaluations and implications. J. Appl. Poult. Res. 2008, 17, 283–295. [Google Scholar] [CrossRef]
- Ni, J.-Q.; Chai, L.; Chen, L.; Bogan, B.W.; Wang, K.; Cortus, E.L.; Heber, A.J.; Lim, T.-T.; Diehl, C.A. Characteristics of ammonia, hydrogen sulfide, carbon dioxide, and particulate matter concentrations in high-rise and manure-belt layer hen houses. Atmos. Environ. 2012, 57, 165–174. [Google Scholar] [CrossRef]
- Costa, A.; Ferrari, S.; Guarino, M. Yearly emission factors of ammonia and particulate matter from three laying-hen housing systems. Anim. Prod. Sci. 2012, 52, 1089–1098. [Google Scholar] [CrossRef]
- Wang, Y.; Niu, B.; Ni, J.-Q.; Xue, W.; Zhu, Z.; Li, X.; Zou, G. New insights into concentrations, sources and transformations of NH3, NOx, SO2 and PM at a commercial manure-belt layer house. Environ. Pollut. 2020, 262, 114355. [Google Scholar] [CrossRef]
- Fabbri, C.; Valli, L.; Guarino, M.; Costa, A.; Mazzotta, V. Ammonia, methane, nitrous oxide and particulate matter emissions from two different buildings for laying hens. Biosyst. Eng. 2007, 97, 441–455. [Google Scholar] [CrossRef]
- Morgan, R.J.; Wood, D.J.; Van Heyst, B.J. The development of seasonal emission factors from a Canadian commercial laying hen facility. Atmos. Environ. 2014, 86, 1–8. [Google Scholar] [CrossRef]
- Tong, X.; Zhao, L.; Manuzon, R.B.; Darr, M.J.; Knight, R.M.; Heber, A.J.; Ni, J.-Q. Ammonia concentrations and emissions at two commercial manure-belt layer houses with mixed tunnel and cross ventilation. Trans. ASABE 2021, 64, 2073–2087. [Google Scholar] [CrossRef]
- Ni, J.-Q.; Kaelin, D.; Lopes, I.M.; Liu, S.; Diehl, C.A.; Zong, C. Design and performance of a direct and continuous ventilation measurement system for variable-speed pit fans in a pig building. Biosyst. Eng. 2016, 147, 151–161. [Google Scholar] [CrossRef]
Fan Stage | Fan Number | Sidewall | |||||
---|---|---|---|---|---|---|---|
1 | 4 | 19 | West | ||||
2 | 27 | 42 | East | ||||
3 | 1 | 12 | 23 | West | |||
4 | 24 | 35 | 46 | East | |||
5 | 2 | 8 | 15 | 21 | West | ||
6 | 25 | 31 | 38 | 44 | East | ||
7 | 6 | 9 | 14 | 17 | West | ||
8 | 29 | 32 | 37 | 40 | East | ||
9 | 3 | 11 | 13 | 20 | West (cycling) | ||
10 | 26 | 34 | 36 | 43 | East (cycling) | ||
11 | 5 | 7 | 10 | 16 | 18 | 22 | West |
12 | 28 | 30 | 33 | 39 | 41 | 45 | East |
Differential Pressure, Pa | Speed, rpm | Ventilation, m3 min−1 | Efficiency, m3 W−1 |
---|---|---|---|
0.0 | 591 | 696.2 | 42.6 |
12.4 | 589 | 653.7 | 38.1 |
24.9 | 587 | 602.8 | 33.1 |
37.3 | 586 | 551.9 | 29.6 |
49.8 | 586 | 478.3 | 24.8 |
62.2 | 584 | 345.3 | 17.5 |
74.7 | 582 | 172.6 | 8.3 |
dP Range, Pa | West Wall | East Wall | Average Time, % | ||
---|---|---|---|---|---|
Time, min | Time, % | Time, min | Time, % | ||
>10 | – | 0 | 62 | 0.023 | 0.012 |
5 to 0 | 161 | 0.061 | 663 | 0.250 | 0.155 |
0 to −5 | 14,055 | 5.30 | 16,514 | 6.22 | 5.76 |
−5 to −10 | 29,975 | 11.3 | 32,389 | 12.2 | 11.7 |
−10 to −15 | 56,763 | 21.4 | 63,002 | 23.7 | 22.6 |
−15 to −20 | 53,903 | 20.3 | 51,895 | 19.6 | 19.9 |
−20 to −25 | 56,502 | 21.3 | 39,069 | 14.7 | 18.0 |
−25 to −30 | 34,363 | 12.9 | 46,453 | 17.5 | 15.2 |
−30 to −35 | 8439 | 3.18 | 6226 | 2.35 | 2.76 |
−35 to −40 | 4899 | 1.85 | 4072 | 1.53 | 1.69 |
−40 to −45 | 3166 | 1.19 | 2575 | 0.970 | 1.08 |
−45 to −50 | 1814 | 0.683 | 1544 | 0.582 | 0.633 |
−50 to −55 | 770 | 0.290 | 611 | 0.230 | 0.260 |
−55 to −60 | 283 | 0.107 | 179 | 0.067 | 0.087 |
−60 to −65 | 167 | 0.063 | 63 | 0.024 | 0.043 |
<−65 | 149 | 0.056 | 88 | 0.033 | 0.045 |
Statistics | Ventilation Rate, m3 min−1 | ||
---|---|---|---|
Fan 1–23 | Fan 24–46 | House (Fan 1–46) | |
Hourly mean range | 612–11,616 | 489–11,663 | 1342–22,436 |
AHM ± Std | 5687 ± 3529 | 5178 ± 3580 | 10,833 ± 7074 |
AHM ± 95% c.i. | 5687 ± 105 | 5178 ± 106 | 10,833 ± 210 |
Daily mean range | 1032–11,192 | 768–10,987 | 1800–22,142 |
ADM ± Std | 5676 ± 2941 | 5178 ± 2976 | 10,803 ± 5906 |
ADM ± 95% c.i. | 5676 ± 429 | 5178 ± 430 | 10,803 ± 860 |
House Size, Duration, and Location (a) | Vhen, m3 h−1 hen−1 (b) | Technique (c) | Report Year |
---|---|---|---|
98,000 hens, 1 d (31 December), Iowa, U.S. | 0.43 | FANS, CO2 balance | 2005 [32] |
100,000 hens, same house, 1 d (22 July), Iowa, U.S. | 5.28 | FANS, CO2 balance | 2005 [32] |
169,000 hens, 176 d (August–January), Ohio, U.S. | 2.78 (0.56–7.26) | FANS, dP, fan relay on/off | 2006 [33] |
60,000 hens, 1 week × 6 periods over a year, Northern Italy | 6.2 (3.0–17.0) | Vane, fan speed, CO2 balance | 2007 [43] |
250,000 hens, house A, 693 d (2 years), Indiana, U.S. | 2.08 (0.59–4.87) | FANS, dP, fan on/off, and fan speed (2) | 2012 [8] |
250,000 hens, house B, 678 d (2 years), Indiana, U.S. | 2.10 (0.81–5.01) | FANS, dP, fan on/off, and fan speed (2) | 2012 [8] |
22,000 hens, 1 year, Northern Italy | 0.8 | HWA, fan on/off | 2012 [41] |
November–May | 0.62 | ||
June–November | 1.01 | ||
67,500 hens, 91 d in 4 seasons, Ontario, Canada (1) | (0.44–8.44) | FANS, no other technique reported | 2014 [44] |
52,000 hens, 18 mo (12 April–13 September), Basque Country, Spain | 0.88–13.30 | HWA, dP, fan on/off | 2016 [29] |
39,000 hens, 16 mo (15 July–16 October), Basque Country, Spain | Three different methods | 2019 [28] | |
5.3 ± 2.9 (1.1–11.6) | HWA | ||
5.9 ± 3.3 (1.1–13.1) | Fan speed | ||
6.3 ± 2.1 (2.8–10.7) | CO2 balance | ||
100,000 hens, 15 d, Beijing, China | CO2 balance | 2020 [42] | |
6 d in August | 3.79 ± 1.44 | ||
6 d in October | 0.95 ± 0.45 | ||
3 d in January | 0.54 ± 0.25 | ||
140,000 hens, 53 d (July–October), Midwestern U.S. | 4.0 ± 0.4 (0.8–9.1) | FANS, fan relay on/off | 2020 [34] |
170,000 hens, House 1, 1 year, Ohio, U.S. | 1.83 | FANS, dP, fan on/off | 2021 [45] |
170,000 hens, House 2, 1 year, Ohio, U.S. | 1.74 | FANS, dP, fan on/off | 2021 [45] |
140,000 hens, 181 d (February–September), Midwestern U.S. (this study) | 4.68 ± 2.58 (0.77–9.74) | PFT, dP, fan speed | 2024 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ni, J.-Q. Measuring and Modeling Mechanical Ventilation for Long-Term Environmental Monitoring in Large Commercial Laying Hen House. Animals 2024, 14, 3339. https://doi.org/10.3390/ani14223339
Ni J-Q. Measuring and Modeling Mechanical Ventilation for Long-Term Environmental Monitoring in Large Commercial Laying Hen House. Animals. 2024; 14(22):3339. https://doi.org/10.3390/ani14223339
Chicago/Turabian StyleNi, Ji-Qin. 2024. "Measuring and Modeling Mechanical Ventilation for Long-Term Environmental Monitoring in Large Commercial Laying Hen House" Animals 14, no. 22: 3339. https://doi.org/10.3390/ani14223339
APA StyleNi, J. -Q. (2024). Measuring and Modeling Mechanical Ventilation for Long-Term Environmental Monitoring in Large Commercial Laying Hen House. Animals, 14(22), 3339. https://doi.org/10.3390/ani14223339