Modulation of Canine Gut Microbiota by Prebiotic and Probiotic Supplements: A Long-Term In Vitro Study Using a Novel Colonic Fermentation Model
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. SCIMETM Technology Platform Adaptation
- Maintaining the system at a constant body temperature of 39 °C (reflecting canine physiology)
- Adjusting the pH and retention times in each compartment to match those of the canine gut, with pH levels in the proximal colon set at 5.7–5.9 and in the distal colon at 6.6–6.9
- Inoculating the system with fresh canine fecal microbiota, which allowed the model to simulate the dynamic changes in microbial composition under controlled conditions.
- Stabilization period (3 weeks): This period allowed the microbial community to adapt to the SCIME™ environment, ensuring that the microbial populations stabilized in both the proximal and distal colon compartments before any treatment was introduced.
- Control period (2 weeks): Baseline microbial composition and metabolic activity were measured under normal dietary conditions (without supplements). Samples were collected from both luminal and mucosal environments in the proximal and distal colon to establish a reference point for comparison during the treatment phase.
- Treatment period (2 weeks): Three distinct test products were evaluated:
- ○
- Microbiotal (M): A prebiotic (one tablet/day containing 865.3 mg of active ingredients such as Oligofructose (FOS) and Inulin as prebiotic fibers; Microencapsulated Tributyrate as the postbiotic; Lactobacillus reuteri NBF1 thermally inactivated)
- ○
- Lactobacillus reuteri (P): A probiotic (containing the bacterial strain Lactobacillus reuteri DSM 32203) administered at a dose of 2 × 1010 CFU/day
- ○
- Combined prebiotic and probiotic supplementation (M + P): Both products were co-administered to evaluate potential synergistic effects.
2.3. Microbial Analysis
- Quantitative analysis of microbial populations using flow cytometry was used, which allowed for accurate measurement of total bacterial counts.
- Alpha-diversity indices, including the Chao1, Shannon, and Simpson indices, were used to evaluate microbial richness and evenness within samples.
- Beta diversity was assessed using the discriminant analysis of principal components (DAPC), which provided insight into how microbial communities diverged between control and treatment conditions [48].
2.4. Description of Statistics
3. Results
3.1. Alpha and Beta Diversity
3.1.1. Alpha Diversity
- Observed taxa: After supplementation with each product, an increase in observed taxa was noted. The combination treatment of Microbiotal and L. reuteri (M + P) produced the highest increase in observed taxa, particularly in the proximal colon’s luminal environment.
- Shannon and Simpson Indices: Considering species richness and evenness, both indices demonstrated increased microbial diversity in the proximal and distal colon after treatment with all test products. The Shannon index, which places more weight on richness, showed that the combinatory treatment (M + P)t had the most pronounced effect on microbial diversity, particularly in the mucosal environment of the proximal colon. The Simpson index, which emphasizes evenness, also highlighted a more balanced microbial community after the M + P treatment.
Beta Diversity
- Proximal colon: The DAPC showed distinct clustering for the combination treatment in the luminal environment of the proximal colon, with a significant shift away from the control group. This distinct separation indicates that M + P supplementation notably enhanced the growth of specific beneficial taxa such as Limosilactobacillus and Faecalibacterium.
- Distal colon: A similar clustering pattern was observed in the distal colon, though the microbial shifts were less pronounced compared to the proximal colon. The most significant change was again seen with the M + P treatment, which induced a notable divergence in both the luminal and mucosal communities from the control group. This highlights the potential for synbiotic supplements to impact microbial composition.
Taxonomy Assignment
Luminal Microbiota Composition
- Prebiotic (Microbiotal; M) Treatment
- 2.
- Probiotic (Lactobacillus reuteri; P) Treatment
- 3.
- Combination (Microbiotal + L. reuteri; M + P) Treatment
Distal Colon
- Prebiotic (Microbiotal; M) Treatment
- 2.
- Probiotic (Lactobacillus reuteri; P) Treatment
- 3.
- Combination (Microbiotal + L. reuteri; M + P) Treatment
3.1.2. Mucosal Microbiota Composition
Proximal Colon
- Prebiotic (Microbiotal; M) Treatment
- 2.
- Probiotic (Lactobacillus reuteri; P) Treatment
- 3.
- Combination (Microbiotal + L. reuteri; M + P) Treatment
Distal Colon
- Prebiotic (Microbiotal; M) Treatment
- 2.
- Probiotic (Lactobacillus reuteri; P) Treatment
- 3.
- Combination (Microbiotal + L. reuteri; M + P) Treatment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Swanson, K.; Suchodolski, J.; Turnbaugh, P. Companion animal symposium: Microbes and health. J. Anim. Sci. 2011, 89, 1496–1497. [Google Scholar] [CrossRef] [PubMed]
- Suchodolski, J. Intestinal microbiota of dogs and cats: A bigger world than we thought. Vet. Clin. N. Am. Small Anim. Pract. 2011, 41, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Sekirov, I.; Russell, S.L.; Antunes, L.C.; Finlay, B.B. Gut microbiota in health and disease. Physiol. Rev. 2010, 90, 859–904. [Google Scholar] [CrossRef] [PubMed]
- Suchodolski, J. Companion Animals Symposium: Microbes and gastrointestinal health of dogs and cats1. J. Anim. Sci. 2011, 89, 1520–1530. [Google Scholar] [CrossRef]
- Kim, J.; An, J.; Kim, W.; Lee, S.; Cho, S. Differences in the gut microbiota of dogs (Canis lupus familiaris) fed a natural diet or a commercial feed revealed by the Illumia MiSeq platform. Gut Pathog. 2017, 9, 68. [Google Scholar] [CrossRef]
- Handl, S.; German, A.; Holden, S.; Dowd, S.; Steiner, J.; Helimann, R.; Grant, R.; Swanson, K.; Suchodolski, J. Faecal microbiota in lean and obese dogs. FEMS Microbiol. Ecol. 2013, 84, 332–343. [Google Scholar] [CrossRef]
- Honnefer, J. Microbiota alterations in acute and chronic gastrointestinal inflammation of cats and dogs. World J. Gastroenterol. 2014, 20, 16489. [Google Scholar] [CrossRef]
- Inness, V.; McCartney, A.; Khoo, C.; Gross, K.; Gibson, G. Molecular characterization of the gut microflora of healthy and inflammatory boel disease cats using fluorescence in situ hybridization with special reference to Desulfovibrio spp. J. Anim. Physiol. Anim. Nutr. 2007, 91, 48–53. [Google Scholar] [CrossRef]
- Jla, J.; Frant, N.; Khoo, C.; Gibson, G.; Rastall, R.; McCartney, A. Investigtion of the faecal microbiota associated with canine chronic diarrhoea. FEMS Microbiol. Ecol. 2010, 71, 304–312. [Google Scholar]
- Flint, H.; Scott, K.; Louis, P.; Duncan, S. The role of the gut microbiota in nutrition and health. Nat. Rev. Gastroenterol. Hepatol. 2012, 9, 577–589. [Google Scholar] [CrossRef]
- Handl, S.; Dowd, S.; Garcia-Marzocco, J.; Steiner, J.; Suchodolski, J. Massive parallel 16S rRNA gene pyrosequencing reveals highly diverse fecal bacterial and fungal communities in healthy dogs and cats. FEMS Microbiol. Ecol. 2011, 76, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Pilla, R.; Suchodolski, J. The Role of the Canine Gut Microbiome and Metabolome in Health and Gastrointestinal Disease. Front. Vet. Sci. 2020, 6, 498. [Google Scholar] [CrossRef] [PubMed]
- Hooda, S.; Vester Boler, B.; Kerr, K.; Dowd, S.; Swanson, K. The gut microbiome of kittens is affected by dietary protein: Carbohydrate ratio and associated with blood metabolite and hormone concentrations. Br. J. Nutr. 2013, 109, 1637–1646. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Marzocco, J.; Lanerie, D.; Dowd, S.; Paddock, C.; Gruntzner, N.; Steiner, J.; Ivanek, R.; Suchodolski, J. Effect of multi-species symbiotic formulation on fecal bacterial microbiota of healthy cats and dogs as evaluated by pyrosequencing. FEMS Microbiol. Ecol. 2011, 78, 542–554. [Google Scholar] [CrossRef]
- Biagi, G.; Cipollini, I.; Zaghini, G. In vitro fermentation of different sources of soluble fiber by dog faecal inoculum. Vet. Res. Commun. 2008, 32 (Suppl. S1), S335–S337. [Google Scholar] [CrossRef]
- Pinna, C.; Vecchiato, C.; Bolduan, C.; Grandi, M.; Stefanelli, C.; Windisch, W.; Zaghini, G.; Biagi, G. Influence of dietary protein and fructooligosaccharides on fecal fermentative end-products, fecal bacterial population and apparent total tract digestibility in dogs. BMC Vet. Res. 2018, 14, 106. [Google Scholar] [CrossRef]
- Sanders, M.; Merenstein, D.; Merrifield, C.; Huntkins, R. Probiotics for human use. Nutr. Bull. 2018, 43, 212–225. [Google Scholar] [CrossRef]
- Bindels, L.; Delzenne, N.; Cani, P.; Walter, J. Towards a more comprehensive concept for prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 303–310. [Google Scholar] [CrossRef]
- Zentek, J.; Marquart, B.; Pietrzak, T.; Ballevre, O.; Rochat, F. Dietary effects on bifidobacterial and Clostridium perfringens in the canine intestinal tract. J. Anim. Physiol. Anim. Nutr. 2003, 87, 397–407. [Google Scholar] [CrossRef]
- Middelbos, I.; Vester Boler, B.; Qu, A.; White, B.; Swanson, K.; Fahey, G. Phylogenetic Characterization of Fecal Microbial Communities of Dogs Fed Diets with or without Supplemental Dietary Fiber Using 454 Pyrosequencing. PLoS ONE 2010, 5, e9768. [Google Scholar] [CrossRef]
- Gibson, G.R.; Roberfroid, M.B. Dietary Modulation of the Human Colonic Microbiota: Introducing the Concept of Prebiotics. J. Nutr. 1995, 125, 1401–1412. [Google Scholar] [CrossRef] [PubMed]
- Gibson, G.R.; Hutkins, R.; Sanders, M.; Prescott, S.; Reimer, R.; Salminen, S.; Scott, K.; Stanton, C.; Swanson, K.; Cani, P.; et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 491–502. [Google Scholar] [CrossRef] [PubMed]
- Roberfroid, M. Prebiotics: The concept revisited. J. Nutr. 2007, 137, 830S–837S. [Google Scholar] [CrossRef] [PubMed]
- Macfarlane, G.T.; Gibson, G.; Cummings, J. Comparison of fermentation reactions in different regions of the human colon. J. Appl. Bacter. 1992, 72, 57–64. [Google Scholar]
- Markowiak, P.; Śliżewska, K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients 2017, 9, 1021. [Google Scholar] [CrossRef] [PubMed]
- Scott, K.P.; Gratz, S.W.; Sheridan, P.O.; Flint, H.J.; Duncan, S.H. The influence of diet on the gut microbiota. Pharmacol. Res. 2013, 69, 52–60. [Google Scholar] [CrossRef]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Sauter, S.; Allenspach, K.; Gaschen, F.; Grone, A.; Ontsouka, E.; Blum, J. Cytokine expression in an ex vivo culture system of duodenal samples from dogs with chronic enteropathies: Modulation by probiotic bacteria. Dom. Anim. Endocr. 2005, 29, 605–622. [Google Scholar] [CrossRef]
- Rossi, G.; Pengo, G.; Caldin, M.; Palumbo Piccionello, A.; Steiner, J.; Chen, N.; Jergens, A.; Suchodolski, J. Comparison of microbiological histological, and immunomodulatory parameters in response to treatment with either combination therapy with prednisone and metronidazole or probiotic VSL#3 strains in dogs with idiopathic inflammatory bowel disease. PLoS ONE 2014, 9, e94699. [Google Scholar]
- Benyacoub, J.; Cavadini, C.; Sauthier, T.; Schiffrin, E.; von der Weld, T.; Czamecki-Maulden, G.; Anderson, R. Stimulates Immune Functions in Young Dogs. J. Nutr. 2003, 133, 1158–1162. [Google Scholar] [CrossRef]
- Collins, M.D.; Gibson, G.R. Probiotics, prebiotics, and synbiotics: Approaches for modulating the microbial ecology of the gut. Am. J. Clin. Nutr. 1999, 69, 1052S–1057S. [Google Scholar] [CrossRef] [PubMed]
- Sunvold, G.; Fahey, G.; Merchen, N.; Titgemeyer, E.; Bourquin, L.; Bauer, L.; Reinhart, G. Dietary fiber for dogs: IV. In Vitro fermentation of selected fiber sources by dog fecal inoculum and in vivo digestion and metabolism of fiber-supplemented diets. J. Anim. Sci. 1955, 73, 1099–1109. [Google Scholar] [CrossRef] [PubMed]
- Barry, K.; Wojcicki, B.; Bauer, L.; Middelbos, I.; Vester Boler, B.; Swanson, K.; Fahey, G. Adaptation of healthy adult cats to select dietary fibers in vivo affects gas and short-chain fatty acid production from fiber fermentation in vitro. J. Anim. Sci. 2011, 89, 3163–3169. [Google Scholar] [CrossRef] [PubMed]
- Flickinger, E.; Fahey, G.; Wolf, B.; Garleb, K.; Chow, J.; Leyer, G.; Johns, P. Glucose-Based Oligosaccharides Exhibit Different In Vitro Fermentation Patterns and Affect In Vivo Apparent Nutrient Digestibility and Microbial Populations in Dogs. J. Nutr. 2000, 130, 1267–1273. [Google Scholar] [CrossRef] [PubMed]
- Belà, B.; Crisi, P.; Pignataro, G.; Fusaro, I.; Gramenzi, A. Effects of Nutraceutical Treatment on the Intestinal Microbiota of Sled Dogs. Anim. Open Acc. 2024, 14, 2226. [Google Scholar] [CrossRef]
- Belà, B. Effect of Lactobacillus Reuteri NBF 1 DSM 32203 Supplementation on Healthy Dog Performance. Biomed. J. Sci. Tech. Res. 2021, 37, 29149. [Google Scholar] [CrossRef]
- Bampidis, V.; Azimonti, G.; Bastos, M.; Christensen, H.; Dusemund, D.; Kouba, M.; Kos Durjava, M.; Lopez-Alonso, M.; Lopez Puente, S.; Marcon, F.; et al. Safety and efficacy of Lactobacillus reuteri NBF-1 (DSM 32203) as a feed additive for dogs. EFSA J. 2018, 17, 5524. [Google Scholar]
- Van den Abbeel, P.; Moens, F.; Pignataro, G.; Schnurr, J.; Ribecco, C.; Gramenzi, A.; Marzorati, M. Yeast-Derived Formulations Are Differentially Fermented by the Canine and Feline Microbiome as Assessd in a Novel In Vitro Colonic Fermentation Model. J. Agric. Food Chem. 2020, 18, 13102–13110. [Google Scholar] [CrossRef]
- Verstrepen, L.; Van de Abbeele, P.; Pignataro, G.; Ribecco, C.; Gramenzi, A.; Hesta, M.; Marzorati, M. Inclusion of small intestinal absorption and simulated mucosal surfaces further improves the Mucosal Simulator of the Canine intestinal Microbial Ecosystem (M-SCIMETM). Res. Vet. Sci. 2021, 140, 100–108. [Google Scholar] [CrossRef]
- Duysburgh, C.; Ossieur, W.P.; De Paepe, K.; Van den Abbeele, P.; Vichez-Vargas, R.; Vital, M.; Pieper, D.H.; Van de Wiele, T.; Hesta, M.; Possemiers, S.; et al. Development and validation of the simulator of the canine intestinal microbial ecosystem (SCIME™). J. Anim. Sci. 2020, 98, skz357. [Google Scholar] [CrossRef]
- Molly, K.; Vande Woestyne, M.; Versraete, W. Development of a 5-step multi-chamber reactor as a simulation of the human intestinal microbial ecosystem. Appl. Microb. Biotechnol. 1993, 39, 254–258. [Google Scholar] [CrossRef] [PubMed]
- Possemiers, S.; Vertha, C.; Uyttendaele, S.; Verstraete, W. PCR-DGGE-based quantification of stability of the microbial community in a simulator of the human intestinal microbial ecosystem. FEMS Microbiol. Ecol. 2004, 49, 495–507. [Google Scholar] [CrossRef] [PubMed]
- Venema, K.; Van den Abbeele, P. Experimental models of the gut microbiome. Best Pract. Res. Clin. Gastroenterol. 2013, 27, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Van den Abbeele, P.; Roos, S.; Eeckhaut, V.; MacKenzie, D.; Derde, M.; Verstraete, W.; Marzorati, M.; Possemiers, S.; Vanhoecke, B.; Van Immerseel, F.; et al. Incorporating a mucosal environment in a dynamic gut model results in a more representative colonization by lactobacilli. Microb. Biotechnol. 2012, 5, 106–115. [Google Scholar] [CrossRef]
- Van den Abbeele, P.; Belzer, C.; Goossens, M.; Kleerebezem, M.; De Vos, W.; Thas, O.; De Weirdt, R.; Kerckhof, F.; Van de Wiele, T. Butyrate- producing Clostridium cluster XIVa species specifically colonize mucins in an in vitro gut model. ISME J. 2013, 7, 949–961. [Google Scholar] [CrossRef]
- Vandeputte, D.; Kathagen, G.; D’hoe, K.; Vieira-Silva, S.; Valles-Colomer, M.; Sabino, J.; Wang, J.; Tito, R.; De Commer, J.; Darzi, Y.; et al. Quantitative microbiome profiling links gut community variation to microbial load. Nature 2017, 551, 507–511. [Google Scholar] [CrossRef]
- Miller, J.M.; Cullingham, C.I.; Peery, R.M. The influence of a priori grouping on inference of genetic clusters: Simulation study and literature review of the DAPC method. Heredity 2020, 125, 269–280. [Google Scholar] [CrossRef]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, R60. [Google Scholar] [CrossRef]
- Huang, R.; Soneson, C.; Germain, P.L.; Schmidt, T.; Mering, C.; Robinson, M. treeclimbR pinpoints the data-dependent resolution of hierarchical hypotheses. Genome Biol. 2021, 22, 157. [Google Scholar] [CrossRef]
- Cummings, J.H.; Macfarlane, G.T. Role of intestinal bacteria in nutrient metabolism. JPEN J. Parenter. Enter. Nutr. 1997, 21, 357–365. [Google Scholar] [CrossRef]
- Fuller, R. Probiotics in man and animals. J. Appl. Bacteriol. 1989, 66, 365–378. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gramenzi, A.; Clerico, L.; Belà, B.; Di Leonardo, M.; Fusaro, I.; Pignataro, G. Modulation of Canine Gut Microbiota by Prebiotic and Probiotic Supplements: A Long-Term In Vitro Study Using a Novel Colonic Fermentation Model. Animals 2024, 14, 3342. https://doi.org/10.3390/ani14223342
Gramenzi A, Clerico L, Belà B, Di Leonardo M, Fusaro I, Pignataro G. Modulation of Canine Gut Microbiota by Prebiotic and Probiotic Supplements: A Long-Term In Vitro Study Using a Novel Colonic Fermentation Model. Animals. 2024; 14(22):3342. https://doi.org/10.3390/ani14223342
Chicago/Turabian StyleGramenzi, Alessandro, Luana Clerico, Benedetta Belà, Meri Di Leonardo, Isa Fusaro, and Giulia Pignataro. 2024. "Modulation of Canine Gut Microbiota by Prebiotic and Probiotic Supplements: A Long-Term In Vitro Study Using a Novel Colonic Fermentation Model" Animals 14, no. 22: 3342. https://doi.org/10.3390/ani14223342
APA StyleGramenzi, A., Clerico, L., Belà, B., Di Leonardo, M., Fusaro, I., & Pignataro, G. (2024). Modulation of Canine Gut Microbiota by Prebiotic and Probiotic Supplements: A Long-Term In Vitro Study Using a Novel Colonic Fermentation Model. Animals, 14(22), 3342. https://doi.org/10.3390/ani14223342