The Potential of Wood Vinegar to Replace Antimicrobials Used in Animal Husbandry—A Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Environmental Impacts of Antimicrobials
2.1. Soil Contamination
2.2. Water Contamination
2.3. Foodstuff Contamination
3. Wood Vinegar—Composition, Properties, and Uses
Properties and Chemical Composition
4. Wood Vinegar—An Effective Natural Antimicrobial Agent
5. Use of Wood Vinegar in Animal Husbandry
Animals | Type of WV | Concentration | Frequency of Use | Effects | Author |
---|---|---|---|---|---|
Cattle | Bamboo | 3% | Once a day | Improvement of meat quality (taste and marbling), higher contents of crude fat, less shear strength, and less cholesterol content in meat | Kook & Kim, 2003 [154] |
Nekka-rich | 10 g (daily dosage) | Included in a milk surrogate for 4 days (every 8 h) | Control of Cryptosporidium parvum in calves | Watarai et al., 2008 [160] | |
Obionekk | 1.25 g (daily dosage) | Included in a milk surrogate for 14 days (every 8 h) | Control of Cryptosporidium parvum in goats | Parauda et al., 2011 [161] | |
Swine | Nekka-rich | 3% | Inclusion in feed for 30 days | Improvement of feed conversion and villi height | Mekbungwan et al., 2008 [156] |
Commercial WV | 0.3% | Inclusion in feed for 28 days | Improvement of digestibility and control of undesirable coliforms | Choi et al., 2009 [157] | |
Bamboo | 0.3% | Inclusion in feed for 42 days | Improvement of performance and stress reduction | Chu et al., 2013 [158] | |
Bamboo | 0.4% WV + 0.25% acidifier | Inclusion in feed for 25 days | Improvement in intestinal microbiota | Wang et al., 2013 [159] | |
Acacia auriculiformis wood | 0.3% WV or 0.2% WV + 0.8% biochar | Inclusion in feed twice a day | Control of diarrhea and sulfide hydroxide emissions | Chao et al., 2016 [162] | |
Bamboo | 0.5% | Inclusion in feed for 35 days | Regulation of expression levels of mRNA in immune organs | Huo et al., 2016 [163] | |
Garcinia mangostana | 0.4 to 0.8% | Inclusion in feed for 5 days | Improvement of digestibility | Rodjan et al., 2018 [164] | |
Not informed | 5.0% | Inclusion in feed for 4 weeks | Improvement in weight gain | Macasait et al., 2021 [165] | |
Quercus acutissima wood | 0.1% | Inclusion in feed for 16 weeks | Improvement in weight gain and total digestibility of nutrients | Sureshkumar et al., 2021 [166] | |
Poultry | Biochar + WV | 0.5 and 1% | Inclusion in feed | Improvement of egg production and intestinal villi height, less emission of fecal ammonia | Yamauchi et al., 2010 [167] |
Silicic acid (commercial product) and bamboo vinegar | 0.3% | Inclusion in feed for 112 days | Greater weight gain | Rattanavut et al., 2012 [168] | |
Silicic acid (commercial product) and bamboo vinegar | 0.2% | Inclusion in feed for 49 days | Improvement of intestinal villi number and height | Rattanawut & Yamauchi, 2015 [169] | |
Biochar and bamboo vinegar (8 kg of powder + 3 L of BV) | 1 and 1.5% | Included in daily feed | Improvement of egg quality, digestibility, and control of Escherichia coli and Salmonella sp. | Rattanawut et al., 2017 [170] | |
Not informed | 0.833% | Inclusion in feed (twice a day) for 84 days | Improvement of laying performance and egg quality | Nunes, 2019 [171] | |
WV from Eucalyptus urophylla × Eucalyptus grandis (clone GG100) | 2.5% | Inclusion in feed for 42 days | Improvement of body weight gain, feed conversion, and feed consumption | Diógenes et al., 2019 [172] | |
WV from the hull of Spina date seed | 0.2% | Inclusion in feed for 50 days | Improvement of egg yolk quality and decrease in n-6 fatty acids | Zhao et al., 2019 [173] | |
EP of Myristica fragrans and Acacia confuse | 0.5 or 1% | Added to water twice per day | Improvement of intestinal villi height | Hanchai et al., 2021 [174] |
6. Wood Vinegar Refining
7. Wood Vinegar Toxicity
8. The Potential of Using WV on a Large Scale in Animal Husbandry
- Each carbonized wood or woody biomass produces a different type of WV; therefore, the product dosages for a particular animal can often differ broadly in efficiency as a result of variations in chemical composition. This brings uncertainty to general results, preventing standardized recommendations for use like those prevailing for conventional antimicrobials. In other words, a given antimicrobial always has the same chemical structure everywhere, so its prescription and use are easy to accomplish.
- WV is usually locally produced by small farmers according to traditional practices that are not always appropriate. Thus, there is no standardization of final product quality or properties. Virtually everywhere in the world, WV is produced locally in low-technology kilns in which the carbonization parameters cannot be accurately determined, generating liquid products of doubtful quality without reproducibility.
- One prosaic mistake many WV producers make is recovering the pyrolysis liquids from the outset of the carbonization process. Since every woody biomass has some amount of water embedded in its tissues, if the recovery starts before this moisture evaporates at the beginning of carbonization, it will remain in the final product, acting as a dilutant and decreasing the content of active compounds.
- Each kiln model and carbonization routine will produce WV with different yields and quality [115]. Hence, a minimum level of reproducibility is required to achieve desirable characteristics for WV from each wood or woody biomass type.
- No matter how efficient the carbonization kilns, their recovery accessories, and the process parameters are, the raw WV will contain polycyclic aromatic hydrocarbons that are highly carcinogenic. To achieve a high-quality final product, the raw WV must be refined.
- There are no legal regulations regarding WV quality. Only informal rules of thumb are typically considered. Thus, the products are sold freely regardless of their sound quality.
9. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Franklin, A.M.; Aga, D.S.; Cytryn, E.; Durso, L.M.; McLain, J.E.; Pruden, A.; Roberts, M.C.; Rothrock Júnior, M.J.; Snow, D.D.; Watson, J.E.; et al. Antimicrobials in agroecosystems: Introduction to the special section. J. Environ. Qual. 2016, 45, 377–393. [Google Scholar] [CrossRef]
- Alexandrino, D.A.M.; Mucha, A.P.; Almeida, C.M.R.; Gao, W.; Jia, Z.; Carvalho, M.F. Biodegradation of the veterinary antimicrobials enrofloxacin and ceftiofur and associated microbial community dynamics. Sci. Total Environ. 2017, 581–582, 359–368. [Google Scholar] [CrossRef] [PubMed]
- Manyi-Loh, C.; Mamphweli, S.; Meyer, E.; Okoh, A. Antimicrobial Use in agriculture and its consequential resistance in environmental sources: Potential public health implications. Molecules 2018, 23, 795. [Google Scholar] [CrossRef] [PubMed]
- Low, C.X.; Tan, L.T.H.; Mutalib, N.S.A.B.; Pusparajah, P.; Goh, B.H.; Chan, K.G.; Letchumanan, V.; Lee, L.H. Unveiling the impact of antimicrobials and alternative methods for animal husbandry: A review. Antibiotics 2021, 10, 578. [Google Scholar] [CrossRef]
- Kulik, K.; Lenart-Borón, A.; Wyrzykowska, K. Impact of antimicrobial pollution on the bacterial population within surface water with special focus on mountain rivers. Water 2023, 15, 975. [Google Scholar] [CrossRef]
- WHO—World Health Organization. Stop Using Antimicrobials in Healthy Animals to Prevent the Spread of Antimicrobial Resistance. 2017. Available online: https://www.who.int/news/item/07-11-2017-stop-using-antimicrobials-in-healthy-animals-to-prevent-the-spread-of-antimicrobial-resistance (accessed on 28 September 2023).
- Trombete, F.M.; Santos, R.R.; Souza, A.L.R. Antimicrobial residues in Brazilian milk: A review of studies published in recent years. Rev. Chil. Nutr. 2014, 41, 191–197. [Google Scholar] [CrossRef]
- Bojarski, B.; Kot, B.; Witeska, M. Antibacterials in aquatic environment and their toxicity to fish. Pharmaceuticals 2020, 13, 189. [Google Scholar] [CrossRef]
- Huygens, J.; Daeseleire, E.; Mahillon, J.; Elst, D.V.; Decrop, J.; Meirlaen, J.; Dewulf, J.; Heyndrickx, M.; Rasschaert, G. Presence of antimicrobial residues and antimicrobial resistant bacteria in cattle manure intended for fertilization of agricultural fields: A one health perspective. Antibiotics 2021, 10, 410. [Google Scholar] [CrossRef]
- Zeng, H.; Li, J.; Zhao, W.; Xu, J.; Xu, H.; Li, D.; Zhang, J. The current status and prevention of antimicrobial pollution in groundwater in China. Int. J. Environ. Res. Public Health 2022, 19, 11256. [Google Scholar] [CrossRef]
- Chandrakar, C.; Sakya, S.; Patyal, A.; Bhonsle, D.; Pandey, A.K. Detection of antimicrobial residues in chicken meat from different agro-climatic zones of Chhattisgarh, India by HPLC-PDA and human exposure assessment and risk characterization. Food Control 2023, 148, 109667. [Google Scholar] [CrossRef]
- Kraemer, S.A.; Ramachandran, A.; Perron, G.G. Antimicrobial pollution in the environment: From microbial ecology to public policy. Microorganisms 2019, 7, 180. [Google Scholar] [CrossRef]
- Li, C.; Chen, J.; Wang, J.; Ma, Z.; Han, P.; Luan, Y.; Lu, A. Occurrence of antimicrobials in soils and manures from greenhouse vegetable production bases of Beijing, China and an associated risk assessment. Sci. Total Environ. 2015, 521–522, 101–107. [Google Scholar] [CrossRef]
- Agga, G.; Cook, L.; Netthisinghe, A.M.P.; Gilfillen, R.A.; Woosley, P.B.; Sistani, K.R. Persistence of antimicrobial resistance genes in beef cattle backgrounding environment over two years after cessation of operation. PLoS ONE 2019, 14, e0212510. [Google Scholar] [CrossRef] [PubMed]
- Mooney, D.; Richards, K.G.; Danaher, M.; Grant, J.; Gill, L.; Mellander, P.E.; Coxon, C.E. An investigation of anticoccidial veterinary drugs as emerging organic contaminants in groundwater. Sci. Total Environ. 2020, 746, 141116. [Google Scholar] [CrossRef] [PubMed]
- Arsène, M.M.J.; Davares, A.K.L.; Viktorovna, P.I.; Andreevna, S.L.; Sarra, S.; Khelifi, I.; Sergueïevna, D.M. The public health issue of antimicrobial residues in food and feed: Causes, consequences, and potential solutions. Vet. World 2022, 15, 662–671. [Google Scholar] [CrossRef]
- Zigo, F.; Sasáková, N.; Gregová, G.; Výrostková, J.; Ondrašovicová, S. Effects of using an alternative bedding composition on the Levels of indicator microorganisms and mammary health in dairy farm conditions. Agriculture 2020, 10, 245. [Google Scholar] [CrossRef]
- Zigo, F.; Farkašová, Z.; Výrostková, J.; Regecová, I.; Ondrašovicov, S.; Vargová, M.; Sasáková, N.; Pecka-Kielb, E.; Bursová, Š.; Kiss, D.S. Dairy cows’ udder pathogens and occurrence of virulence factors in Staphylococci. Animals 2022, 12, 470. [Google Scholar] [CrossRef] [PubMed]
- Meneghi, D.; Stachurski, F.; Adakal, H. Experiences in tick control by acaricide in the traditional cattle sector in Zambia and Burkina Faso: Possible environmental and public health implications. Frontiers 2016, 4, 239. [Google Scholar] [CrossRef]
- Reich, H.; Triacchini, G.A. Occurrence of residues of fipronil and other acaricides in chicken eggs and poultry muscle/fat. EFSA J. 2018, 16, e05164. [Google Scholar] [CrossRef]
- Adum, A.N.; Gibson, G.; Chimbevo, L.M.; Oshule, P.S.; Essuman, S.; Asamba, M.N. Detection and quantification of chlorpyrifos in soil, milk, dip wash, and spray race residues using high-performance liquid chromatography in selected dairy farms in Kenya. J. Anal. Chem. 2021, 9, 88–95. [Google Scholar] [CrossRef]
- Tiilikkala, K.; Fagernas, L.; Tiilikkala, J. History and Use of Wood Pyrolysis Liquids as Biocide and Plant Protection Product. Open Agric. J. 2010, 4, 111–118. [Google Scholar] [CrossRef]
- Araújo, E.S.; Pimenta, A.S.; Feijó, F.M.C.; Castro, R.V.O.; Fasciotti, M.; Monteiro, T.V.C.; Lima, K.M.G. Antibacterial and antifungal activities of pyroligneous acid from wood of Eucalyptus urograndis and Mimosa tenuiflora. J. Appl. Microbiol. 2017, 124, 85–96. [Google Scholar] [CrossRef]
- Pimenta, A.S.; Fasciotti, M.; Monteiro, T.V.C.; Lima, K.M.G. Chemical composition of pyroligneous acid obtained from Eucalyptus GG100 clone. Molecules 2018, 23, 426. [Google Scholar] [CrossRef]
- Souza, J.L.S.; Guimarães, V.B.S.; Campos, A.D.; Lund, R.G. Antimicrobial potential of pyroligneous extracts—A systematic review and technological prospecting. Braz. J. Microbiol. 2018, 49, 128–139. [Google Scholar] [CrossRef]
- Aguirre, J.L.; Baena, J.; Martín, M.T.; Nozal, L.; González, S.; Manjón, J.L.; Peinado, M. Composition, aging and herbicidal properties of wood vinegar obtained through fast biomass pyrolysis. Energies 2020, 13, 2418. [Google Scholar] [CrossRef]
- Schnitzer, J.A.; Su, M.J.; Ventura, M.U.; Faria, R.T. Doses de extrato pirolenhoso no cultivo de orquídea. Rev. Ceres 2015, 62, 101–106. [Google Scholar] [CrossRef]
- Yang, J.F.; Yang, C.H.; Liang, M.T.; Gao, Z.J.; Wu, Y.W.; Chuang, L.Y. Chemical composition, antioxidant, and antibacterial activity of wood vinegar from Litchi chinensis. Molecules 2016, 21, 1150. [Google Scholar] [CrossRef]
- Hamzah, M.A.A.M.; Hasham, R.; Malek, N.A.N.N.; Hashim, Z.; Yahayu, M.; Razak, F.I.A.; Zakaria, Z.A. Beyond conventional biomass valorisation: Pyrolysis-derived products for biomedical applications. Biofuel Res. J. 2022, 35, 1648–1658. [Google Scholar] [CrossRef]
- Theapparat, Y.; Khongthong, S.; Roekngam, N.; Suwandecha, T.; Sririyajan, S.; Faroongsarng, D. Wound healing activity: A novel benefit of pyroligneous extract derived from pyrolytic palm kernel shell wood vinegar. Ind. Crops Prod. 2023, 192, 115994. [Google Scholar] [CrossRef]
- Feijó, F.M.C.; Pimenta, A.S.; Pereira, A.F.; Soares, W.N.C.; Benicio, L.D.M.; Silva Junior, E.C.; Ribeiro, Y.S.R.; Santos, C.S.; Praxedes, D.A.C.; Sousa, E.M.M.; et al. Use of eucalyptus wood vinegar as antiseptic in goats. In Goat Science-from Keeping to Precision Production; Kukovics, S., Ed.; IntechOpen Limited: London, UK, 2023. [Google Scholar] [CrossRef]
- Gama, G.S.P.; Pimenta, A.S.; Feijó, F.M.C.; Santos, C.S.; Fernandes, B.C.C.; Oliveira, M.F.; Souza, E.C.; Monteiro, T.V.C.; Fasciotti, M.; Azevedo, T.K.B.; et al. Antimicrobial activity and chemical profile of wood vinegar from eucalyptus (Eucalyptus urophylla × Eucalyptus grandis—Clone I144) and bamboo (Bambusa vulgaris). World J. Microbiol. Biotechnol. 2023, 39, 186. [Google Scholar] [CrossRef] [PubMed]
- Gama, G.S.P.; Pimenta, A.S.; Feijó, F.M.C.; Santos, C.S.; Castro, R.V.O.; Azevedo, T.K.B.; Medeiros, L.C.D. Effect of pH on the antibacterial and antifungal activity of wood vinegar (pyroligneous extract) from eucalyptus. Rev. Árvore 2023, 47, e4711. [Google Scholar] [CrossRef]
- Silva, B.A.; Feijó, F.M.C.; Alves, N.D.; Pimenta, A.S.; Benicio, L.D.M.; Silva Junior, E.C.; Santos, C.S.; Pereira, A.F.; Moura, Y.B.F.; Gama, G.S.P.; et al. Use of a product based on wood vinegar of Eucalyptus clone I144 in the control of bovine mastitis. Vet. Microbiol. 2023, 279, 109670. [Google Scholar] [CrossRef]
- Kuppusamy, S.; Kakarlab, D.; Venkateswarluc, K.; Megharajd, M.; Yoone, Y.E.; Lee, Y.B. Veterinary antimicrobials (VAs) contamination as a global agro-ecological issue: A critical view. Agric. Ecosyst. Environ. 2018, 257, 47–59. [Google Scholar] [CrossRef]
- Molaei, A.; Lakzian, A.; Datta, R.; Haghnia, G.; Astaraei, A.; Rasouli-Sadaghiani, M.; Ceccherini, M.T. Impact of chlortetracycline and sulfapyridine antimicrobials on soil enzyme activities. Int. Agrophysics 2017, 31, 499–505. [Google Scholar] [CrossRef]
- Santás-Miguel, V.; Díaz-Raviña, M.; Martín, A.; García-Campos, E.; Barreiro, A.; Núñez-Delgado, A.; Álvarez-Rodríguez, E.; Arias-Estévez, M.; Fernández-Calviño, D. Soil enzymatic activities and microbial community structure in soils polluted with tetracycline antimicrobials. Agronomy 2021, 11, 906. [Google Scholar] [CrossRef]
- Du, L.; Liu, W. Occurrence, fate, and ecotoxicity of antimicrobials in agro-ecosystems. A review. Agron. Sustain. Dev. 2012, 32, 309–327. [Google Scholar] [CrossRef]
- Polianciuc, S.I.; Gurzău, A.E.; Kiss, B.; Ștefan, M.G.; Loghin, F. Antimicrobials in the environment: Causes and consequences. Med. Pharm. Rep. 2020, 93, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Nijsingh, N.; Munthe, C.; Larsson, D.G.J. Managing pollution from antimicrobials manufacturing: Charting actors, incentives and disincentives. Environ. Health 2019, 18, 95. [Google Scholar] [CrossRef] [PubMed]
- Danilova, N.; Galitskaya, P.; Selivanovskaya, S. Veterinary antimicrobial oxytetracycline’s effect on the soil microbial community. J. Ecol. Environ. 2020, 44, 10. [Google Scholar] [CrossRef]
- Cycón, M.; Mrozik, A.; Piotrowsk-Seget, Z. Antimicrobials in the soil environment—Degradation and their impact on microbial activity and diversity. Front. Microbiol. 2019, 10, 338. [Google Scholar] [CrossRef]
- Burke, D.J.; Weintraub, M.N.; Hewins, C.R.; Kalisz, S. Relationship between soil enzyme activities, nutrient cycling, and soil fungal communities in a northern hardwood forest. Soil. Biol. Biochem. 2011, 43, 795–803. [Google Scholar] [CrossRef]
- Zhang, J.; Jin, K.; Luo, Y.; Du, L.; Tian, R.; Wang, S.; Shen, Y.; Zhang, J.; Li, N.; Shao, W.; et al. Responses of soil enzyme activity to long-term nitrogen enrichment and water addition in a typical steppe. Agronomy 2023, 13, 1920. [Google Scholar] [CrossRef]
- Silva, B.A. Distribuição de Antibióticos em Efluentes de Suinocultura e seu Impacto na Disseminação de Resistência Antimicrobiana. Master’s Thesis, Graduate Program in Environmental Engineering, Universidade Federal de Ouro Preto—UFOP, Ouro Preto, MG, Brazil, 2023; 153p. [Google Scholar]
- Berendsen, B.J.A.; Roelofs, G.; Zanten, B.V.; Lankveld, W.D.M.D.V.; Pikkemaat, M.G.; Bongers, I.E.A.; Lange, E. A strategy to determine the fate of active chemical compounds in soil applied to antimicrobial active substances. Quimiosfera 2021, 279, 130495. [Google Scholar] [CrossRef]
- Walters, E.; McClellan, K.; Halden, R.U. Occurrence and loss over three years of 72 pharmaceuticals and personal care products from biosolids soil mixtures in outdoor mesocosms. Water Res. 2010, 44, 6011–6020. [Google Scholar] [CrossRef] [PubMed]
- Rahube, T.O.; Marti, R.; Scott, A.; Tien, Y.C.; Murray, R.; Sabourin, L.; Zhang, Y.; Duenk, P.; Lapen, D.R.; Toppa, E. Impact of fertilizing with raw or anaerobically digested sewage sludge on the abundance of antimicrobial-resistant coliforms, antimicrobial resistance genes, and pathogenic bacteria in soil and on vegetables at harvest. Appl. Environ. Microbiol. 2014, 80, 6898–6907. [Google Scholar] [CrossRef] [PubMed]
- Xiao, E.; Sun, W.; Ning, Z.; Wang, Y.; Meng, F.; Deng, F.; Fan, W.; Xiao, T. Occurrence and dissemination of antimicrobial resistance genes in mine soil ecosystems. Appl. Microbiol. Biotechnol. 2022, 106, 6289–6299. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Ondon, B.S.; Ho, S.H.; Li, F. Emerging soil contamination of antimicrobials resistance bacteria (ARB) carrying genes (ARGs): New challenges for soil remediation and conservation. Environ. Res. 2023, 219, 115132. [Google Scholar] [CrossRef]
- Yousefi, A.; Torkan, S. Uropathogenic Escherichia coli in the urine samples of Iranian dogs: Antimicrobial resistance pattern and distribution of antimicrobial resistance genes. Biomed. Res. Int. 2017, 2017, 4180490. [Google Scholar] [CrossRef]
- Wintersdorff, C.J.H.V.; Penders, J.; Niekerk, J.M.V.; Mills, N.D.; Majumder, S.; Alphen, L.B.V.; Savelkoul, P.H.M.; Wolffs, P.F.G. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Front. Microbiol. 2016, 7, 173. [Google Scholar] [CrossRef]
- Fatoba, D.O.; Amoako, D.G.; Abia, A.L.K.; Essack, S.Y. Transmission of antimicrobial-resistant Escherichia coli from chicken litter to agricultural soil. Front. Environ. Sci. 2022, 9, 640. [Google Scholar] [CrossRef]
- He, Y.; Yuan, Q.; Mathieu, J.; Stadler, L.; Senehi, N.; Sun, R.; Alvarez, P.J.J. Antimicrobial resistance genes from livestock waste: Occurrence, dissemination, and treatment. Clean. Water 2020, 3, 4. [Google Scholar] [CrossRef]
- Ebrahimi, S.M.; Reyhani, R.D.; Abadi, M.A.J.; Fathifar, Z. Diversity of antimicrobials in hospital and municipal wastewaters and receiving water bodies and removal efficiency by treatment processes: A systematic review protocol. Environ. Evid. 2020, 9, 19. [Google Scholar] [CrossRef]
- Liu, C.; Tan, L.; Zhang, L.; Tian, W.; Ma, L. A Review of the distribution of antimicrobials in water in different regions of China and current antimicrobial degradation pathways. Front. Environ. Sci. 2021, 9, 692298. [Google Scholar] [CrossRef]
- Kovalakova, P.; Cizmas, L.; McDonald, T.J.; Marsalek, B.; Feng, M.; Sharma, V.K. Occurrence and toxicity of antimicrobials in the aquatic environment: A review. Chemosphere 2020, 251, 126351. [Google Scholar] [CrossRef] [PubMed]
- Okoye, C.O.; Nyaruaba, R.; Ita, R.E.; Okon, S.U.; Addey, C.I.; Ebido, C.C.; Opabunmi, A.O.; Okeke, E.S.; Chukwudozie, K.I. Antimicrobial resistance in the aquatic environment: Analytical techniques and interactive impact of emerging contaminants. Environ. Toxicol. Pharmacol. 2022, 96, 103995. [Google Scholar] [CrossRef]
- Suzuki, S.; Ogo, M.; Takada, H.; Seki, K.; Mikuzawa, K.; Kadoya, A.; Yokokawa, T.; Sugimoto, Y.; Sato Takabe, Y.; Boonla, C.; et al. Contamination of antimicrobials and sul and tet(M) genes in veterinary wastewater, river, and coastal sea in Thailand. Sci. Total Environ. 2021, 791, 148423. [Google Scholar] [CrossRef] [PubMed]
- Charatcharoenwitthaya, K.; Charoenpichitnun, N.; Tantichinda, N.; Tiyavatcharapong, P.; Apiraktanakon, K.; Tedumrongvanich, P.; Kaewreongrit, T.; Wongtrakul, W.; Niltwat, S.; Tribuddharat, C. Antimicrobial residues in fresh pork from fresh market in Bangkok, Thailand. J. Med. Assoc. Thai 2022, 105, 1095–1101. [Google Scholar] [CrossRef]
- Silva, N.C. Remoção de Antibióticos da Água por Meio do Processo de Adsorção em Carvão Ativado. Master’s Thesis, Graduate Program in Material Chemistry, Universidade Estadual Paulista—UNESP, Ilha Solteira, SP, Brazil, 2012; 97p. [Google Scholar]
- Maghsodian, Z.; Sanati, A.M.; Mashifana, T.; Sillanpää, M.; Feng, S.; Nhat, T.; Ramavandi, B. Occurrence and distribution of antimicrobials in the water, sediment, and biota of freshwater and marine environments: A review. Antibiotics 2022, 11, 1461. [Google Scholar] [CrossRef]
- Böger, B.; Surek, M.; Vilhena, R.O.; Fachi, M.M.; Junkert, A.M.; Santos, J.M.M.F.; Domingos, E.L.; Cobre, A.F.; Momade, D.R.; Pontarolo, R. Occurrence of antimicrobials and antimicrobial-resistant bacteria in subtropical urban rivers in Brazil. J. Hazard. Mater. 2021, 402, 123448. [Google Scholar] [CrossRef]
- Xu, D.; Chen, R. Standards needed for antimicrobials in water. Science 2022, 377, 1499. [Google Scholar] [CrossRef]
- Hanna, N.; Tamhankar, A.J.; Lundborg, C.S. Antimicrobial concentrations and antimicrobial resistance in aquatic environments of the WHO Western Pacific and South-East Asia regions: A systematic review and probabilistic environmental hazard assessment. Lancet 2023, 7, e45–e54. [Google Scholar] [CrossRef]
- Guo, X.; Xiaojun, L.; Zhang, A.; Yan, Z.; Chen, S.; Wang, N. Antimicrobial contamination in a typical water-rich city in southeast China: A concern for drinking water resource safety. J. Environ. Sci. Health Part B 2019, 55, 193–209. [Google Scholar] [CrossRef] [PubMed]
- Lyu, J.; Chen, Y.; Zhang, L. Antimicrobials in drinking water and health risks—China, 2017. China CDC Wkly 2020, 2, 413–417. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, A.R.; Al-Haideri, H.H.; Hassan, F.M. Detection of antimicrobials in drinking water treatment plants in Baghdad city, Iraq. Adv. Public Health 2019, 2019, 1838–1849. [Google Scholar] [CrossRef]
- Boonsaner, M.; Hawker, D.W. Evaluation of food chain transfer of the antimicrobial oxytetracycline and human risk assessment. Chemosphere 2013, 93, 1009–1014. [Google Scholar] [CrossRef] [PubMed]
- Jia, J.; Silva, G.G.; Plath, M.; Pereira, B.B.; Vieira, C.U.; Wang, Z. Shifts in bacterial communities and antimicrobial resistance genes in surface water and gut microbiota of guppies (Poecilia reticulata) in the upper Rio Uberabinha, Brazil. Ecotoxicol. Environ. Saf. 2021, 211, 111955. [Google Scholar] [CrossRef] [PubMed]
- Faria, A.C.S.; Godoy, I.; Sanches, A.A.A.; Iglesias, G.A.; Candido, S.L.; Paz, R.C.L.; Dutra, L.N.V. Detection of resistance genes and evaluation of water quality at zoo lakes in Brazil. Ciência Rural. 2016, 46, 860–866. [Google Scholar] [CrossRef]
- Silva, M.R. Degradação dos Antibióticos Ciprofloxacino, Sulfametoxazol e Tetraciclina por Processos Oxidativos Avançados Combinados Usando Resíduo da Mineração. Ph.D. Thesis, Graduate Program in Sciences, Fundação Osvaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil, 2022; 153p. [Google Scholar]
- Liu, C.M.; Stegger, M.; Aziz, M.; Johnson, T.J.; Waits, K.; Nordstrom, L.; Gauld, L.; Weaver, B.; Rolland, D.; Statham, S.; et al. Escherichia coli ST131-H22 as a foodborne uropathogen. Am. Soc. Microbiol. 2018, 9, 4. [Google Scholar] [CrossRef]
- Gawryjołek, K. Antimicrobials in agriculture—Application, threats and legal regulations. J. Agron. 2021, 47, 10–21. [Google Scholar] [CrossRef]
- Jauregi, L.; Epelde, L.; Alkorta, I.; Garbisu, C. Antimicrobial resistance in agricultural soil and crops associated to the application of cow manure-derived amendments from conventional and organic livestock farms. Front. Vet. Sci. 2018, 8, 633858. [Google Scholar] [CrossRef]
- Gliessman, S. Defining Agroecology. Agroecology 2018, 42, 599–600. [Google Scholar] [CrossRef]
- Dumont, B.; Fortun-Lamothe, L.; Jouven, M.; Thomas, M.; Tichit, M. Prospects from agroecology and industrial ecology for animal production in the 21st century. Animal 2013, 7, 1028–1043. [Google Scholar] [CrossRef]
- Bernal, M.P. Grand Challenges in waste management in agroecosystems. Front. Sustain. Food Syst. 2017, 1, 1. [Google Scholar] [CrossRef]
- Bernal, M.P.; Vanotti, M.B. Editorial: Insights in waste management in agroecosystems. Front. Sustain. Food Syst. 2023, 7, 1176007. [Google Scholar] [CrossRef]
- Rodríguez, A.O.H.; Figueroa, C.H.R.; Ávila, E.E.D.; Barrios, D.L.O.; Prieto, V.M.G. Plant and livestock waste compost compared with inorganic fertilizer: Nutrient contribution to soil. Terra Lat. Am. 2017, 35, 321–328. [Google Scholar] [CrossRef]
- Bhunia, S.; Bhowmik, A.; Mallick, R.; Mukherjee, J. Agronomic efficiency of animal-derived organic fertilizers and their effects on biology and fertility of soil: A review. Agronomy 2021, 11, 823. [Google Scholar] [CrossRef]
- Xia, L.; Lam, S.K.; Yan, X.; Chen, D. How does recycling of livestock manure in agroecosystems affect crop productivity, reactive nitrogen losses, and soil carbon balance? Environ. Sci. Technol. 2017, 51, 7450–7457. [Google Scholar] [CrossRef]
- Wang, X.; Yang, Y.; Zhao, J.; Nie, J.; Zang, H.; Zeng, Z.; Olesen, J.E. Yield benefits from replacing chemical fertilizers with manure under water-deficient conditions of the winter wheat—Summer maize system in the North China Plain. Eur. J. Agron. 2020, 119, 126118. [Google Scholar] [CrossRef]
- Visca, A.; Rauseo, J.; Spataro, F.; Patrolecco, L.; Grenni, P.; Massini, G.; Miritana, V.M.; Caracciolo, A.B. Antimicrobials and antimicrobial resistance genes in anaerobic digesters and predicted concentrations in agroecosystems. J. Environ. Manag. 2022, 301, 113891. [Google Scholar] [CrossRef]
- Awad, Y.M.; Kim, K.R.; Kim, S.C.; Kim, K.; Lee, S.R.; Lee, S.S.; Ok, Y.S. Monitoring antimicrobial residues and corresponding antimicrobial resistance genes in an agroecosystem. J. Chem. 2015, 2015, 974843. [Google Scholar] [CrossRef]
- He, J.; Yan, Z.; Chen, Q. Transmission of antimicrobial resistance genes in agroecosystems: An overview. Front. Agric. Sci. Eng. 2020, 7, 329–332. [Google Scholar] [CrossRef]
- Wang, W.; Shen, P.; Lu, Z.; Mo, F.; Liao, Y.; Wen, X. Metagenomics reveals the abundance and accumulation trend of antimicrobial resistance gene profile under long-term no-tillage in a rainfed agroecosystem. Front. Microbiol. 2023, 14, 1238708. [Google Scholar] [CrossRef]
- Altieri, M.; Nicholls, C.I. Agroecology and the reconstruction of a post-COVID-19 agriculture. J. Peasant. Stud. 2020, 47, 881–898. [Google Scholar] [CrossRef]
- Masiá, A.; Suarez-Varela, M.M.; Llopis-Gonzalez, A.; Pico, Y. Determination of pesticides and veterinary drug residues in food by liquid chromatography-mass spectrometry: A review. Anal. Chim. Acta 2016, 936, 40–61. [Google Scholar] [CrossRef] [PubMed]
- Okocha, R.C.; Olatoye, I.O.; Adedeji, O.B. Food safety impacts of antimicrobial use and their residues in aquaculture. Public Health Rev. 2018, 39, 21. [Google Scholar] [CrossRef] [PubMed]
- Lemos, V.F. Efeitos dos agrotóxicos e resíduos de medicamentos veterinários no leite e produtos derivados. An. Acad. Pernambucana Ciênc. Agron. 2018, 15, 41–48. Available online: https://www.journals.ufrpe.br/index.php/apca/article/view/2221 (accessed on 7 September 2023).
- Sachi, S.; Ferdous, J.; Sikder, M.H.; Hussani, S.M.A.K. Antimicrobial residues in milk: Past, present, and future. J. Adv. Vet. Anim. Res. 2019, 6, 315–332. [Google Scholar] [CrossRef]
- Brown, K.; Mugoh, M.; Call, D.R.; Omulo, S. Antimicrobial residues and antimicrobial-resistant bacteria detected in milk marketed for human consumption in Kibera, Nairobi. PLoS ONE 2020, 15, 5. [Google Scholar] [CrossRef]
- Layada, S.; Benouareth, D.E.; Coucke, W.; Andjelkovic, M. Assessment of antimicrobial residues in commercial and farm milk collected in the region of Guelma (Algeria). Int. J. Food Contam. 2016, 3, 19. [Google Scholar] [CrossRef]
- Alves, J.F.; Paula, G.H.; Silva, R.C.F.; Leão, P.V.T.; Leão, K.M.; Nicolau, E.S.; Silva, M.A.P. Residues of antimicrobials in milk: Persistence and quality interference. Can. J. Anim. Sci. 2019, 100, 1. [Google Scholar] [CrossRef]
- Welsh, J.A.; Braun, H.; Brown, N.; Um, C.; Ehret, K.; Figueroa, J.; Barr, D.B. Production-related contaminants (pesticides, antimicrobials and hormones) in organic and conventionally produced milk samples sold in the USA. Public Health Nutr. 2019, 22, 2972–2980. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, M.A.; Elmi, A.L.S.; Dubad, A.B.; Hassan, H.I.S.; Osman, A.M.; Bitrus, A.A. Antimicrobial residue in raw milk collected from dairy farms and markets in Benadir, Somalia. PAMJ One Health 2020, 2, 19. [Google Scholar] [CrossRef]
- Virto, M.; Santamarina-García, G.; Amores, G.; Hernández, I. Antimicrobials in dairy production: Where is the problem? Dairy 2022, 3, 541–564. [Google Scholar] [CrossRef]
- Regecová, I.; Výrostková, J.; Zigo, F.; Gregová, G.; Kovácová, M. Detection of antimicrobial resistance of bacteria Staphylococcus chromogenes isolated from sheep’s milk and cheese. Antibiotics 2021, 10, 570. [Google Scholar] [CrossRef] [PubMed]
- Zeferino, E.S.; Carvalho, C.C.S.; Rocha, L.A.C.; Ruas, J.R.M.; Reis, S.T. Qualidade do leite produzido no semiárido de Minas Gerais. Rev. Ciênc. Agrovet. 2017, 16, 54–60. [Google Scholar] [CrossRef]
- Schlemper, V.; Sachet, A.P. Antimicrobial residues in pasteurized and unpasteurized milk marketed in southwest of Paraná, Brazil. Ciênc. Rural. 2017, 47, 12. [Google Scholar] [CrossRef]
- Rahman, M.D.S.; Hassan, M.M.; Chowdhury, S. Determination of antimicrobial residues in milk and assessment of human health risk in Bangladesh. Heliyon 2021, 7, e07739. [Google Scholar] [CrossRef] [PubMed]
- Majiduddin, F.K.; Materon, I.C.; Palzkill, T.G. Molecular analysis of beta-lactamase structure and function. Int. J. Med. Microbiol. 2002, 2, 127–137. [Google Scholar] [CrossRef]
- Bush, B.; Bradford, P.A. β-Lactams and β-Lactamase inhibitors: An overview. Cold Spring Harb. Perspect. Med. 2016, 6, 025247. [Google Scholar] [CrossRef]
- Jammoul, A.; Darra, N.E. Evaluation of antimicrobials residues in chicken meat samples in Lebanon. Antibiotics 2019, 8, 69. [Google Scholar] [CrossRef]
- Muaz, K.; Riaz, M.; Akhtar, S.; Park, S.; Ismail, A. Antimicrobial residues in chicken meat: Global prevalence, threats, and decontamination strategies: A review. J. Food Prot. 2018, 81, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Ngom, R.R.B.V.; Garabed, R.B.; Rumbeiha, W.K.; Foyet, H.S.; Schrunk, D.E.; Shao, D.; Pagnah, A.Z. Penicillin G and oxytetracycline residues in beef sold for human consumption in Maroua, Cameroon. Int. J. Food Contam. 2017, 4, 17. [Google Scholar] [CrossRef]
- Fahim, H.M.; Shaltout, F.; Shatter, M.E. Evaluate antimicrobial residues in beef and effect of cooking and freezing on it. Benha Vet. Med. J. 2019, 36, 109–116. [Google Scholar] [CrossRef]
- Soepranianondo, K.; Wardhana, D.K.; Budiarto, D. Analysis of bacterial contamination and antimicrobial residue of beef meat from city slaughterhouses in East Java Province, Indonesia. Vet. World 2019, 12, 243–248. [Google Scholar] [CrossRef] [PubMed]
- Maitreejit, S.; Patomkamtorn, S.; Srisanga, S.; Hinhumpatch, P. The antimicrobial residues in raw pork and beef sold at the fresh markets in Muang District, Phitsanulok Province. J. Public Health Naresuan Univ. 2021, 3, 16–28. Available online: https://he01.tci-thaijo.org/index.php/JPHNU/article/view/250266 (accessed on 20 September 2023).
- Hasan, M.; Rafiq, K.; Ferdous, R.A.; Hossain, T.; Ripa, A.P.; Haque, S.M. Screening of antimicrobial residue in transported live fish and water collected from different fish markets in Mymensingh district of Bangladesh. J. Adv. Vet. Anim. Res. 2022, 9, 1. [Google Scholar] [CrossRef] [PubMed]
- Geng, J.; Liu, X.; Wang, J.; Li, S. Accumulation and risk assessment of antimicrobials in edible plants grown in contaminated farmlands: A review. Sci. Total Environ. 2022, 853, 158616. [Google Scholar] [CrossRef]
- Sun, Y.; Guo, Y.; Shi, M.; Qiu, T.; Gao, M.; Tian, S.; Wang, X. Effect of antimicrobial type and vegetable species on antimicrobial accumulation in soil-vegetable system, soil microbiota, and resistance genes. Chemosphere 2021, 263, 128099. [Google Scholar] [CrossRef]
- Xu, Q.; Zhang, M. Effects of combined pollution of tetracycline and sulfamethazine on tomato growth and antimicrobial absorption. Agronomy 2023, 13, 762. [Google Scholar] [CrossRef]
- Medeiros, L.C.D.; Pimenta, A.S.; Braga, R.M.; Carnaval, T.K.A.; Medeiros Neto, P.N.; Melo, D.M.A. Effect of pyrolysis heating rate on the chemical composition of wood vinegar from Eucalyptus urograndis and Mimosa tenuiflora. Rev. Árvore 2019, 43, e430408. [Google Scholar] [CrossRef]
- Diniz, J. Conservação Térmica de Casca de Arroz a Baixa Temperatura: Produção de Bioóleo e Resíduos Silíciocarbono adsorvente. Ph.D. Thesis, Graduate Program in Chemistry, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil, 2005. [Google Scholar]
- Fackovcova, Z.; Vannini, A.; Monaci, F.; Grattacaso, M.; Paoli, L.; Loppi, S. Effects of wood distillate (pyroligneous acid) on sensitive bioindicators (lichen and moss). Ecotoxicol. Environ. Saf. 2020, 204, 111117. [Google Scholar] [CrossRef]
- Silva, S.I.S.; Pimenta, A.S.; Iranda, N.O.; Lourença, Y.B.C.; Souza, E.C. Wood vinegar inhibits emergence and initial growth of Leucaena (Leucaena leucocephala/Lam./de Wit) seedlings. Agric. Conspec. Sci. 2020, 85, 153–158. Available online: https://hrcak.srce.hr/237843 (accessed on 20 September 2023).
- Meira, A.M.; Nolasco, A.M.; Klingenberg, D.; Souza, E.C.; Dias Júnior, A.F. Insights into the reuse of urban forestry wood waste for charcoal production. Clean. Technol. Environ. Policy 2021, 23, 2777–2787. [Google Scholar] [CrossRef]
- Campos, A.D. Técnicas para produção de extrato rodução pirolenhoso para uso agricola. Pelotas: Empresa Brasileira de Pesquisa Agropecuária, EMBRAPA Clima Temperado. Circ. Técnica 2007, 65, 243. Available online: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/30826/1/Circular-65.pdf (accessed on 20 September 2023).
- Wei, Q.; Ma, X.; Dong, J. Preparation, chemical constituents and antimicrobial activity of pyroligneous acids from walnut tree branches. J. Anal. Appl. Pyrolysis 2010, 87, 24–28. [Google Scholar] [CrossRef]
- Pimenta, A.S.; Monteiro, T.V.C.; Fasciotti, M.; Braga, R.M.; Souza, E.C.; Lima, K.M.G. Fast pyrolysis of trunk wood and stump wood from a Brazilian Eucalyptus clone. Ind. Crops Prod. 2018, 125, 630–638. [Google Scholar] [CrossRef]
- Ruibo, L.; Narita, R.; Nishimura, H.; Marumoto, S.; Yamamoto, S.P.; Ouda, R.; Yatagai, M.; Fujita, T.; Watanabe, T. Antiviral activity of phenolic derivatives in pyroligneous acid from hardwood, softwood, and bamboo. ACS Sustain. Chem. Eng. 2018, 6, 119–126. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, S.; Hou, B.; Zheng, H.; Deng, W.; Liu, D.; Tang, W. Study on the preparation of wood vinegar from biomass residues by carbonization process. Bioresour. Technol. 2015, 179, 98–103. [Google Scholar] [CrossRef]
- Zhu, J.; Gao, W.; Zhao, W.; Ge, L.; Zhu, T.; Zhang, G.; Niu, Y. Wood vinegar enhances humic acid-based remediation material to solidify Pb(II) for metal-contaminated soil. Environ. Sci. Pollut. Res. 2020, 28, 12648–12658. [Google Scholar] [CrossRef]
- Burdock, G.A. Fenaroli’s Handbook of Flavor Ingredients, 6th ed.; CRC Press: Boca Raton, FL, USA, 2010; 2162p. [Google Scholar]
- Montazeri, N.; Oliveira, A.C.M.; Himelbloom, B.H.; Leigh, M.B.; Crapo, C.A. Chemical characterization of commercial liquid smoke products. Food Sci. Nutr. 2013, 1, 102–115. [Google Scholar] [CrossRef]
- Achmadi, S.S.; Mubarik, N.R.; Nursyamsi, R.; Septiaji, P. Characterization of redistilled liquid smoke of oil-palm shells and its application as fish preservatives. J. Appl. Sci. 2013, 13, 401–408. [Google Scholar] [CrossRef]
- Suresh, G.; Pakdel, H.; Roussi, T.; Brar, S.K.; Fliss, I.; Roy, C. In vitro evaluation of antimicrobial efficacy of pyroligneous acid from softwood mixture. Biotechnol. Res. E Innov. 2019, 3, 47–53. [Google Scholar] [CrossRef]
- Rocha, F.T.; Cruz, I.V.; Leite, H.M.F.; França Neto, A.C.; Ferreira, E. Extrato pirolenhoso na germinação de sementes forrageiras. Conjecturas 2022, 22, 1657–5830. [Google Scholar] [CrossRef]
- Yatagai, M.; Nishimoto, M.; Hori, K.; Ohira, T.; Shibata, A. Termiticidal activity of wood vinegar, its components and their homologues. J. Wood Sci. 2002, 48, 338–342. [Google Scholar] [CrossRef]
- Souza, J.B.G.; Ré-Poppi, N.; Raposo Júnior, J.L. Characterization of pyroligneous acid used in agriculture by gas chromatography-mass spectrometry. J. Braz. Chem. Soc. 2012, 23, 610–617. [Google Scholar] [CrossRef]
- Aubin, H.; Roy, C. Study on the corrosiveness of wood pyrolysis oils. Fuel Sci. Technol. Int. 1990, 8, 77–86. [Google Scholar] [CrossRef]
- Rahmat, B.; Pangesti, D.; Natawijaya, D.; Sufyadi, D. Generation of wood-waste vinegar and Its effectiveness as a plant growth regulator and pest insect repellent. Bioresources 2014, 9, 6350. [Google Scholar] [CrossRef]
- Petchpoung, K.; Siklom, S.; Siri-Anusornsak, W.; Khlangsap, N.; Tarac, A.; Maneeboon, T. Predicting antioxidant activity of wood vinegar using color and spectrophotometric parameters. MethodsX 2020, 7, 100783. [Google Scholar] [CrossRef]
- Theapparat, Y.; Chandumpai, A.; Leelasuphakul, W.; Faroongsarng, D. Physicochemistry and Utilization of Wood Vinegar from Carbonization of Tropical Biomass Waste; Chapter 8; Open Access Books; IntechOpen: London, UK, 2018. [Google Scholar]
- Ariffin, S.J.; Yahayo, M.; El-Enshasy, H.; Malek, R.A.; Aziz, A.A.; Hashim, N.M.; Zakaria, Z.A. Optimization of pyroligneous acid production from Palm kernel shell and its potential antimicrobial and antibiofilm activities. Indian J. Exp. Biol. 2017, 55, 427–435. [Google Scholar]
- Feijó, F.M.C.; Fernandes, F.C.; Alves, N.D.; Pimenta, A.S.; Santos, C.S.; Rodrigues, G.S.O.; Pereira, A.F.; Benicio, L.D.M.; Moura, I.B.F. Efficiency of pyroligneous extract from jurema preta (Mimosa tenuiflora [Willd.] Poiret) as an antiseptic in cats (Felis catus) subjected to ovariosalpingohysterectomy. Animals 2022, 12, 2325. [Google Scholar] [CrossRef]
- Furtado, C.M.; Stols, A.S.; Pinto, F.L.; Moura, A.B.D.; Morisso, F.D.P.; Pitarelo, A.P.; Ramos, L.P.; Mühlen, C.V.; Riegel-Vidotti, I.C. Pyroligneous liquor produced from Acacia mearnsii de wild wood under controlled conditions as a renewable source of chemicals. Química Nova 2015, 38, 1068–1074. [Google Scholar] [CrossRef]
- Harada, K.; Iguchi, A.; Yamada, M.; Hasegawa, K.; Nakata, T.; Hikasa, Y. Determination of maximum inhibitory dilutions of bamboo pyroligneous acid against pathogenic bacteria from companion animals: An in vitro study. J. Vet. Adv. 2013, 3, 300–305. [Google Scholar]
- Hou, X.; Qiu, L.; Luo, S.; Kang, K.; Zhu, M.; Yao, Y. Chemical constituents and antimicrobial activity of wood vinegars at different pyrolysis temperature ranges obtained from Eucommia ulmoides Olivers branches. RSC Adv. 2018, 8, 40941–40949. [Google Scholar] [CrossRef] [PubMed]
- Suresh, G.; Pakdel, H.; Roussi, T.; Brar, S.K.; Diarra, M.; Roy, C. Evaluation of pyroligneous acid as a therapeutic agent against Salmonella in a simulated gastrointestinal tract of poultry. Braz. J. Microbiol. 2020, 51, 1309–1316. [Google Scholar] [CrossRef] [PubMed]
- Soares, W.N.C.; Lira, G.P.O.; Santos, C.S.; Dias, G.N.; Pimenta, A.S.; Pereira, A.F.; Benicio, L.D.M.; Rodrigues, G.S.O.; Amora, S.S.A.; Alves, N.D.; et al. Pyroligneous acid from Mimosa tenuiflora and Eucalyptus urograndis as an antimicrobial in dairy goats. J. Appl. Microbiol. 2020, 131, 604–614. [Google Scholar] [CrossRef] [PubMed]
- Ho, C.L.; Lin, C.Y.; Ka, S.M.; Chen, A.; Tasi, Y.L.; Liu, M.L.; Chiu, Y.C.; Hua, K.F. Bamboo vinegar decreases inflammatory mediator expression and NLRP3 inflammasome activation by inhibiting reactive oxygen species generation and protein kinase C-a/d activation. PLoS ONE 2013, 8, e75738. Available online: www.plosone.org (accessed on 18 October 2023).
- Yildizli, G.; Coral, G.; Ayaz, F. Anti-bacterial, antifungal, and anti-inflammatory activities of wood vinegar: O potential remedy for major plant diseases and inflammatory reactions. Biomass Convers. Biorefin. 2022, 1–10. [Google Scholar] [CrossRef]
- Ruibo, L.; Narita, R.; Ouda, R.; Kimura, C.; Nishimura, H.; Yatagai, M.; Fujita, T.; Watanabe, T. Structure-dependent antiviral activity of catechol derivatives in pyroligneous acid against the encephalomycarditis virus. RSC Adv. 2018, 8, 35888–35896. [Google Scholar] [CrossRef]
- Desvita, H.; Faisal, M.; Mahidin, S. Antimicrobial potential of wood vinegar from cocoa pod shells (Theobroma cacao L.) against Candida albicans and Aspergillus niger. Mater. Today Proc. 2022, 63, 2214–7853. [Google Scholar] [CrossRef]
- Teo, C.L. Evaluating the effect of pyroligneous extract as natural antimicrobial agent under different contact times. J. Teknol. 2022, 84, 83–92. [Google Scholar] [CrossRef]
- Ibrahim, D.; Kassim, J.; Sheh-Hong, L.; Rusli, W. Efficacy of pyroligneous acid from Rhizophora apiculata on pathogenic Candida albicans. J. Appl. Pharm. Sci. 2013, 3, 7–13. [Google Scholar] [CrossRef]
- Wang, Y.; Dai, A.; Huang, S.; Kuo, S.; Shu, M.; Tapia, C.; Yu, J.; Two, A.; Zhang, H.; Gallo, R.; et al. Propionic acid and its esterified derivative suppress the growth of methicillinresistant Staphylococcus aureus USA30. Benef. Microbes 2014, 5, 161–168. [Google Scholar] [CrossRef]
- Russell, J.B. Another explanation for the toxicity of fermentation acids at low pH: Anion accumulation versus uncoupling. J. Appl. Bacteriol. 1992, 73, 363–370. [Google Scholar] [CrossRef]
- Alshuniaber, M.A.; Krishnamoorthy, R.; Alqhtani, W.H. Antimicrobial activity of polyphenolic compounds from Spirulina against food-borne bacterial pathogens. Saudi J. Biol. Sci. 2021, 28, 459–464. [Google Scholar] [CrossRef] [PubMed]
- Albano, M.; Alves, F.; Andrade, B.; Barbosa, L.; Pereira, A.; Cunha, M.; Rall, V.; Fernandes Júnior, A. Antibacterial and anti-staphylococcal enterotoxin activities of phenolic compounds. Innov. Food Sci. Emerg. Technol. 2016, 38, 83–90. [Google Scholar] [CrossRef]
- Kook, K.; Kim, K.H. The effects of supplemental levels of bamboo vinegar on growth performance, serum profile and meat quality in fattening Hanwoo cow. J. Anim. Sci. Technol. 2003, 45, 57–68. [Google Scholar]
- O’Reilly, G.C.; Huo, Y.; Meale, S.J.; Chaves, A.V. Dose response of biochar and wood vinegar on in vitro batch culture ruminal fermentation using contrasting feed substrates. Transl. Anim. Sci. 2021, 5, txab107. [Google Scholar] [CrossRef]
- Mekbungwan, A.; Yamauchi, K.; Sakaida, T.; Buwjoom, T. Effects of a charcoal powder–wood vinegar compound solution in piglets for raw pigeon pea seed meal. Animal 2008, 2–3, 366–374. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.Y.; Shinde, P.L.; Kwon, I.K.; Song, Y.H.; Chae, B.J. Effect of wood vinegar on the performance, nutrient digestibility and intestinal microflora in weanling pigs. Asian Aust. J. Anim. Sci. 2009, 22, 267–274. Available online: www.ajas.info (accessed on 18 October 2023). [CrossRef]
- Wang, H.F.; Gao, K.; Wang, C.; Zhang, W.M.; Liu, J.X. Effects of feeding bamboo vinegar and acidifier as an antimicrobial substitute on the growth performance and intestinal bacterial communities of weaned piglets. Acta Agric. Scand. Sect. A 2013, 63, 143–150. [Google Scholar] [CrossRef]
- Chu, G.M.; Jung, C.K.; Kim, H.Y.; Ha, J.H.; Kim, J.H.; Jung, M.S.; Lee, S.J.; Song, Y.; Ibrahim, R.I.H.; Cho, J.H.; et al. Effects of bamboo charcoal and bamboo vinegar as antimicrobial alternatives on growth performance, immune responses and fecal microflora population in fattening pigs. Anim. Sci. J. 2013, 84, 113–120. [Google Scholar] [CrossRef]
- Watarai, S.; Tana; Koiwa, M. Feeding activated charcoal from bark containing wood vinegar liquid (Nekka-rich) is effective as treatment for cryptosporidiosis in calves. J. Dairy Sci. 2008, 91, 1458–1463. [Google Scholar] [CrossRef] [PubMed]
- Parauda, C.; Pors, I.; Journal, J.P.; Besnier, P.; Reisdorffer, L.; Chartier, C. Control of cryptosporidiosis in neonatal goat kids: Efficacy of a product containing activated charcoal and wood vinegar liquid (Obionekk) in field conditions. Vet. Parasitol. 2011, 180, 354–357. [Google Scholar] [CrossRef] [PubMed]
- Chao, N.V.; Thong, H.T.; QuynhChau, H.L.; Tam, V.T.; Rui, Z. Effects of charcoal and wood vinegar dietary supplementation to diarrhea Incidence and fecal hydrogen sulfide emissions in pigs. Int. J. Sci. Res. Publ. 2016, 6, 707–713. [Google Scholar]
- Huo, Y.; Liu, Z.; Xuan, H.; Lu, C.; Yu, L.; Bao, W.; Zhao, G. Effects of bamboo vinegar powder on growth performance and mRNA expression levels of interleukin-10, interleukin-22, and interleukin-25 in immune organs of weaned piglets. Anim. Nutr. 2016, 2, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Rodjan, P.; Theapparat, Y.; Khongthong, S.; Jeenkeawpieam, J. Effects of mangosteen wood vinegar as a potential additive on nutrient digestibility in growing pigs. Songklanakarin J. Sci. Technol. 2018, 40, 1002–1008. [Google Scholar]
- Macasait, D.R.; Roylo, B.B.; Espina, D.M. Growth performance of grower pigs (Sus scrofa domesticus L.), nutritional and microbial contents of wet and fermented commercial hog ration with different levels of wood vinegar. Asian J. Dairy Food Res. 2021, 40, 220–224. [Google Scholar] [CrossRef]
- Sureshkumar, S.; Sampath, V.; Kim, I.H. The influence of dietary inclusion of wood vinegar supplementation on growth performance, nutrient digestibility, and meat quality in grower-finisher pigs. Acta Biochim. Pol. 2021, 68, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Yamauchi, K.; Ruttanavut, J.; Takenoyama, S. Effects of dietary bamboo charcoal powder including vinegar liquid on chicken performance and histological alterations of intestine. J. Anim. Feed Sci. 2010, 19, 257–268. [Google Scholar] [CrossRef]
- Rattanavut, J.; Matsumoto, Y.; Yamauchi, K. fluorescence-based demonstration of intestinal villi and epithelial cell in chickens fed dietary silicic acid powder including bamboo vinegar compound liquid. Histol. Histopathol. 2012, 27, 1333–1342. [Google Scholar] [CrossRef]
- Rattanawut, J.; Yamauchi, K. Growth performance, carcass traits and histological changes in the intestinal villi of male broiler chickens fed dietary silicic acid powder containing bamboo vinegar liquid. J. Anim. Feed Sci. 2015, 24, 48–52. [Google Scholar] [CrossRef]
- Rattanawut, J.; Todsadee, A.; Yamauchi, K. Effects of bamboo charcoal powder including vinegar supplementation on performance, eggshell quality, alterations of intestinal villi and intestinal pathogenic bacteria populations of aged laying hens. Ital. J. Anim. Sci. 2017, 16, 259–265. [Google Scholar] [CrossRef]
- Nunes, T.S. Pyroligneous Extract in Japanese Quail Feed. Master’s Thesis, Graduate Program in Veterinary Sciences, Center for Agricultural Sciences and Engineering, Universidade Federal do Espírito Santo—UFES, Alegre, ES, Brazil, 2019. [Google Scholar]
- Diógenes, G.V.; Teixeira, E.N.M.; Pimenta, A.S.; Souza, J.G.; Moreira, J.A.; Marinho, A.L.; Veras, A.; Chemane, I.A. Wood Vinegar from Eucalyptus as an Additive in Broiler Quail Feed. Int. J. Plant Anim. Environ. Sci. 2019, 9, 3. [Google Scholar] [CrossRef]
- Zhao, N.; Xin, H.; Li, Z.; Wang, Z.; Zhang, L. Supplemental feeding of laying hens with wood vinegar to decrease the ratio of n-6 to n-3 fatty acids in eggs. Chem. Res. Chin. Univ. 2019, 35, 983–989. [Google Scholar] [CrossRef]
- Hanchai, K.; Trairatapiwan, T.; Lertpatarakomol, R. Drinking water supplemented with wood vinegar on growth performance, intestinal morphology, and gut microbial of broiler chickens. Vet. World 2021, 14, 92–96. Available online: www.veterinaryworld.org/Vol.14/January-2021/12.pdf (accessed on 20 October 2023). [CrossRef] [PubMed]
- Khai, L.T.L.; Nghia, N.T.; Hayashidani, H. Study on effectiveness of activated charcoal and wood vinegar on prevention of piglet diarrhea. Can. Tho Univ. J. Sci. 2019, 11, 9–15. [Google Scholar] [CrossRef]
- Takahara, Y.; Katoh, K.; Inaba, R.; Iwata, H. Study on odor control using wood vinegars. Application of wood vinegars to piggery wastes. Nihoh Koshu Eisei Zasshi 1994, 41, 147–156. [Google Scholar]
- Watarai, S.T. Eliminating the carriage of Salmonella enterica serovar Enteritides in domestic fowls by feeding activated charcoal from bark containing wood vinegar liquid (Nekka-Rich). Poult. Sci. 2005, 84, 515–521. [Google Scholar] [CrossRef] [PubMed]
- Sittiya, J.; Yamauchi, K.; Yamauchi, K. Bark charcoal powder containing wood vinegar liquid can shorten the time to shipping of broilers raised in tropical areas by activating performance and intestinal function. Can. J. Anim. Sci. 2021, 101, 735–744. [Google Scholar] [CrossRef]
- Mezerette, C.; Girard, P. Environmental aspects of gaseous emissions from wood carbonization and pyrolysis processes. In Biomass Pyrolysis Liquids: Upgrading and Utilisation; Bridgwater, A.V., Grassi, G., Eds.; Elsevier Applied Science: London, UK, 1991; pp. 263–287. [Google Scholar]
- Pakdel, H.; Roy, C. Hydrocarbon content of liquid products and tar from pyrolysis and gasification of wood. Energy Fuels 1991, 5, 427–436. [Google Scholar] [CrossRef]
- Pimenta, A.S.; Bayona, J.M.; García, M.T.; Solanas, A.M. Evaluation of acute toxicity and genotoxicity of liquid products from pyrolysis of Eucalyptus grandis wood. Arch. Environ. Contam. Toxicol. 2000, 38, 169–175. [Google Scholar] [CrossRef]
- Zhang, Z.; Ning, S.; Li, Q.; Sun, M.; Lin, J.; Wang, X. Levels and risk assessment of polycyclic aromatic hydrocarbons in wood vinegars from pyrolysis of biomass. Chemosphere 2021, 278, 130453. [Google Scholar] [CrossRef] [PubMed]
- Pimenta, A.S.; Vital, B.R.; Bayona, J.M.; Alzaga, R. Characterisation of polycyclic aromatic hydrocarbons in liquid products from pyrolysis of Eucalyptus grandis wood by supercritical fluid extraction and GC/MS determination. Fuel 1998, 77, 1133–1139. [Google Scholar] [CrossRef]
- Barbosa, J.M.S.; Ré-Poppi, N.; Santiago-Silva, M. Polycyclic aromatic hydrocarbons from wood pyrolysis in charcoal production furnaces. Environ. Res. 2006, 101, 304–311. [Google Scholar] [CrossRef] [PubMed]
- Xue, R.; Zhang, W.; Wang, Z.-P.; Zhu, M.-Q. Refining of Eucommia ulmoides Oliver derived wood vinegar for excellent preservation of the typical berries. LWT Food Sci. Technol. 2023, 174, 114415. [Google Scholar] [CrossRef]
- Higashino, T.; Shibata, A. Basic study for establishing specifications for wood vinegar by distillation. Mokuzai Gakkaishi 2005, 51, 180–188. [Google Scholar] [CrossRef]
- Silveira, C.M. Influência do Extrato Pirolenhoso no Desenvolvimento e Crescimento de Plantas de Milho. Ph.D. Thesis, Faculdade de Ciências Agrárias e Veterinárias, Graduate Program in Agronomy, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, SP, Brazil, 2010; 93p. [Google Scholar]
- Li, Z.; Zhang, L.; Chen, G.; Wu, L.; Liu, B.; Li, Y.; Sun, S.; Zhang, H.; Zhang, Z.; Wang, Z. A new method for comprehensive utilization of wood vinegar by distillation and liquid−liquid extraction. Process Biochem. 2018, 75, 194–201. [Google Scholar] [CrossRef]
- Lourenço, Y.B.C.; Pimenta, A.S.; de Paiva, L.L.; Feijó, F.M.C.; Fasciotti, M.; Castro, R.V.O.; de Souza, E.C. Eucalyptus wood vinegar: Chemical profiling, evaluation of acute toxicity to Artemia salina, and effect on the hatching of Betta splendens eggs. Ens. E Ciência 2022, 25, 776–782. [Google Scholar] [CrossRef]
- Ho, C.L.; Lin, C.S.; Li, L.H.; Hua, K.F.; Ju, T.C. Inhibition of pro-inflammatory mediator expression in macrophages using wood vinegar from Griffith’s ash. Chin. J. Physiol. 2021, 64, 232–243. [Google Scholar]
- Imamura, E.; Watanabe, Y.; Yamanashiyagen Corporation. Anti-Allergy Composition Comprising Wood Vinegar or Bamboo Vinegar Distilled Solution. U.S. Patent US20050136133A1, 8 May 2007. Available online: https://patents.google.com/patent/US20050136133A1/en (accessed on 22 September 2023).
- Wendin, K.; Ellekjaraer, M.R.; Solheim, R. Fat content and homogenization effects on flavor and texture of mayonnaise with added aroma. LWT-Food Sci. Technol. 1999, 32, 377–383. [Google Scholar] [CrossRef]
- Kurlansky, M. Salt: A World History, 1st ed.; Ed. Pinguin Books: Los Angeles, CA, USA, 2003. [Google Scholar]
- Ali, F.; Fiqri, R.A. The simple design of pyrolysis tool for making liquid smoke from shells and rubber seeds as a food preservative. J. Phys. Conf. Ser. 2020, 1500, 012064. [Google Scholar] [CrossRef]
- Akley, E.K.; Ampim, P.A.Y.; Obeng, E.; Sanyare, S.; Yevu, M.; Danquah, E.O.; Amoako, O.A.; Tengey, T.K.; Avedzi, J.K.; Avornyo, V.K. Wood vinegar promotes soil health and the productivity of cowpea. Agronomy 2023, 13, 2497. [Google Scholar] [CrossRef]
- Koç, İ.; Öğün, E.; Namli, A.; Mendeş, M.; Kutlu, E.; Yardim, E. the effects of wood vinegar on some soil microorganisms. Appl. Ecol. Environ. Res. 2022, 7, 2437–2447. [Google Scholar] [CrossRef]
- Zulkarami, B.; Ashrafuzzaman, M.; Husni, M.O.; Ismail, M.R. Effect of pyroligneous acid on growth, yield and quality improvement of rock melon in soilless culture. Aust. J. Crop Sci. 2011, 5, 1508–1514. [Google Scholar]
- Hagner, M.; Penttinen, O.P.; Tiilikkala, K.; Setälä, H. The effects of biochar, wood vinegar and plants on glyphosate leaching and degradation. Eur. J. Soil Biol. 2013, 58, 1–7. [Google Scholar] [CrossRef]
- Rui, Z.; Wei, D.; Zhibin, Y.; Chao, Z.; Xiaojuan, A. Effects of wood vinegar on the soil microbial characteristics. J. Chem. Pharm. Res. 2014, 6, 1254–1260. [Google Scholar]
- Charehgani, H. Effect of wood vinegar, humic acid and effective microorganisms against Meloidogyne javanica on tomato. Plant Pathol. Sci. 2020, 9, 2. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, R.; Zhang, Q.; Zhao, J.; Li, F.; Luo, X.; Xing, B. Pyroligneous acid mitigated dissemination of antimicrobial resistance genes in soil. Environ. Int. 2020, 145, 106158. [Google Scholar] [CrossRef] [PubMed]
- Pereira, I.S.; Porto, F.G.S.; Antunes, L.E.C.; Campos, A.D. Phytoprotective film for resistance induction, growth, and yield of organic strawberries. Adv. Hortic. Sci. 2022, 36, 43–52. [Google Scholar] [CrossRef]
- Souza, J.L.S.; Alves, T.; Camerini, L.; Nedel, F.; Campos, A.D.; Lund, R.G. Antimicrobial and cytotoxic capacity of pyroligneous extracts flms of Eucalyptus grandis and chitosan for oral applications. Sci. Rep. 2021, 11, 21531. [Google Scholar] [CrossRef]
- Arundina, I.; Diyatri, I.; Surboyo, M.D.C. The component analysis of liquid smoke from rice hulls and its toxicity test on baby hamster kidney cells. J. Pharm. Pharmacogn. Res. 2021, 9, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Behrensdore, M.; Pagel, I.; Tavares, K.; Sosinski, L. Avaliação ecotoxicológica do extrato pirolenhoso sobre Danio rerio. In Proceedings of the Congresso De Iniciação Científica, 20; Mostra de Pós Graduação, 10; Congresso de Extensão, Pelotas, Brasil, 25–29 October 2011; UCPel: Pelotas, Brasil, 2011. [Google Scholar]
- Rahman, R.T.; Ismail Fliss, I.; Biron, E. Insights in the Development and Uses of Alternatives to Antimicrobial Growth Promoters in Poultry and Swine Production. Antibiotics 2022, 11, 766. [Google Scholar] [CrossRef]
- IBÁ—Brazilian Tree Industry. Annual Report. 2022. Available online: https://iba.org/eng/ (accessed on 1 October 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gama, G.S.P.; Pimenta, A.S.; Feijó, F.M.C.; Azevedo, T.K.B.d.; Melo, R.R.d.; Andrade, G.S.d. The Potential of Wood Vinegar to Replace Antimicrobials Used in Animal Husbandry—A Review. Animals 2024, 14, 381. https://doi.org/10.3390/ani14030381
Gama GSP, Pimenta AS, Feijó FMC, Azevedo TKBd, Melo RRd, Andrade GSd. The Potential of Wood Vinegar to Replace Antimicrobials Used in Animal Husbandry—A Review. Animals. 2024; 14(3):381. https://doi.org/10.3390/ani14030381
Chicago/Turabian StyleGama, Gil Sander Próspero, Alexandre Santos Pimenta, Francisco Marlon Carneiro Feijó, Tatiane Kelly Barbosa de Azevedo, Rafael Rodolfo de Melo, and Gabriel Siqueira de Andrade. 2024. "The Potential of Wood Vinegar to Replace Antimicrobials Used in Animal Husbandry—A Review" Animals 14, no. 3: 381. https://doi.org/10.3390/ani14030381
APA StyleGama, G. S. P., Pimenta, A. S., Feijó, F. M. C., Azevedo, T. K. B. d., Melo, R. R. d., & Andrade, G. S. d. (2024). The Potential of Wood Vinegar to Replace Antimicrobials Used in Animal Husbandry—A Review. Animals, 14(3), 381. https://doi.org/10.3390/ani14030381