Comparison of Nucleosome, Ferritin and LDH Levels in Blood with Clinical Response before and after Electrochemotherapy Combined with IL-12 Gene Electrotransfer for the Treatment of Mast Cell Tumours in Dogs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
Patient Number | Breed | Sex | Age [Years] | Site of the Tumours | Histopathological Grade * | Clinical Stage ** | Longest Diameter of the Tumour [cm] (Tumor Volume) |
---|---|---|---|---|---|---|---|
1 | Boxer | F | 6.3 | Left hind leg | ND | I | 2.2 (3.63 cm3) |
2 | Miniature Schnauzer | F | 11.3 | Left front leg | ND | I | 2.1 (2.78 cm3) |
3 | Crossbreed | F | 7.7 | Left front leg | ND | I | 2.3 (4.12 cm3) |
4 | Boxer | F | 9.8 | Right inguinal region | II (low) | I | 4.0 (17.42 cm3) |
5 | Boston Terrier | M | 10.4 | Right hind leg | ND | II | 1.5 (0.78 cm3) |
Right scapula | 0.7 (0.11 cm3) | ||||||
Left hind leg | 1.9 (3.40 cm3) | ||||||
Left inguinal region | 0.5 (0.07 cm3) | ||||||
6 | French Bulldog | F | 10.0 | Right hind leg | II (low) | I | 1.6 (1.09 cm3) |
7 | Golden Retriever | F | 3.4 | Left scapula | ND | I | 1.2 (0.76 cm3) |
8 | Crossbreed | F | 11.1 | Right dorsum | ND | I | 1.7 (1.49 cm3) |
9 | Crossbreed | F | 9.9 | Left hind leg | ND | I | 2.0 (2.93 cm3) |
10 | Dogo Argentino | F | 6.8 | Right front leg | ND | I | 3.8 (13.72 cm3) |
11 | Dachshund | M | 11.0 | Left ear | ND | II | 0.5 (0.07 cm3) |
Dorsal part of the neck | 0.5 (0.07 cm3) | ||||||
Right abdominal region | 0.5 (0.07 cm3) | ||||||
Perianal region | 0.8 (0.17 cm3) | ||||||
12 | Crossbreed | M | 10.2 | Prepuce | I (low) | I | 0.5 (0.07 cm3) |
13 | Jack Russell Terrier | M | 7.8 | Left front leg | II (low) | I | 5.0 (0.05 cm3) |
Right lip commissure | 0.8 (0.27 cm3) | ||||||
14 | Crossbreed | F | 6.6 | Dorsum | ND | II | 0.4 (0.33 cm3) |
Left abdominal region | 0.4 (0.33 cm3) | ||||||
Left hind leg | 0.5 (0.07 cm3) | ||||||
Left hind leg | 0.5 (0.07 cm3) | ||||||
Tail base | 1.1 (0.70 cm3) | ||||||
Vulva | 0.4 (0.33 cm3) | ||||||
15 | Boston Terrier | F | 7.2 | Left elbow | ND | I | 1.2 (0.53 cm3) |
16 | Manchester Terrier | F | 8.2 | Right inguinal region | ND | I | 2.8 (3.62 cm3) |
17 | Golden Retriever | F | 7.7 | Chin | II (low) | II | 1.5 (0.78 cm3) |
Right thoracic region | 1.0 (0.52 cm3) | ||||||
Right hind leg | 0.5 (0.04 cm3) | ||||||
Right hind leg | 0.6 (0.09 cm3) | ||||||
18 | English Greyhound | M | 4.7 | Perianal region | II (low) | I | 1.4 (0.88 cm3) |
19 | Greater Swiss Mountain Dog | F | 3.3 | Left hind leg | II (low) | I | 2.3 (3.71 cm3) |
20 | Boston Terrier | M | 8.9 | Left abdominal region | ND | II | 2.4 (1.32 cm3) |
Left front leg | 0.5 (0.07 cm3) | ||||||
Right hind leg | 2.2 (0.69 cm3) | ||||||
21 | Shih Tzu | M | 6.5 | Right hind leg | II (low) | I | 2.0 (1.63 cm3) |
22 | French Bulldog | M | 6.0 | Right orbital region | II (low) | II | 0.8 (0.20 cm3) |
Perianal region | 0.7 (0.07 cm3) | ||||||
Perianal region | 1.3 (0.12 cm3) | ||||||
Right hind leg | 0.3 (0.01 cm3) | ||||||
23 | Boston Terrier | M | 6.1 | Right front leg | ND | II | 1.0 (0.42 cm3) |
Left front leg | 0.5 (0.07 cm3) | ||||||
Sternal region | 0.5 (0.07 cm3) | ||||||
Right orbital region | 0.5 (0.07 cm3) | ||||||
24 | Newfoundland | M | 8.6 | Right hind leg | ND | I | 1.3 (0.60 cm3) |
25 | Boston Terrier | M | 8.4 | Prepuce | II (low) | II | 1.1 (0.06 cm3) |
Right hind leg | 1.1 (0.02 cm3) | ||||||
Perianal region | 1.2 (0.28 cm3) | ||||||
Right abdominal region | 1.1 (0.23 cm3) | ||||||
26 | French Bulldog | M | 6.2 | Prepuce | II (low) | I | 1.5 (1.12 cm3) |
27 | Hungarian Vizsla | F | 9.9 | Right ear | II (low) | I | 1.2 (0.28 cm3) |
28 | Boxer | M | 5.8 | Left ear | II (low) | I | 1.1 (0.29 cm3) |
29 | Pit bull | M | 8.3 | Left abdominal region | II (low) | I | 1.5 (0.55 cm3) |
30 | Crossbreed | F | 12.2 | Left thoracic region | ND | II | 0.5 (0.07 cm3) |
Left thoracic region | 0.5 (0.07 cm3) | ||||||
Left hind leg | 0.5 (0.07 cm3) | ||||||
Right ear | 0.2 (0.004 cm3) | ||||||
Right thoracic region | 0.5 (0.07 cm3) | ||||||
Left inguinal region | 0.5 (0.07 cm3) | ||||||
31 | Havanese | F | 9.3 | Left hind leg | II (low) | I | 1.0 (0.25 cm3) |
32 | Maltese | F | 10.8 | Tail | ND | I | 0.9 (0.20 cm3) |
33 | Boston Terrier | F | 8.4 | Right front leg | ND | I | 1.8 (1.60 cm3) |
34 | French Bulldog | M | 8.7 | Left hind leg | II (low) | II | 1.7 (1.99 cm3) |
Left hind leg | 0.7 (0.18 cm3) | ||||||
Scrotum | 0.9 (0.38 cm3) | ||||||
Prepuce | 0.9 (0.38 cm3) | ||||||
Left front leg | 0.7 (0.18 cm3) | ||||||
35 | French Bulldog | M | 5.5 | Prepuce | II (low) | I | 1.0 (0.37 cm3) |
Right hind leg | 0.8 (0.27 cm3) | ||||||
36 | Boxer | M | 8.3 | Right front leg | II (low) | I | 4.0 (8.29 cm3) |
37 | Boxer | M | 7.6 | Right abdominal region | II (low) | I | 1.5 (1.53 cm3) |
Perianal region | 2.0 (3.77 cm3) | ||||||
38 | Boxer | F | 8.8 | Right lip corner | Subcutaneous | I | 1.5 (1.12 cm3) |
39 | Yorkshire Terrier | F | 13.6 | Left front leg | ND | I | 1.1 (0.06 cm3) |
Left front leg | 1.1 (0.02 cm3) | ||||||
40 | Crossbreed | F | 10.7 | Frontal region | ND | III | 2.5 (3.14 cm3) |
41 | Boxer | M | 5.2 | Left ear | II (low) | I | 1.0 (0.33 cm3) |
42 | Boxer | F | 6.4 | Left hind leg | Subcutaneous | I | 2.2 (3.29 cm3) |
43 | French Bulldog | F | 2.5 | Perianal region | II (low) | I | 1.0 (0.42 cm3) |
44 | Boxer | M | 4.1 | Right hind leg | II (low) | I | 1.0 (0.42 cm3) |
45 | Crossbreed | F | 11.5 | Left axillary region | II (high) | III | 3.7 (14.33 cm3) |
46 | Crossbreed | F | 7.0 | Right hind leg | Subcutaneous | III | 2.0 (2.35 cm3) |
47 | Maltese | F | 7.4 | Right lip commissure | MCT mucosae labie | I | 1.5 (0.47 cm3) |
48 | Boston Terrier | F | 7.4 | Right hind leg | II (high) | I | 1.8 (1.27 cm3) |
2.1. Blood Sampling and Processing
2.2. Treatment Protocol
2.3. Evaluation of Treatment Outcome
2.4. Sample Analysis
2.4.1. Nucleosomes and Ferritin
2.4.2. Lactate Dehydrogenase
2.5. Statistical Analysis
3. Results
3.1. The Percentage of Complete Responses (CR) after the Combination of ECT and IL-12 GET Increased after 6 Months
3.2. The Nucleosome Concentration Significantly Increased One Month after Treatment. Enhanced Tumour Necrosis Was Positively Associated with Elevations in Nucleosome Concentration One Month after Treatment
3.3. Ferritin Concentrations Did Not Correlate with Time before or after Treatment, nor with Treatment Efficacy
3.4. LDH Activity Increased Significantly Four Weeks after Treatment in All Patients and in Those with Treatment-Related Enhanced Tumour Necrosis
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cemazar, M.; Ambrozic Avgustin, J.; Pavlin, D.; Sersa, G.; Poli, A.; Krhac Levacic, A.; Tesic, N.; Lampreht Tratar, U.; Rak, M.; Tozon, N. Efficacy and safety of electrochemotherapy combined with peritumoral IL-12 gene electrotransfer of canine mast cell tumours. Veter. Comp. Oncol. 2017, 15, 641–654. [Google Scholar] [CrossRef] [PubMed]
- Cutrera, J.; King, G.; Jones, P.; Kicenuik, K.; Gumpel, E.; Xia, X.; Li, S. Safe and effective treatment of spontaneous neoplasms with interleukin 12 electro-chemo-gene therapy. J. Cell. Mol. Med. 2015, 19, 664–675. [Google Scholar] [CrossRef] [PubMed]
- Milevoj, N.; Tratar, U.L.; Nemec, A.; Brožič, A.; Žnidar, K.; Serša, G.; Čemažar, M.; Tozon, N. A combination of electrochemotherapy, gene electrotransfer of plasmid encoding canine IL-12 and cytoreductive surgery in the treatment of canine oral malignant melanoma. Res. Veter. Sci. 2019, 122, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Salvadori, C.; Svara, T.; Rocchigiani, G.; Millanta, F.; Pavlin, D.; Cemazar, M.; Lampreht Tratar, U.; Sersa, G.; Tozon, N.; Poli, A. Effects of Electrochemotherapy with Cisplatin and Peritumoral IL-12 Gene Electrotransfer on Canine Mast Cell Tumors: A Histopathologic and Immunohistochemical Study. Radiol. Oncol. 2017, 51, 286–294. [Google Scholar] [CrossRef] [PubMed]
- Reed, S.D.; Fulmer, A.; Buckholz, J.; Zhang, B.; Cutrera, J.; Shiomitsu, K.; Li, S. Bleomycin/interleukin-12 electrochemogenetherapy for treating naturally occurring spontaneous neoplasms in dogs. Cancer Gene Ther. 2010, 17, 571–578. [Google Scholar] [CrossRef]
- Lampreht Tratar, U.; Milevoj, N.; Cemazar, M.; Znidar, K.; Ursic Valentinuzzi, K.; Brozic, A.; Tomsic, K.; Sersa, G.; Tozon, N. Treatment of spontaneous canine mast cell tumors by electrochemotherapy combined with IL-12 gene electrotransfer: Comparison of intratumoral and peritumoral application of IL-12. Int. Immunopharmacol. 2023, 120, 110274. [Google Scholar] [CrossRef] [PubMed]
- Tozon, N.; Kodre, V.; Sersa, G.; Cemazar, M. Effective treatment of perianal tumors in dogs with electrochemotherapy. Anticancer. Res. 2005, 25, 839–845. [Google Scholar]
- Muir, T.; Bertino, G.; Groselj, A.; Ratnam, L.; Kis, E.; Odili, J.; McCafferty, I.; Wohlgemuth, W.A.; Cemazar, M.; Krt, A.; et al. Bleomycin electrosclerotherapy (BEST) for the treatment of vascular malformations. An International Network for Sharing Practices on Electrochemotherapy (InspECT) study group report. Radiol. Oncol. 2023, 57, 141–149. [Google Scholar] [CrossRef]
- Gothelf, A.; Mir, L.M.; Gehl, J. Electrochemotherapy: Results of cancer treatment using enhanced delivery of bleomycin by electroporation. Cancer Treat. Rev. 2003, 29, 371–387. [Google Scholar] [CrossRef]
- Gehl, J.; Geertsen, P.F. Efficient palliation of haemorrhaging malignant melanoma skin metastases by electrochemotherapy. Melanoma Res. 2000, 10, 585–589. [Google Scholar] [CrossRef]
- Djokic, M.; Dezman, R.; Cemazar, M.; Stabuc, M.; Petric, M.; Smid, L.M.; Jansa, R.; Plesnik, B.; Bosnjak, M.; Tratar, U.L.; et al. Percutaneous image guided electrochemotherapy of hepatocellular carcinoma: Technological advancement. Radiol. Oncol. 2020, 54, 347–352. [Google Scholar] [CrossRef]
- Withrow, S.J.; Vail, D.M.; Page, R.L. (Eds.) Withrow and MacEwen’s Small Animal Clinical Oncology; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Calvet, C.Y.; Famin, D.; André, F.M.; Mir, L.M. Electrochemotherapy with bleomycin induces hallmarks of immunogenic cell death in murine colon cancer cells. OncoImmunology 2014, 3, e28131. [Google Scholar] [CrossRef]
- Tremble, L.F.; O’Brien, M.A.; Soden, D.M.; Forde, P.F. Electrochemotherapy with cisplatin increases survival and induces immunogenic responses in murine models of lung cancer and colorectal cancer. Cancer Lett. 2019, 442, 475–482. [Google Scholar] [CrossRef]
- Ursic, K.; Kos, S.; Kamensek, U.; Cemazar, M.; Miceska, S.; Markelc, B.; Bucek, S.; Staresinic, B.; Kloboves Prevodnik, V.; Heller, R.; et al. Potentiation of electrochemotherapy effectiveness by immunostimulation with IL-12 gene electrotransfer in mice is dependent on tumor immune status. J. Control. Release 2021, 332, 623–635. [Google Scholar] [CrossRef]
- Snoj, M.; Cemazar, M.; Slekovec Kolar, B.; Sersa, G. Effective treatment of multiple unresectable skin melanoma metastases by electrochemotherapy. Croat. Med. J. 2007, 48, 391–395. [Google Scholar] [PubMed]
- Lampreht Tratar, U.; Loiacono, L.; Cemazar, M.; Kamensek, U.; Fazio, V.M.; Sersa, G.; Signori, E. Gene Electrotransfer of Plasmid-Encoding IL-12 Recruits the M1 Macrophages and Antigen-Presenting Cells Inducing the Eradication of Aggressive B16F10 Murine Melanoma. Mediat. Inflamm. 2017, 2017, 5285890. [Google Scholar] [CrossRef] [PubMed]
- Groselj, A.; Bosnjak, M.; Jesenko, T.; Cemazar, M.; Markelc, B.; Strojan, P.; Sersa, G. Treatment of skin tumors with intratumoral interleukin 12 gene electrotransfer in the head and neck region: A first-in-human clinical trial protocol. Radiol. Oncol. 2022, 56, 398–408. [Google Scholar] [CrossRef] [PubMed]
- Daud, A.I.; DeConti, R.C.; Andrews, S.; Urbas, P.; Riker, A.I.; Sondak, V.K.; Munster, P.N.; Sullivan, D.M.; Ugen, K.E.; Messina, J.L.; et al. Phase I trial of interleukin-12 plasmid electroporation in patients with metastatic melanoma. J. Clin. Oncol. 2008, 26, 5896–5903. [Google Scholar] [CrossRef] [PubMed]
- Blackwood, L.; Murphy, S.; Buracco, P.; De Vos, J.P.; De Fornel-Thibaud, P.; Hirschberger, J.; Kessler, M.; Pastor, J.; Ponce, F.; Savary-Bataille, K.; et al. European consensus document on mast cell tumours in dogs and cats. Veter. Comp. Oncol. 2012, 10, e1–e29. [Google Scholar] [CrossRef]
- Nguyen, S.M.; Thamm, D.H.; Vail, D.M.; London, C.A. Response evaluation criteria for solid tumours in dogs (v1.0): A Veterinary Cooperative Oncology Group (VCOG) consensus document. Veter. Comp. Oncol. 2015, 13, 176–183. [Google Scholar] [CrossRef]
- Kodre, V.; Cemazar, M.; Pecar, J.; Sersa, G.; Cor, A.; Tozon, N. Electrochemotherapy compared to surgery for treatment of canine mast cell tumours. Vivo 2009, 23, 55–62. [Google Scholar]
- Sersa, G.; Ursic, K.; Cemazar, M.; Heller, R.; Bosnjak, M.; Campana, L.G. Biological factors of the tumour response to electrochemotherapy: Review of the evidence and a research roadmap. Eur. J. Surg. Oncol. 2021, 47, 1836–1846. [Google Scholar] [CrossRef] [PubMed]
- Myers, M.J.; Smith, E.R.; Turfle, P.G. Biomarkers in Veterinary Medicine. Annu. Rev. Anim. Biosci. 2017, 5, 65–87. [Google Scholar] [CrossRef] [PubMed]
- Nixon, A.B.; Schalper, K.A.; Jacobs, I.; Potluri, S.; Wang, I.-M.; Fleener, C. Peripheral immune-based biomarkers in cancer immunotherapy: Can we realize their predictive potential? J. Immunother. Cancer 2019, 7, 325. [Google Scholar] [CrossRef] [PubMed]
- Friedrichs, K.; Thomas, C.; Plier, M.; Andrews, G.; Chavey, P.; Young, K. Evaluation of serum ferritin as a tumor marker for canine histiocytic sarcoma. J. Veter. Intern. Med. 2010, 24, 904–911. [Google Scholar] [CrossRef] [PubMed]
- Kazmierski, K.J.; Ogilvie, G.K.; Fettman, M.J.; Lana, S.E.; Walton, J.A.; Hansen, R.A.; Richardson, K.L.; Hamar, D.W.; Bedwell, C.L.; Andrews, G.; et al. Serum zinc, chromium, and iron concentrations in dogs with lymphoma and osteosarcoma. J. Vet. Intern. Med. 2001, 15, 585–588. [Google Scholar] [CrossRef] [PubMed]
- Newlands, C.E.; Houston, D.M.; Vasconcelos, D.Y. Hyperferritinemia associated with malignant histiocytosis in a dog. J. Am. Vet. Med. Assoc. 1994, 205, 849–851. [Google Scholar] [CrossRef]
- Fan, Y.; Ren, X.; Liu, X.; Shi, D.; Xu, E.; Wang, S.; Liu, Y. Combined detection of CA15-3, CEA, and SF in serum and tissue of canine mammary gland tumor patients. Sci. Rep. 2021, 11, 6651. [Google Scholar] [CrossRef]
- Campos, L.; Lavalle, G.; Estrela-Lima, A.; Melgaço de Faria, J.; Guimarães, J.; Dutra, Á.P.; Ferreira, E.; de Sousa, L.P.; Rabelo, É.M.; Vieira da Costa, A.F.; et al. CA15.3, CEA and LDH in Dogs with Malignant Mammary Tumors. J. Veter. Intern. Med. 2012, 26, 1383–1388. [Google Scholar] [CrossRef]
- Marconato, L.; Crispino, G.; Finotello, R.; Mazzotti, S.; Salerni, F.; Zini, E. Serum lactate dehydrogenase activity in canine malignancies. Veter. Comp. Oncol. 2009, 7, 236–243. [Google Scholar] [CrossRef]
- Zanatta, R.; Abate, O.; D’Angelo, A.; Miniscalco, B.; Mannelli, A. Diagnostic and prognostic value of serum lactate dehydrogenase (LDH) and LDH isoenzymes in canine lymphoma. Veter. Res. Commun. 2003, 27, 449–452. [Google Scholar] [CrossRef]
- Choisunirachon, N.; Klansnoh, U.; Phoomvuthisarn, P.; Pisamai, S.; Thanaboonnipat, C.; Rungsipipat, A. The expression of serum lactate dehydrogenase in canine oral tumors. Thai J. Veter. Med. 2019, 49, 283–288. [Google Scholar] [CrossRef]
- Murray, B.; Blacklock, K.L.B. Pilot Study: Assessing the Expression of Serum Lactate Dehydrogenase and Peripheral Leukocyte Ratios in Canine Oral Malignant Melanoma. Veter. Sci. 2022, 9, 421. [Google Scholar] [CrossRef] [PubMed]
- Wilson-Robles, H.M.; Bygott, T.; Kelly, T.K.; Miller, T.M.; Miller, P.; Matsushita, M.; Terrell, J.; Bougoussa, M.; Butera, T. Evaluation of plasma nucleosome concentrations in dogs with a variety of common cancers and in healthy dogs. BMC Veter. Res. 2022, 18, 329. [Google Scholar] [CrossRef] [PubMed]
- Wilson-Robles, H.; Miller, T.; Jarvis, J.; Terrell, J.; Dewsbury, N.; Kelly, T.; Herzog, M.; Bygott, T.; Hardat, N.; Michel, G. Evaluation of nucleosome concentrations in healthy dogs and dogs with cancer. PLoS ONE 2020, 15, e0236228. [Google Scholar] [CrossRef]
- Martiny, P.; Goggs, R. Biomarker Guided Diagnosis of Septic Peritonitis in Dogs. Front. Veter. Sci. 2019, 6, 208. [Google Scholar] [CrossRef]
- Letendre, J.-A.; Goggs, R. Determining prognosis in canine sepsis by bedside measurement of cell-free DNA and nucleosomes. J. Veter. Emerg. Crit. Care 2018, 28, 503–511. [Google Scholar] [CrossRef] [PubMed]
- Letendre, J.-A.; Goggs, R. Concentrations of Plasma Nucleosomes but Not Cell-Free DNA Are Prognostic in Dogs Following Trauma. Front. Veter. Sci. 2018, 5, 180. [Google Scholar] [CrossRef]
- Dolan, C.; Miller, T.; Jill, J.; Terrell, J.; Kelly, T.K.; Bygott, T.; Wilson-Robles, H. Characterizing circulating nucleosomes in the plasma of dogs with lymphoma. BMC Veter. Res. 2021, 17, 276. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, L.; Christensen, I.J.; Herzog, M.; Micallef, J.; Nielsen, H.J. For the Danish Collaborative Group on Early Detection of Colorectal Cancer Circulating cell-free nucleosomes as biomarkers for early detection of colorectal cancer. Oncotarget 2018, 9, 10247–10258. [Google Scholar] [CrossRef]
- Kumar, S.; Guleria, R.; Singh, V.; Bharti, A.C.; Mohan, A.; Das, B.C. Plasma Nucleosome Levels Might Predict Response to Therapy in Patients with Advanced Non–Small-Cell Lung Cancer. Clin. Lung Cancer 2010, 11, 36–44. [Google Scholar] [CrossRef]
- Tsoneva, D.K.; Ivanov, M.N.; Conev, N.V.; Manev, R.; Stoyanov, D.S.; Vinciguerra, M. Circulating Histones to Detect and Monitor the Progression of Cancer. Int. J. Mol. Sci. 2023, 24, 942. [Google Scholar] [CrossRef]
- Cruz, C.; Pedro, A.Q.; Carvalho, J.; Santos, T.; Talhada, D.; Paiva, A.; Queiroz, J.A.; Andrade, M.; Pinto, M.; Montenegro, L.; et al. Nucleolin as a potential biomarker for canine malignant neoplasia. Res. Veter. Sci. 2021, 135, 297–303. [Google Scholar] [CrossRef]
- Hintze, K.; Theil, E.C. Cellular regulation and molecular interactions of the ferritins. Cell. Mol. Life Sci. 2006, 63, 591–600. [Google Scholar] [CrossRef] [PubMed]
- Cullis, J.O.; Fitzsimons, E.J.; Griffiths, W.J.; Tsochatzis, E.; Thomas, D.W.; Haematology, T.B.S.F. Investigation and management of a raised serum ferritin. Br. J. Haematol. 2018, 181, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, A.; Worwood, M. Ferritin in serum: Clinical and biochemical implications. N. Engl. J. Med. 1975, 292, 951–956. [Google Scholar] [CrossRef] [PubMed]
- Worwood, M. Ferritin. Blood Rev. 1990, 4, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Wang, L.; Han, Y.; Li, F.; Zheng, A.; Xu, Y.; Wang, F.; Xiao, B.; Chen, C.; Tao, Z. Ferritin: A potential serum marker for lymph node metastasis in head and neck squamous cell carcinoma. Oncol. Lett. 2018, 17, 314–322. [Google Scholar] [CrossRef]
- Jung, M.; Mertens, C.; Tomat, E.; Brüne, B. Iron as a Central Player and Promising Target in Cancer Progression. Int. J. Mol. Sci. 2019, 20, 273. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-W.; Dang, C.V. Multifaceted roles of glycolytic enzymes. Trends Biochem. Sci. 2005, 30, 142–150. [Google Scholar] [CrossRef]
- Feng, Y.; Xiong, Y.; Qiao, T.; Li, X.; Jia, L.; Han, Y. Lactate dehydrogenase A: A key player in carcinogenesis and potential target in cancer therapy. Cancer Med. 2018, 7, 6124–6136. [Google Scholar] [CrossRef]
- Horta, R.S.; Lavalle, G.E.; Monteiro, L.N.; Souza, M.C.C.; Cassali, G.D.; Araújo, R.B. Assessment of Canine Mast Cell Tumor Mortality Risk Based on Clinical, Histologic, Immunohistochemical, and Molecular Features. Veter. Pathol. 2018, 55, 212–223. [Google Scholar] [CrossRef]
- Kiupel, M.; Webster, J.D.; Bailey, K.L.; Best, S.; DeLay, J.; Detrisac, C.J.; Fitzgerald, S.D.; Gamble, D.; Ginn, P.E.; Goldschmidt, M.H.; et al. Proposal of a 2-Tier Histologic Grading System for Canine Cutaneous Mast Cell Tumors to More Accurately Predict Biological Behavior. Veter. Pathol. 2011, 48, 147–155. [Google Scholar] [CrossRef]
- Patnaik, A.K.; Ehler, W.J.; MacEwen, E.G. Canine Cutaneous Mast Cell Tumor: Morphologic Grading and Survival Time in 83 Dogs. Veter. Pathol. 1984, 21, 469–474. [Google Scholar] [CrossRef] [PubMed]
- Lampreht Tratar, U.; Kos, S.; Kamensek, U.; Ota, M.; Tozon, N.; Sersa, G.; Cemazar, M. Antitumor effect of antibiotic resistance gene-free plasmids encoding interleukin-12 in canine melanoma model. Cancer Gene Ther. 2018, 25, 260–273. [Google Scholar] [CrossRef]
- Tozon, N.; Lampreht Tratar, U.; Znidar, K.; Sersa, G.; Teissie, J.; Cemazar, M. Operating Procedures of the Electrochemotherapy for Treatment of Tumor in Dogs and Cats. J. Vis. Exp. 2016, 2016, e54760. [Google Scholar] [CrossRef]
- Lowe, R.; Gavazza, A.; Impellizeri, J.A.; Soden, D.M.; Lubas, G. The treatment of canine mast cell tumours with electrochemotherapy with or without surgical excision. Veter. Comp. Oncol. 2017, 15, 775–784. [Google Scholar] [CrossRef]
- Spugnini, E.P.; Vincenzi, B.; Amadio, B.; Baldi, A. Adjuvant electrochemotherapy with bleomycin and cisplatin combination for canine soft tissue sarcomas: A study of 30 cases. Open Veter. J. 2019, 9, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Torrigiani, F.; Pierini, A.; Lowe, R.; Simčič, P.; Lubas, G. Soft tissue sarcoma in dogs: A treatment review and a novel approach using electrochemotherapy in a case series. Veter. Comp. Oncol. 2019, 17, 234–241. [Google Scholar] [CrossRef]
- Sarcione, E.J.; Smalley, J.R.; Lema, M.J.; Stutzman, L. Increased ferritin synthesis and release by Hodgkin’s disease peripheral blood lymphocytes. Int. J. Cancer 1977, 20, 339–346. [Google Scholar] [CrossRef]
- Ward, B.R.; Hicks, M.; Johnson, J.-M.; Myo, Y.P.A. Ferritin Particles Accumulate in Human Mast Cell Secretory Granules and Are Released upon FcεRI-mediated Activation. J. Allergy Clin. Immunol. 2018, 141, AB229. [Google Scholar] [CrossRef]
- Shaw, T.; Kudnig, S.T.; Firestone, S.M. Diagnostic accuracy of pre-treatment biopsy for grading cutaneous mast cell tumours in dogs. Veter. Comp. Oncol. 2018, 16, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Kremer, A.; Holdenrieder, S.; Stieber, P.; Wilkowski, R.; Nagel, D.; Seidel, D. Nucleosomes in Colorectal Cancer Patients during Radiochemotherapy. Tumor Biol. 2006, 27, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Holdenrieder, S.; Stieber, P. Therapy Control in Oncology by Circulating Nucleosomes. Ann. N. Y. Acad. Sci. 2004, 1022, 211–216. [Google Scholar] [CrossRef]
- Holdenrieder, S.; Stieber, P.; Bodenmüller, H.; Busch, M.; Fertig, G.; Fürst, H.; Schalhorn, A.; Schmeller, N.; Untch, M.; Seidel, D. Nucleosomes in serum of patients with benign and malignant diseases. Int. J. Cancer 2001, 95, 114–120. [Google Scholar] [CrossRef]
- Yee, N.S. Liquid Biopsy: A Biomarker-Driven Tool towards Precision Oncology. J. Clin. Med. 2020, 9, 2556. [Google Scholar] [CrossRef]
- Camus, M.S.; Priest, H.L.; Koehler, J.W.; Driskell, E.A.; Rakich, P.M.; Ilha, M.R.; Krimer, P.M. Cytologic Criteria for Mast Cell Tumor Grading in Dogs with Evaluation of Clinical Outcome. Veter. Pathol. 2016, 53, 1117–1123. [Google Scholar] [CrossRef]
- Krick, E.L.; Billings, A.P.; Shofer, F.S.; Watanabe, S.; Sorenmo, K.U. Cytological lymph node evaluation in dogs with mast cell tumours: Association with grade and survival. Veter. Comp. Oncol. 2009, 7, 130–138. [Google Scholar] [CrossRef]
Patient Number | Nucleosomes | Ferritin | LDH | Patient Number | Nucleosomes | Ferritin | LDH | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 and 1 M | 6 M | 0 and 1 M | 6 M | 0 and 1 M | 6 M | 0 and 1 M | 6 M | 0 and 1 M | 6 M | 0 and 1 M | 6 M | ||
1 | ✓ | ✓ | ✓ | ✓ | ✓ | 25 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |
2 | ✓ | ✓ | ✓ | 26 | ✓ | ✓ | ✓ | ||||||
3 | ✓ | ✓ | ✓ | 27 | ✓ | ✓ | ✓ | ||||||
4 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | 28 | ✓ | ✓ | ✓ | ✓ | ✓ | |
5 | ✓ | ✓ | ✓ | 29 | ✓ | ✓ | ✓ | ✓ | ✓ | ||||
6 | ✓ | ✓ | ✓ | 30 | ✓ | ✓ | ✓ | ||||||
7 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | 31 | ✓ | ✓ | ✓ | |||
8 | ✓ | ✓ | ✓ | 32 | ✓ | ✓ | |||||||
9 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | 33 | ✓ | ✓ | ✓ | |||
10 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | 34 | ✓ | ✓ | ||||
11 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | 35 | ✓ | ✓ | ✓ | |||
12 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | 36 | ✓ | ✓ | ✓ | |||
13 | ✓ | ✓ | ✓ | ✓ | 37 | ✓ | ✓ | ✓ | |||||
14 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | 38 | ✓ | ✓ | ✓ | |||
15 | ✓ | ✓ | ✓ | ✓ | ✓ | 39 | ✓ | ✓ | |||||
16 | ✓ | ✓ | ✓ | ✓ | 40 | ✓ | ✓ | ||||||
17 | ✓ | ✓ | 41 | ✓ | ✓ | ||||||||
18 | ✓ | ✓ | 42 | ✓ | |||||||||
19 | ✓ | ✓ | ✓ | ✓ | 43 | ✓ | ✓ | ||||||
20 | ✓ | ✓ | ✓ | ✓ | 44 | ✓ | ✓ | ||||||
21 | ✓ | ✓ | ✓ | 45 | ✓ | ||||||||
22 | ✓ | ✓ | ✓ | 46 | ✓ | ||||||||
23 | ✓ | ✓ | ✓ | ✓ | 47 | ✓ | |||||||
24 | ✓ | ✓ | ✓ | ✓ | ✓ | 48 | ✓ |
Patient Number | Site of the Tumours | Tumour Response One Month Post Treatment | Tumour Response Six Months Post Treatment | Overall Response One Month Post Treatment | Overall Response Six Months Post Treatment | Necrosis Observed at One Month Post Treatment |
---|---|---|---|---|---|---|
1 | Left hind leg | SD | PR | SD | PR | ✓ |
2 | Left front leg | PR | PD | PR | PD | ✓ |
3 | Left front leg | PR | PD | PR | PD | ✓ |
4 | Right inguinal region | CR | CR | CR | CR | ✓ |
5 | Right hind leg | PR | CR | PR | SD | |
Right scapula | PR | CR | ||||
Left hind leg | PR | RT | ||||
Left inguinal region | PR | CR | ||||
6 | Right hind leg | SD | RT | SD | RT | |
7 | Left scapula | CR | CR | CR | CR | |
8 | Right dorsum | PR | RT | PR | RT | |
9 | Left hind leg | PR | CR | PR | CR | |
10 | Right front leg | CR | CR | CR | CR | ✓ |
11 | Left ear | CR | CR | CR | CR | |
Dorsal part of the neck | CR | CR | ||||
Right abdominal region | CR | CR | ||||
Perianal region | CR | CR | ||||
12 | Prepuce | CR | CR | CR | CR | |
13 | Left front leg | CR | CR | CR | CR | ✓ |
Right lip commissure | CR | CR | ||||
14 | Dorsum | CR | CR | CR | CR | |
Left abdominal region | CR | CR | ||||
Left hind leg | CR | CR | ||||
Left hind leg | CR | CR | ||||
Tail base | CR | CR | ||||
Vulva | CR | CR | ||||
15 | Left elbow | CR | CR | CR | CR | |
16 | Right inguinal region | PR | CR | PR | CR | ✓ |
17 | Chin | SD | RT | SD | RT | |
Right thoracic region | CR | CR | ||||
Right hind leg | SD | RT | ||||
Right hind leg | CR | CR | ||||
18 | Perianal region | CR | PD | CR | PD | |
19 | Left hind leg | PR | CR | PR | CR | |
20 | Left abdominal region | PR | PR | PR | PR | |
Left front leg | PR | PR | ||||
Right hind leg | PR | PR | ||||
21 | Right hind leg | CR | CR | CR | CR | |
22 | Right orbital region | PR | LTFU | PR | LTFU | |
Perianal region | CR | LTFU | ||||
Perianal region | CR | LTFU | ||||
Right hind leg | CR | LTFU | ||||
23 | Right front leg | PR | PR | SD | PD | |
Left front leg | PR | CR | ||||
Sternal region | SD | SD | ||||
Right orbital region | PR | CR | ||||
24 | Right hind leg | PR | CR | PR | CR | |
25 | Prepuce | CR | CR | PR | CR | |
Right hind leg | CR | CR | ||||
Perianal region | CR | CR | ||||
Right abdominal region | CR | CR | ||||
26 | Prepuce | SD | PD | SD | PD | |
27 | Right ear | PR | CR | PR | CR | |
28 | Left ear | PR | CR | PR | CR | |
29 | Left abdominal region | PR | CR | PR | CR | |
30 | Left thoracic region | CR | CR | CR | RT | |
Left thoracic region | CR | CR | ||||
Left hind leg | CR | CR | ||||
Right ear | CR | CR | ||||
Right thoracic region | CR | CR | ||||
Left inguinal region | CR | CR | ||||
31 | Left hind leg | PR | CR | PR | CR | |
32 | Tail | CR | CR | CR | CR | |
33 | Right front leg | PR | CR | PR | CR | ✓ |
34 | Left hind leg | SD | RT | SD | RT | |
Left hind leg | SD | RT | ||||
Scrotum | SD | RT | ||||
Prepuce | SD | RT | ||||
Left front leg | SD | RT | ||||
35 | Prepuce | PR | CR | SD | RT | |
Right hind leg | PR | CR | ||||
36 | Right front leg | PR | CR | PR | CR | ✓ |
37 | Right abdominal region | PR | PR | PR | PR | ✓ |
Perianal region | PR | PR | ||||
38 | Right lip corner | PR | CR | PR | CR | |
39 | Left front leg | PR | LTFU | PR | LTFU | ✓ |
Left front leg | PR | LTFU | ||||
40 | Frontal region | CR | CR | CR | CR | ✓ |
41 | Left ear | SD | RT | SD | RT | |
42 | Left hind leg | SD | SD | SD | SD | |
43 | Perianal region | PR | PR | PR | PR | |
44 | Right hind leg | PR | CR | PR | CR | |
45 | Left axillary region | PR | CR | PR | CR | ✓ |
46 | Right hind leg | PR | CR | PR | CR | ✓ |
47 | Right lip commissure | CR | CR | CR | CR | |
48 | Right hind leg | SD | PD | SD | PD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vilfan, M.; Lampreht Tratar, U.; Milevoj, N.; Nemec Svete, A.; Čemažar, M.; Serša, G.; Tozon, N. Comparison of Nucleosome, Ferritin and LDH Levels in Blood with Clinical Response before and after Electrochemotherapy Combined with IL-12 Gene Electrotransfer for the Treatment of Mast Cell Tumours in Dogs. Animals 2024, 14, 438. https://doi.org/10.3390/ani14030438
Vilfan M, Lampreht Tratar U, Milevoj N, Nemec Svete A, Čemažar M, Serša G, Tozon N. Comparison of Nucleosome, Ferritin and LDH Levels in Blood with Clinical Response before and after Electrochemotherapy Combined with IL-12 Gene Electrotransfer for the Treatment of Mast Cell Tumours in Dogs. Animals. 2024; 14(3):438. https://doi.org/10.3390/ani14030438
Chicago/Turabian StyleVilfan, Maša, Urša Lampreht Tratar, Nina Milevoj, Alenka Nemec Svete, Maja Čemažar, Gregor Serša, and Nataša Tozon. 2024. "Comparison of Nucleosome, Ferritin and LDH Levels in Blood with Clinical Response before and after Electrochemotherapy Combined with IL-12 Gene Electrotransfer for the Treatment of Mast Cell Tumours in Dogs" Animals 14, no. 3: 438. https://doi.org/10.3390/ani14030438
APA StyleVilfan, M., Lampreht Tratar, U., Milevoj, N., Nemec Svete, A., Čemažar, M., Serša, G., & Tozon, N. (2024). Comparison of Nucleosome, Ferritin and LDH Levels in Blood with Clinical Response before and after Electrochemotherapy Combined with IL-12 Gene Electrotransfer for the Treatment of Mast Cell Tumours in Dogs. Animals, 14(3), 438. https://doi.org/10.3390/ani14030438