Effects of Live Saccharomyces cerevisiae Yeast Administration in Periparturient Dairy Cows
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Management and Experimental Design
2.2. Health Status, Body Weight, Body Condition Score, and Rectal Temperature
2.3. Milk Yield and Composition
2.4. Feed Intake, Rumination Time, and Fecal Samples
2.5. Blood Samples and Immunometabolic Profile
2.6. Statistical Analysis
3. Results
3.1. Health Status, Body Weight, BCS, and Rectal Temperature
3.2. Milk Production and Composition
3.3. Feeding, Rumination Time, and Feces
3.4. Blood Biomarkers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Drackley, J.K. Biology of Dairy Cows During the Transition Period: The Final Frontier? J. Dairy Sci. 1999, 82, 2259–2273. [Google Scholar] [CrossRef]
- Trevisi, E.; Minuti, A. Assessment of the Innate Immune Response in the Periparturient Cow. Res. Vet. Sci. 2018, 116, 47–54. [Google Scholar] [CrossRef]
- Horst, E.A.; Kvidera, S.K.; Baumgard, L.H. Invited Review: The Influence of Immune Activation on Transition Cow Health and Performance—A Critical Evaluation of Traditional Dogmas. J. Dairy Sci. 2021, 104, 8380–8410. [Google Scholar] [CrossRef]
- Steele, M.A.; Schiestel, C.; AlZahal, O.; Dionissopoulos, L.; Laarman, A.H.; Matthews, J.C.; McBride, B.W. The Periparturient Period Is Associated with Structural and Transcriptomic Adaptations of Rumen Papillae in Dairy Cattle. J. Dairy Sci. 2015, 98, 2583–2595. [Google Scholar] [CrossRef]
- Trevisi, E.; Riva, F.; Filipe, J.F.S.; Massara, M.; Minuti, A.; Bani, P.; Amadori, M. Innate Immune Responses to Metabolic Stress Can Be Detected in Rumen Fluids. Res. Vet. Sci. 2018, 117, 65–73. [Google Scholar] [CrossRef]
- Lopreiato, V.; Mezzetti, M.; Cattaneo, L.; Ferronato, G.; Minuti, A.; Trevisi, E. Role of Nutraceuticals during the Transition Period of Dairy Cows: A Review. J. Anim. Sci. Biotechnol. 2020, 11, 96. [Google Scholar] [CrossRef] [PubMed]
- Newbold, C.J.; Wallace, R.J.; Mcintosh, F.M. Mode of Action of the Yeast Saccharomyces Cerevisiae as a Feed Additive for Ruminants. Br. J. Nutr. 1996, 76, 249–261. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Ogunade, I.M.; Qi, S.; Hackmann, T.J.; Staples, C.R.; Adesogan, A.T. Effects of the Dose and Viability of Saccharomyces Cerevisiae. 1. Diversity of Ruminal Microbes as Analyzed by Illumina MiSeq Sequencing and Quantitative PCR. J. Dairy Sci. 2017, 100, 325–342. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, N.C.B.; Young, T.R.; Carroll, J.A.; Corley, J.R.; Rathmann, R.J.; Johnson, B.J. Yeast Cell Wall Supplementation Alters the Metabolic Responses of Crossbred Heifers to an Endotoxin Challenge. Innate Immun. 2014, 20, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Piva, G.; Belladonna, S.; Fusconi, G.; Sicbaldi, F. Effects of Yeast on Dairy Cow Performance, Ruminal Fermentation, Blood Components, and Milk Manufacturing Properties. J. Dairy Sci. 1993, 76, 2717–2722. [Google Scholar] [CrossRef] [PubMed]
- Desnoyers, M.; Giger-Reverdin, S.; Bertin, G.; Duvaux-Ponter, C.; Sauvant, D. Meta-Analysis of the Influence of Saccharomyces Cerevisiae Supplementation on Ruminal Parameters and Milk Production of Ruminants. J. Dairy Sci. 2009, 92, 1620–1632. [Google Scholar] [CrossRef] [PubMed]
- Bach, A.; Iglesias, C.; Devant, M. Daily Rumen PH Pattern of Loose-Housed Dairy Cattle as Affected by Feeding Pattern and Live Yeast Supplementation. Anim. Feed. Sci. Technol. 2007, 136, 146–153. [Google Scholar] [CrossRef]
- Nocek, J.E.; Holt, M.G.; Oppy, J. Effects of Supplementation with Yeast Culture and Enzymatically Hydrolyzed Yeast on Performance of Early Lactation Dairy Cattle. J. Dairy Sci. 2011, 94, 4046–4056. [Google Scholar] [CrossRef] [PubMed]
- National Research Council (NRC). Nutrient Requirements of Dairy Cattle: Seventh Revised Edition, 2001; National Academies Press: Washington, DC, USA, 2000; ISBN 978-0-309-06997-7.
- Agricultural Development and Advisory Service. Condition Scoring of Dairy Cows; Ministry of Agriculture, Fisheries Food (PubI), Lion House: Alnwick, UK, 1986.
- Ali, A.K.A.; Shook, G.E. An Optimum Transformation for Somatic Cell Concentration in Milk. J. Dairy Sci. 1980, 63, 487–490. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Minuti, A.; Ahmed, S.; Trevisi, E.; Piccioli-Cappelli, F.; Bertoni, G.; Jahan, N.; Bani, P.; Ahmed, S. Experimental Acute Rumen Acidosis in Sheep: Consequences on Clinical, Rumen, and Gastrointestinal Permeability Conditions and Blood Chemistry. J. Anim. Sci. 2014, 92, 3966–3977. [Google Scholar] [CrossRef]
- Premi, M.; Mezzetti, M.; Ferronato, G.; Barbato, M.; Cappelli, F.P.; Minuti, A.; Trevisi, E. Changes of Plasma Analytes Reflecting Metabolic Adaptation to the Different Stages of the Lactation Cycle in Healthy Multiparous Holstein Dairy Cows Raised in High-Welfare Conditions. Animals 2021, 11, 1714. [Google Scholar] [CrossRef]
- Calamari, L.; Ferrari, A.; Minuti, A.; Trevisi, E. Assessment of the Main Plasma Parameters Included in a Metabolic Profile of Dairy Cow Based on Fourier Transform Mid-Infrared Spectroscopy: Preliminary Results. BMC Vet. Res. 2016, 12, 4. [Google Scholar] [CrossRef] [PubMed]
- Uyeno, Y.; Akiyama, K.; Hasunuma, T.; Yamamoto, H.; Yokokawa, H.; Yamaguchi, T.; Kawashima, K.; Itoh, M.; Kushibiki, S.; Hirako, M. Effects of Supplementing an Active Dry Yeast Product on Rumen Microbial Community Composition and on Subsequent Rumen Fermentation of Lactating Cows in the Mid-to-Late Lactation Period. Anim. Sci. J. 2017, 88, 119–124. [Google Scholar] [CrossRef]
- Fonty, G.; Chaucheyras-Durand, F. Effects and Modes of Action of Live Yeasts in the Rumen. Biologia 2006, 61, 741–750. [Google Scholar] [CrossRef]
- Marden, J.P.; Julien, C.; Monteils, V.; Auclair, E.; Moncoulon, R.; Bayourthe, C. How Does Live Yeast Differ from Sodium Bicarbonate to Stabilize Ruminal PH in High-Yielding Dairy Cows? J. Dairy Sci. 2008, 91, 3528–3535. [Google Scholar] [CrossRef] [PubMed]
- Moallem, U.; Lehrer, H.; Livshitz, L.; Zachut, M.; Yakoby, S. The Effects of Live Yeast Supplementation to Dairy Cows during the Hot Season on Production, Feed Efficiency, and Digestibility. J. Dairy Sci. 2009, 92, 343–351. [Google Scholar] [CrossRef] [PubMed]
- DeVries, T.J.; Chevaux, E. Modification of the Feeding Behavior of Dairy Cows through Live Yeast Supplementation. J. Dairy Sci. 2014, 97, 6499–6510. [Google Scholar] [CrossRef] [PubMed]
- de Ondarza, M.B.; Sniffen, C.J.; Dussert, L.; Chevaux, E.; Sullivan, J.; Walker, N. Multiple-Study Analysis of the Effect of Live Yeast on Milk Yield, Milk Component Content and Yield, and Feed Efficiency. Prof. Anim. Sci. 2010, 26, 661–666. [Google Scholar] [CrossRef]
- Baker, L.M.; Kraft, J.; Karnezos, T.P.; Greenwood, S.L. Review: The Effects of Dietary Yeast and Yeast-Derived Extracts on Rumen Microbiota and Their Function. Anim. Feed. Sci. Technol. 2022, 294, 115476. [Google Scholar] [CrossRef]
- Dann, H.M.; Drackley, J.K.; McCoy, G.C.; Hutjens, M.F.; Garrett, J.E. Effects of Yeast Culture (Saccharomyces cerevisiae) on Prepartum Intake and Postpartum Intake and Milk Production of Jersey Cows. J. Dairy Sci. 2000, 83, 123–127. [Google Scholar] [CrossRef]
- Yuan, K.; Liang, T.; Muckey, M.B.; Mendonça, L.G.D.; Hulbert, L.E.; Elrod, C.C.; Bradford, B.J. Yeast Product Supplementation Modulated Feeding Behavior and Metabolism in Transition Dairy Cows. J. Dairy Sci. 2015, 98, 532–540. [Google Scholar] [CrossRef]
- Rico, J.E.; Barrientos-Blanco, M.A. INVITED REVIEW: Ketone Biology: The Shifting Paradigm of Ketones and Ketosis in the Dairy Cow. J. Dairy Sci. 2024. [Google Scholar] [CrossRef] [PubMed]
- Mann, S.; McArt, J.A.A. Hyperketonemia: A Marker of Disease, a Sign of a High-Producing Dairy Cow, or Both? Vet. Clin. N. Am. Food Anim. Pract. 2023, 39, 307–324. [Google Scholar] [CrossRef]
- Broadway, P.R.; Carroll, J.A.; Sanchez, N.C.B. Live Yeast and Yeast Cell Wall Supplements Enhance Immune Function and Performance in Food-Producing Livestock: A Review. Microorganisms 2015, 3, 417–427. [Google Scholar] [CrossRef]
- Cattaneo, L.; Lopreiato, V.; Piccioli-Cappelli, F.; Trevisi, E.; Minuti, A. Effect of Supplementing Live Saccharomyces Cerevisiae Yeast on Performance, Rumen Function, and Metabolism during the Transition Period in Holstein Dairy Cows. J. Dairy Sci. 2023, 106, 4353–4365. [Google Scholar] [CrossRef] [PubMed]
- Goff, J.P. Pathophysiology of Calcium and Phosphorus Disorders. Vet. Clin. N. Am. Food Anim. Pract. 2000, 16, 319–337. [Google Scholar] [CrossRef] [PubMed]
- Cagle, C.M.; Fonseca, M.A.; Callaway, T.R.; Runyan, C.A.; Cravey, M.D.; Tedeschi, L.O. Evaluation of the Effects of Live Yeast on Rumen Parameters and in Situ Digestibility of Dry Matter and Neutral Detergent Fiber in Beef Cattle Fed Growing and Finishing Diets. Appl. Anim. Sci. 2020, 36, 36–47. [Google Scholar] [CrossRef]
- Bradford, B.J.; Yuan, K.; Farney, J.K.; Mamedova, L.K.; Carpenter, A.J. Invited Review: Inflammation during the Transition to Lactation: New Adventures with an Old Flame. J. Dairy Sci. 2015, 98, 6631–6650. [Google Scholar] [CrossRef]
- Batista, L.H.C.; Cidrini, I.A.; Prados, L.F.; Cruz, A.A.C.; Torrecilhas, J.A.; Siqueira, G.R.; Resende, F.D. A Meta-Analysis of Yeast Products for Beef Cattle under Stress Conditions: Performance, Health and Physiological Parameters. Anim. Feed. Sci. Technol. 2022, 283, 115182. [Google Scholar] [CrossRef]
- Perdomo, M.C.; Marsola, R.S.; Favoreto, M.G.; Adesogan, A.; Staples, C.R.; Santos, J.E.P. Effects of Feeding Live Yeast at 2 Dosages on Performance and Feeding Behavior of Dairy Cows under Heat Stress. J. Dairy Sci. 2020, 103, 325–339. [Google Scholar] [CrossRef]
Dry Period | Lactation | |
---|---|---|
Ingredient, % DM | ||
Corn silage | 22.94 | 48.22 |
Soybean meal | 7.96 | 15.62 |
Corn meal | - | 12.73 |
Alfalfa hay | - | 9.63 |
Barley silage | 35.32 | 7.44 |
Crushed barley grain | - | 3.64 |
Mineral supplement 1 | 0.48 | 1.90 |
Hydrogenated vegetable fat | - | 0.83 |
Wheat straw | 26.55 | - |
Sunflower meal | 6.86 | - |
Chemical composition 2 | ||
DM, % | 44.84 | 50.42 |
NEL Mcal/Kg of DM | 1.26 | 1.55 |
Starch, % DM | 12.88 | 27 |
Sugar, % DM | 1.56 | 2.43 |
CP, % DM | 12.11 | 16.11 |
MP, % DM | 8.29 | 10.90 |
Ether extract, % DM | 2.59 | 3.34 |
NDF, % DM | 52.90 | 34.04 |
ADF, % DM | 32.44 | 19.79 |
ADL, % DM | 6.97 | 2.97 |
Ca, % DM | 0.31 | 0.72 |
P, % DM | 0.34 | 0.43 |
Mg, % DM | 0.22 | 0.24 |
K, % DM | 0.94 | 1.04 |
Na, % DM | 0.07 | 0.25 |
DCAD, mEq/kg DM | 250 | - |
Trt | ||||
---|---|---|---|---|
Item, Unit | CTR | LSC | SEM 1 | p-Value |
Lactation number, n | 2.07 | 2.29 | 0.39 | 0.70 |
Body weight at dry-off, kg | 658 | 694 | 18.0 | 0.16 |
BCS 2 | 2.89 | 3.05 | 0.07 | 0.12 |
Previous lactation cumulative milk yield, kg | 11,528 | 11,855 | 668 | 0.79 |
Previous lactation length, d | 344 | 335 | 10.8 | 0.57 |
Milk yield at dry-off, kg/d | 11.6 | 11.3 | 1.21 | 0.86 |
Trt | p-Values 1 | |||||
---|---|---|---|---|---|---|
Item, Unit | CTR | LSC | SEM 2 | Trt | T | Trt × T |
Before calving | ||||||
Body weight 3, kg | - | - | - | - | - | - |
BCS | 3.03 | 3.09 | 0.03 | 0.17 | 0.94 | 0.44 |
Rectal temperature, °C | 38.75 | 38.81 | 0.06 | 0.48 | 0.18 | 0.90 |
After calving | ||||||
Body weight, kg | 634 | 638 | 4.78 | 0.60 | <0.01 | 0.97 |
BCS | 2.60 | 2.62 | 0.04 | 0.80 | <0.01 | 0.93 |
Rectal temperature, °C | 38.78 | 38.92 | 0.06 | 0.40 | <0.01 | 0.19 |
Trt | p-Value 1 | |||||
---|---|---|---|---|---|---|
Item, Unit | CTR | LSC | SEM 2 | Trt | T | Trt × T |
Milk fat, % | 3.59 | 3.39 | 0.14 | 0.29 | 0.08 | 0.71 |
Milk fat, kg/d | 1.64 | 1.60 | 0.07 | 0.67 | 0.60 | 0.73 |
Milk protein, % | 3.08 | 3.01 | 0.06 | 0.37 | <0.01 | 0.90 |
Milk protein, kg/d | 1.41 | 1.42 | 0.05 | 0.82 | 0.03 | 0.44 |
Milk casein, % | 2.42 | 2.37 | 0.04 | 0.42 | <0.01 | 0.86 |
Milk casein, kg/d | 1.11 | 1.12 | 0.04 | 0.84 | 0.02 | 0.46 |
Milk lactose, % | 4.75 | 4.77 | 0.05 | 0.72 | 0.99 | 0.34 |
Milk urea, mg/dL | 33.2 | 36.0 | 3.04 | 0.52 | 0.60 | 0.57 |
Milk SCS 3, n | 1.00 | 1.03 | 0.35 | 0.97 | 0.52 | 0.24 |
Colostrum IgG, mg/mL | 191 | 219 | 11.6 | 0.09 | – | – |
Trt | ||||
---|---|---|---|---|
Item, Unit | CTR | LSC | SEM 1 | p-Value |
DM, % | 15.2 | 14.7 | 0.34 | 0.34 |
Acetate, mol/100 mol | 73.7 | 73.4 | 0.56 | 0.76 |
Propionate, mol/100 mol | 14.5 | 14.4 | 0.23 | 0.77 |
Butyrate, mol/100 mol | 9.88 | 10.12 | 0.45 | 0.71 |
Isobutyrate, mol/100 mol | 0.14 | 0.16 | 0.02 | 0.55 |
Valerate, mol/100 mol | 1.39 | 1.27 | 0.13 | 0.53 |
Isovalerate, mol/100 mol | 0.68 | 0.68 | 0.13 | 0.99 |
Acetate/propionate ratio | 5.11 | 5.13 | 0.11 | 0.94 |
(Acetate + butyrate)/propionate ratio | 5.80 | 5.83 | 0.11 | 0.87 |
Before Calving | After Calving | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Trt | p-Value 1 | TRT | p-Value 1 | |||||||||
Item 2, Unit | CTR | LSC | SEM 3 | Trt | T | Trt × T | CTR | LSC | SEM 3 | Trt | T | Trt × T |
PCV, L/L | 0.33 | 0.32 | 0.01 | 0.17 | 0.36 | 0.83 | 0.31 | 0.31 | 0.00 | 0.55 | <0.01 | 0.90 |
Glucose, mmol/L | 4.33 | 4.39 | 0.05 | 0.40 | 0.65 | 0.98 | 3.99 | 4.03 | 0.07 | 0.74 | <0.01 | 0.90 |
NEFA, mmol/L | 0.17 | 0.13 | 0.03 | 0.29 | <0.01 | 0.26 | 0.40 | 0.46 | 0.04 | 0.28 | <0.01 | 0.64 |
BHB, mmol/L | 0.34 | 0.37 | 0.02 | 0.30 | 0.26 | 0.21 | 0.51 | 0.61 | 0.03 | 0.05 | <0.01 | 0.56 |
Cholesterol, mmol/L | 2.45 | 2.41 | 0.12 | 0.80 | <0.01 | 0.81 | 4.07 | 3.83 | 0.16 | 0.29 | <0.01 | 0.92 |
Urea, mmol/L | 5.00 | 5.05 | 0.26 | 0.90 | 0.03 | 0.99 | 5.99 | 6.25 | 0.29 | 0.52 | <0.01 | 0.28 |
Creatinine, µmol/L | 97.7 | 97.8 | 1.64 | 0.98 | <0.01 | 0.85 | 85.4 | 85.8 | 1.24 | 0.85 | <0.01 | 0.68 |
Haptoglobin, g/L | 0.10 | 0.14 | 0.04 | 0.44 | 0.11 | 0.66 | 0.18 | 0.21 | 0.03 | 0.46 | <0.01 | 0.73 |
Ceruloplasmin, µmol/L | 2.38 | 2.21 | 0.08 | 0.15 | <0.01 | 0.13 | 2.28 | 2.26 | 0.11 | 0.90 | <0.01 | 0.32 |
Zn, µmol/L | 8.16 | 8.63 | 0.50 | 0.52 | 0.09 | 0.79 | 7.48 | 7.91 | 0.45 | 0.50 | 0.05 | 0.16 |
Myeloperoxidase, U/L | 376.3 | 372.5 | 10.89 | 0.81 | 0.02 | 0.15 | 372.7 | 372.6 | 10.8 | 1.00 | <0.01 | 0.63 |
Globulin, g/L | 41.8 | 42.7 | 1.16 | 0.59 | <0.01 | 0.73 | 41.6 | 42.2 | 1.13 | 0.72 | <0.01 | 0.56 |
Total protein, g/L | 78.5 | 79.5 | 1.11 | 0.51 | <0.01 | 0.42 | 79.3 | 79.8 | 1.05 | 0.73 | <0.01 | 0.16 |
ROMs, mg H2O2/100 mL | 12.7 | 11.8 | 0.48 | 0.19 | 0.03 | 0.60 | 12.7 | 11.8 | 0.50 | 0.18 | <0.01 | <0.01 |
Thiol groups, µmol/L | 291.7 | 297.9 | 6.43 | 0.50 | 0.60 | 0.18 | 310.5 | 318.6 | 7.45 | 0.45 | 0.05 | 0.22 |
FRAP, µmol/L | 110.0 | 108.0 | 1.39 | 0.33 | 0.37 | 0.83 | 137.3 | 131.8 | 2.33 | 0.11 | <0.01 | 0.42 |
Bilirubin, µmol/L | 0.94 | 0.60 | 0.17 | 0.18 | 0.01 | 0.25 | 2.22 | 2.20 | 0.25 | 0.97 | <0.01 | 0.20 |
Paraoxonase, U/mL | 83.6 | 87.9 | 2.93 | 0.32 | <0.01 | 0.74 | 84.5 | 85.6 | 3.34 | 0.82 | <0.01 | 0.63 |
Albumin, g/L | 36.7 | 36.8 | 0.36 | 0.81 | 0.27 | 0.15 | 37.7 | 37.6 | 0.41 | 0.94 | <0.01 | 0.17 |
ALP, U/L | 50.8 | 57.7 | 4.36 | 0.27 | 0.32 | 0.22 | 45.8 | 51.5 | 3.96 | 0.32 | <0.01 | 0.66 |
GOT U/L | 82.3 | 79.5 | 4.30 | 0.65 | 0.11 | 0.78 | 94.3 | 92.1 | 2.33 | 0.52 | <0.01 | 0.80 |
GGT, U/L | 22.8 | 21.1 | 1.42 | 0.41 | <0.01 | 0.88 | 21.9 | 20.3 | 0.98 | 0.26 | <0.01 | 0.29 |
Ca, mmol/L | 2.34 | 2.39 | 0.02 | 0.07 | 0.12 | 0.09 | 2.34 | 2.33 | 0.03 | 0.91 | <0.01 | 0.67 |
P, mmol/L | 2.00 | 1.94 | 0.08 | 0.65 | 0.88 | 0.07 | 1.62 | 1.73 | 0.08 | 0.37 | 0.40 | 0.24 |
Mg, mmol/L | 0.91 | 0.91 | 0.02 | 0.98 | 0.21 | 0.43 | 1.00 | 0.99 | 0.02 | 0.79 | <0.01 | 0.98 |
Na, mmol/L | 149.3 | 148.4 | 0.53 | 0.25 | <0.01 | 0.55 | 146.8 | 146.6 | 0.45 | 0.82 | <0.01 | 0.99 |
K, mmol/L | 4.21 | 4.09 | 0.08 | 0.29 | 0.08 | 0.12 | 4.22 | 4.10 | 0.08 | 0.30 | 0.36 | 0.43 |
Cl, mmol/L | 108.5 | 107.9 | 0.49 | 0.39 | <0.01 | 0.18 | 102.8 | 102.3 | 0.57 | 0.59 | <0.01 | 0.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benedetti, L.; Cattaneo, L.; Vercesi, A.; Trevisi, E.; Piccioli-Cappelli, F. Effects of Live Saccharomyces cerevisiae Yeast Administration in Periparturient Dairy Cows. Animals 2024, 14, 472. https://doi.org/10.3390/ani14030472
Benedetti L, Cattaneo L, Vercesi A, Trevisi E, Piccioli-Cappelli F. Effects of Live Saccharomyces cerevisiae Yeast Administration in Periparturient Dairy Cows. Animals. 2024; 14(3):472. https://doi.org/10.3390/ani14030472
Chicago/Turabian StyleBenedetti, Lorenzo, Luca Cattaneo, Alessandro Vercesi, Erminio Trevisi, and Fiorenzo Piccioli-Cappelli. 2024. "Effects of Live Saccharomyces cerevisiae Yeast Administration in Periparturient Dairy Cows" Animals 14, no. 3: 472. https://doi.org/10.3390/ani14030472
APA StyleBenedetti, L., Cattaneo, L., Vercesi, A., Trevisi, E., & Piccioli-Cappelli, F. (2024). Effects of Live Saccharomyces cerevisiae Yeast Administration in Periparturient Dairy Cows. Animals, 14(3), 472. https://doi.org/10.3390/ani14030472