The Effects of Housing on Growth, Immune Function and Antioxidant Status of Young Female Lambs in Cold Conditions
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experiment Design
2.2. Measurement of Ambient Indexes
2.3. Blood Collection and Analysis
2.4. Total RNA Extraction and Quantitative RT-PCR Analysis
2.5. Statistical Analysis
3. Results
3.1. Shelter Conditions
3.2. Growth Performance and Body Temperature
3.3. Body Temperature
3.4. Serum Insulin and Heat Shock Proteins
3.5. Serum Antioxidant Status Indicators
3.6. Immunity indicators
3.7. The Relative Expression of mRNA
4. Discussion
4.1. Environmental Parameters, Growth and Temperature
4.2. Gene Expression and Antioxidants
4.3. Immune Function
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hu, L.; Brito, L.F.; Abbas, Z.; Sammad, A.; Kang, L.; Wang, D.; Wu, H.; Liu, A.; Qi, G.; Zhao, M.; et al. Investigating the Short-Term Effects of Cold Stress on Metabolite Responses and Metabolic Pathways in Inner-Mongolia Sanhe Cattle. Animals 2021, 11, 2493. [Google Scholar] [CrossRef]
- Kang, H.J.; Lee, I.K.; Piao, M.Y.; Gu, M.J.; Yun, C.H.; Kim, H.J.; Kim, K.H.; Baik, M. Effects of ambient temperature on growth performance, blood metabolites, and immune cell populations in Korean cattle steers. Asian Australas. J. Anim. Sci. 2016, 29, 436–443. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.J.; Lee, J.; Park, S.J.; Jung, D.; Na, S.W.; Kim, H.J.; Baik, M. Effects of cold temperature and fat supplementation on growth performance and rumen and blood parameters in early fattening stage of Korean cattle steers. Anim. Feed Sci. Technol. 2020, 269, 114624. [Google Scholar] [CrossRef]
- Plush, K.L.; Brien, F.D.; Hebart, M.L.; Hynd, P.L. Thermogenesis and physiological maturity in neonatal lambs: A unifying concept in lamb survival. Anim. Prod. Sci. 2016, 56, 736–745. [Google Scholar] [CrossRef]
- Manfredi, L.H.; Zanon, N.M.; Garófalo, M.A.; Navegantes, L.C.C.; Kettelhut, I.C. Effect of short-term cold exposure on skeletal muscle protein breakdown in rats. J. Appl. Physiol. 2013, 115, 1496–1505. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, W.W.; Wang, R.F.; Meng, Z.Q.; Duan, Y.X.; An, X.P.; Qi, J.W. Dietary supplementation of ferulic acid improves performance and alleviates oxidative stress of lambs in a cold environment. Can. J. Anim. Sci. 2019, 99, 705–712. [Google Scholar] [CrossRef]
- Wei, H.D.; Zhang, R.X.; Su, Y.Y.; Bi, Y.J.; Li, X.; Zhang, X.; Li, J.H.; Bao, J. Effects of acute cold stress after long-term cold stimulation on antioxidant status, heat shock proteins, inflammation and immune cytokines in broiler heart. Front. Physiol. 2018, 9, 1589–1601. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.R.; Li, S.Z.; Fang, H.G.; Zhang, X.; Wang, J.F.; Guo, S.; Ji, H.; Zang, L.; Guo, L.; Zhen, L.; et al. Different Duration of Cold Stress Enhances Pro-Inflammatory Cytokines Profile and Alterations of Th1 and Th2 Type Cytokines Secretion in Serum of Wistar Rats. J. Anim. Vet. Adv. 2012, 11, 1538–1545. [Google Scholar]
- Demas, G.E.; Nelson, R.J. Photoperiod and Temperature Interact to Affect Immune Parameters in Adult Male Deer Mice (Peromyscus manicuiatus). J. Biol. Rhythm. 1996, 11, 94. [Google Scholar] [CrossRef]
- Rybakina, E.G.; Shanin, S.N.; Kozinets, I.A.; Fomicheva, E.E.; Korneva, E.A. Cellular mechanisms of cold stress-related immunosuppression and the action of interleukin 1. Int. J. Tissue React. 1997, 19, 135. [Google Scholar]
- Hu, G.Z.; Yang, S.J.; Hu, W.X.; Wen, Z.; He, D.; Zeng, L.F.; Xiang, Q.; Wu, X.M.; Zhou, W.Y.; Zhu, Q.X. Effect of cold stress on immunity in rats. Exp. Ther. Med. 2016, 11, 33–42. [Google Scholar] [CrossRef]
- Niture, S.K.; Jaiswal, A.K. HSP90 interaction with INrf2(Keap1) mediates stress-induced Nrf2 activation. J. Biol. Chem. 2010, 285, 36865–36875. [Google Scholar] [CrossRef]
- Hahn, J.S. Regulation of Nod1 by Hsp90 chaperone complex. FEBS Lett. 2005, 579, 4513–4519. [Google Scholar] [CrossRef]
- Can, M.E.; Boğa, M. The importance of sheep shelters in cold climate region. Black Sea J. Agric. 2018, 1, 1–5. [Google Scholar]
- Zhang, X.Q.; Kemp, D.; Hou, X.Y.; Langford, C.M.; Wang, K.; Yan, W.H. Effects of shed modifications on ewe reproductive performance and lamb growth rate in Inner Mongolia. Rangel. J. 2016, 38, 479–487. [Google Scholar] [CrossRef]
- Jin, Y.M.; Zhang, X.Q.; Badgery, W.B.; Li, P.; Wu, J.X. Effects of winter and spring housing on growth performance and blood metabolites of Pengbo semi-wool sheep in Tibet. Asian-Australas. J. Anim. Sci. 2019, 32, 1630–1639. [Google Scholar] [CrossRef]
- Abdelraheem, N.; Li, F.H.; Guo, P.H.; Sun, Y.; Liu, Y.; Cheng, Y.X.; Hou, F.J. Oat hay as winter feed improves digestibility, nitrogen balance and energy utilization of Tibetan sheep (Ovis aries) in the Qinghai Tibetan Plateau. Livest. Sci. 2019, 230, 103854–103863. [Google Scholar] [CrossRef]
- Su, Y.Y.; Li, S.; Xin, H.W.; Li, J.F.; Li, X.; Zhang, R.X.; Li, J.H.; Bao, J. Proper cold stimulation starting at an earlier age can enhance immunity and improve adaptability to cold stress in broilers. Poult. Sci. 2020, 99, 129–141. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Zhou, G.; Tian, G.; Liu, Y.; Dong, N.; Li, L.; Zhang, S.; Chai, H.; Chen, Y.; Yang, Y. Changes in Rumen Microbiota Affect Metabolites, Immune Responses and Antioxidant Enzyme Activities of Sheep under Cold Stimulation. Animals 2021, 11, 712. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids; The National Academies Press: Washington, DC, USA, 2007; 384p, ISBN 9780309102131.
- Shi, L.; Xu, Y.; Mao, C.; Wang, Z.Q.; Guo, S.W.; Jin, X.; Yan, S.M.; Shi, B.L. Effects of heat stress on antioxidant status and immune function and expression of related genes in lambs. Int. J. Biometeorol. 2020, 64, 2039–2104. [Google Scholar] [CrossRef] [PubMed]
- Cottle, D.J.; Pacheco, D. Prediction of fleece insulation after shearing and its impact on maintenance energy requirements of Romney sheep. Small Rumin. Res. 2017, 157, 14–22. [Google Scholar] [CrossRef]
- Beker, A.; Vanhooser, S.L.; Swartzlander, J.H.; Teeter, R.G. Atmospheric ammonia concentration effects on broiler growth and performance. J. Appl. Poult. Res. 2004, 13, 5–9. [Google Scholar] [CrossRef]
- Zuehlke, A.D.; Moses, M.A.; Neckers, L. Heat shock protein 90: Its inhibition and function. Philos. Trans. R. Soc. B 2018, 373, 527–532. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.M.; Singh, S.; Ganguly, I.; Nachiappan, R.K.; Ganguly, A.; Venkataramanan, R.; Chopra, A.; Narula, H.K. Association of heat stress protein 90 and 70 gene polymorphism with adaptability traits in Indian sheep (Ovis aries). Cell Stress Chaperones 2017, 22, 675–684. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, D.; Upadhyay, R.C.; Chaudhary, U.B.; Kumar, R.; Singh, S.; Ashutosh; Jagan, M.G.; Polley, S.; Mukherjee, A.; Das, T.K.; et al. Seasonal variation in expression pattern of genes under HSP70. Cell Stress Chaperones 2014, 19, 401–408. [Google Scholar] [CrossRef]
- Nagayach, R.; Gupta, U.D.; Prakash, A. Expression profiling of HSP70 gene during different seasons in goats (Capra hircus) under sub-tropical humid climatic conditions. Small Rumin. Res. 2017, 147, 41–47. [Google Scholar] [CrossRef]
- Stefan, T. Heat Shock Protein 70 as a Double Agent Acting Inside and Outside the Cell: Insights into Autoimmunity. Int. J. Mol. Sci. 2020, 21, 5298. [Google Scholar]
- Chiang, W.C.; Ching, T.T.; Lee, H.C.; Mousigian, C.; Hsu, A.L. HSF-1 regulators DDL-1/2 link insulin-like signaling to heat-shock responses and modulation of longevity. Cell 2012, 148, 322–334. [Google Scholar] [CrossRef] [PubMed]
- Frigault, J.J.; Gaudet, J.D.; Morin, P.J. Investigating Nrf2-associated non-coding RNAs in the hibernating ground squirrel, Ictidomys tridecemlineatus. J. Therm. Biol. 2018, 75, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Pamok, S.; Aengwanich, W.; Komutrin, T. Adaptation to oxidative stress and impact of chronic oxidative stress on immunity in heat-stressed broilers. J. Therm. Biol. 2009, 34, 353–357. [Google Scholar] [CrossRef]
- Kalayarasan, S.; Sriram, N.; Sureshkumar, A.; Sudhandiran, G. Chromium (VI)-induced oxidative stress and apoptosis is reduced by garlic and its derivativeS-allylcysteine through the activation of Nrf2 in the hepatocytes of Wistar rats. J. Appl. Toxicol. 2008, 28, 908–919. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Niu, Y.; Zhang, H.; Xu, T.; Zeng, Q.; Storey, K.; Chen, Q. The effect of long-term cold acclimation on redox state and antioxidant defense in the high-altitude frog, Nanorana pleskei. J. Therm. Biol. 2021, 99, 103008. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.; Chen, A.; Wang, C.; He, M.; Xu, J.; He, F.; Xin, Z.; Lv, W.; Guo, Z. Amelioration effects of Kaempferol on immune response following chronic intermittent cold-stress. Res. Vet. Sci. 2019, 125, 390–396. [Google Scholar] [CrossRef] [PubMed]
- Shao, S.C. The non-canonical NF-κB pathway in immunity and inflammation. Nat. Rev. Immunol. 2017, 17, 545–558. [Google Scholar]
- Lee, K.H.; Biswas, A.; Liu, Y.J.; Kobayashi, K.S. Proteasomal degradation of NOD2 protein mediates tolerance to bacterial cell wall components. J. Biol. Chem. 2012, 287, 39800–39811. [Google Scholar] [CrossRef]
- Sivandzade, F.; Prasad, S.; Bhalerao, A.; Cucullo, L. Nrf2 and NF-κB interplay in cerebrovascular and neurodegenerative disorders: Molecular mechanisms and possible therapeutic approaches. Redox Biol. 2019, 21, 101059–101075. [Google Scholar] [CrossRef]
Physical Composition | % | Nutrient Composition | %, Unless Otherwise Stated |
---|---|---|---|
Corn | 14.58 | DE/(MJ/kg) 2 | 11.12 |
Asparagus | 50.00 | DM | 90.72 |
Alfalfa hay | 8.80 | CP | 13.62 |
Cottonseed meal | 8.26 | EE | 1.96 |
Soybean meal | 5.30 | NDF | 44.08 |
Wheat bran | 8.36 | ADF | 29.08 |
DDGS | 3.30 | Ash | 8.01 |
CaHPO4 | 0.12 | Ca | 0.83 |
NaCl | 0.30 | P | 0.21 |
NaHCO3 | 0.48 | ||
Premix 1 | 0.50 | ||
Total | 100 |
Gene | Gene Bank No. | Primer Sequence | Fragment Size | Annealing Temp (°C) |
---|---|---|---|---|
β-Actin | NM_001009784.1 | F- AGCGCAAGTACTCCGTGTG | 122 | 58 |
R- CATTTGCGGTGGACGATG | ||||
HSP70 | JN604434.1 | F- CCCACGAAGCAGACGCAGAT | 66 | 52 |
R-GCAGGTTGTTGTCCCGAGTCAT | ||||
HSP90 | EF091713.1 | F-GCATTCTCAGTTCATTGGCTATCC | 190 | 58 |
R- GTCCTTCTTCTCTTCCTCCTCTTC | ||||
HSF-1 | XM_015097629.1 | F-CAGCTGATGAAGGGGAAGCA | 158 | 56 |
R- TTTGACTGCACCAGCGAGAT | ||||
IL-1β | NM_001009465 | F- CGATGAGCTTCTGTGTGATG | 161 | 59 |
R-CTGTGAGAGGAGGTGGAGAG | ||||
IL-4 | AF1721681 | F-GCTGAACATCCTCACATCGAG | 87 | 60 |
R- TTCTCAGTTGCGTTCTTTGG | ||||
TNF-α | NM_001024860 | F- AGTCTGGGCAGGTCTACTTTG | 127 | 60 |
R-GGTAACTGAGGTGGGAGAGG | ||||
NF-κBp50 | XM_004009667.3 | F-AGCACCACTTATGACGGAACTACA | 168 | 60 |
R- GACCCCTTCATCCTCTCCATC | ||||
NF-κBp65 | XM_004020143.3 | F-GGAGGCCAAGGAACTGAAGA | 101 | 60 |
R-TCAGGGGCAGAGGAAGGAG | ||||
RIP2 | NC_040260.1 | F- CTCTGCGCTGTGTCCGTGTTC | 219 | 60 |
R-CAGGCTTCATCATCTGGCTCAC | ||||
Nrf2 | XM_004004557.1 | F:TGTGGAGGAGTTCAACGAGC | 88 | 61 |
R:CGCCGCCATCTTGTTCTTG | ||||
CAT | XM_004016396 | F:GAGCCCACCTGCAAAGTTCT | 148 | 60 |
R:CTCCTACTGGATTACCGGCG | ||||
GSH-Px | XM_004018462.1 | F:TGGTCGTACTCGGCTTCCC | 163 | 60 |
R:AGCGGATGCGCCTTCTCG | ||||
SOD1 | NM_001145185 | F:GGAGACCTGGGCAATGTGAA | 182 | 60 |
R:CCTCCAGCGTTTCCAGTCTT | ||||
SOD2 | NM_001280703.1 | F:AAACCGTCAGCCTTACACC | 116 | 60 |
R:ACAAGCCACGCTCAGAAAC |
Item | Treatment | p-Value | ||
---|---|---|---|---|
House | Outdoor | Polytunnel | ||
Temperature (°C) | −4.90 ± 3.60 a | −14.40 ± 4.70 b | −3.65 ± 3.98 a | 0.001 |
Relative humidity (%) | 69.13 ± 8.86 a | 55.21 ± 11.16 c | 62.28 ± 10.65 b | 0.001 |
Wind speed (m/s) | 0.06 ± 0.02 b | 0.45 ± 0.43 a | 0.07 ± 0.03 b | 0.001 |
NH3 (mg/m3) | 2.36 ± 0.83 a | 0.00 ± 0.00 c | 1.70 ± 0.99 b | 0.001 |
CO2 (mg/m3) | 372.83 ± 73.24 a | 274.44 ± 21.43 b | 326.15 ± 98.90 a | 0.001 |
Items | Treatment | p-Value | ||
---|---|---|---|---|
House | Outdoor | Polytunnel | ||
IBW (kg) | 16.28 ± 2.66 | 16.61 ± 2.51 | 16.40 ± 2.56 | 0.901 |
FBW (kg) | 18.61 ± 2.36 | 17.93 ± 2.61 | 18.99 ± 2.54 | 0.518 |
ADG (g/d) | 83.17 ± 26.61 a | 47.19 ± 9.31 b | 92.50 ± 26.91 a | 0.001 |
ADFI (g/d) | 577.40 ± 102.15 | 590.01 ± 123.05 | 633.68 ± 95.83 | 0.333 |
Items | Groups | p-Value | ||
---|---|---|---|---|
House | Outdoor | Polytunnel | ||
Scalp temperature (°C) | 13.66 ± 4.35 a | 10.39 ± 4.51 b | 12.83 ± 3.66 a | 0.001 |
Ear skin temperature (°C) | 10.92 ± 4.11 a | 8.64 ± 4.69 b | 11.15 ± 4.69 a | 0.001 |
Rectal temperature (°C) | 38.33 ± 0.54 | 38.37 ± 0.67 | 38.41 ± 0.63 | 0.770 |
Items | Group | p-Value | ||
---|---|---|---|---|
House | Outdoor | Polytunnel | ||
d 7 | ||||
INS (μIU/mL) | 7.31 ± 0.41 | 7.84 ± 1.78 | 7.61 ± 2.02 | 0.623 |
HSP70 (pg/mL) | 126.70 ± 24.91 | 134.60 ± 37.82 | 124.40 ± 18.21 | 0.648 |
HSP90 (pg/mL) | 521.70 ± 52.88 | 564.60 ± 53.20 | 554.80 ± 53.31 | 0.219 |
d 14 | ||||
INS (μIU/mL) | 7.55 ± 0.53 | 7.48 ± 1.94 | 7.91 ± 1.57 | 0.374 |
HSP70 (pg/mL) | 127.60 ± 6.08 | 133.60 ± 18.26 | 125.40 ± 8.74 | 0.335 |
HSP90 (pg/mL) | 523.10 ± 59.16 | 575.60 ± 63.38 | 536.80 ± 41.66 | 0.130 |
d 21 | ||||
INS (μIU/mL) | 7.84 ± 0.96 | 7.12 ± 1.26 | 8.04 ± 1.49 | 0.080 |
HSP70 (pg/mL) | 122.60 ± 16.15 | 129.50 ± 23.24 | 122.70 ± 10.45 | 0.617 |
HSP90 (pg/mL) | 545.88 ± 71.24 ab | 593.96 ± 51.11 a | 531.78 ± 25.04 b | 0.046 |
d 28 | ||||
INS (μIU/mL) | 7.87 ± 1.24 a | 6.75 ± 1.43 b | 8.31 ± 2.34 a | 0.012 |
HSP70 (pg/mL) | 123.3 ± 8.80 | 128.0 ± 12.12 | 120.2 ± 7.24 | 0.259 |
HSP90 (pg/mL) | 543.2 ± 38.42 b | 601.2 ± 63.41 a | 526.4 ± 49.87 b | 0.012 |
Item | Group | p-Value | ||
---|---|---|---|---|
House | Outdoor | Polytunnel | ||
d 7 | ||||
CAT (U/mL) | 1.48 ± 0.14 | 1.41 ± 0.16 | 1.53 ± 0.17 | 0.400 |
GSH-Px (U/mL) | 107.9 ± 15.22 | 102.8 ± 18.55 | 119.39 ± 17.88 | 0.266 |
T-SOD (U/mL) | 126.50 ± 11.16 | 115.18 ± 15.66 | 128.88 ± 11.44 | 0.126 |
T-AOC (U/mL) | 0.42 ± 0.08 | 0.37 ± 0.10 | 0.43 ± 0.06 | 0.365 |
MDA (nmol/mL) | 2.17 ± 0.29 | 2.20 ± 0.44 | 2.10 ± 0.36 | 0.863 |
d 14 | ||||
CAT (U/mL) | 1.46 ± 0.15 | 1.31 ± 0.20 | 1.56 ± 0.19 | 0.066 |
GSH-Px (U/mL) | 115.04 ± 25.22 | 99.49 ± 20.86 | 127.29 ± 23.25 | 0.241 |
T-SOD (U/mL) | 133.52 ± 11.13 a | 109.43 ± 15.30 b | 138.73 ± 16.78 a | 0.004 |
T-AOC (U/mL) | 0.46 ± 0.04 | 0.42 ± 0.03 | 0.45 ± 0.04 | 0.118 |
MDA (nmol/mL) | 2.10 ± 0.21 ab | 2.30 ± 0.25 a | 1.97 ± 0.44 b | 0.040 |
d 21 | ||||
CAT (U/mL) | 1.43 ± 0.19 a | 1.22 ± 0.15 b | 1.58 ± 0.21 a | 0.015 |
GSH-Px (U/mL) | 125.27 ± 11.85 a | 97.33 ± 21.86 b | 137.18 ± 14.65 a | 0.009 |
T-SOD (U/mL) | 135.46 ± 14.84 a | 107.82 ± 14.12 b | 145.08 ± 18.39 a | 0.014 |
T-AOC (U/mL) | 0.45 ± 0.07 | 0.40 ± 0.05 | 0.46 ± 0.04 | 0.054 |
MDA (nmol/mL) | 1.94 ± 0.32 b | 2.52 ± 0.35 a | 1.88 ± 0.24 b | 0.004 |
d 28 | ||||
CAT (U/mL) | 1.43 ± 0.22 a | 1.16 ± 0.17 b | 1.67 ± 0.20 a | 0.009 |
GSH-Px (U/mL) | 132.17 ± 10.55 a | 93.25 ± 19.19 b | 148.15 ± 14.31 a | 0.001 |
T-SOD (U/mL) | 136.84 ± 17.31 a | 104.02 ± 13.91 b | 151.07 ± 11.63 a | 0.006 |
T-AOC (U/mL) | 0.44 ± 0.06 a | 0.39 ± 0.08 b | 0.45 ± 0.05 a | 0.063 |
MDA (nmol/mL) | 1.91 ± 0.29 a | 2.70 ± 0.43 b | 1.82 ± 0.50 a | 0.001 |
Items | Group | p-Value | ||
---|---|---|---|---|
House | Outdoor | Polytunnel | ||
7 d | ||||
IgA (μg/mL) | 47.06 ± 4.06 | 47.34 ± 4.74 | 48.05 ± 5.43 | 0.905 |
IgG (mg/mL) | 12.35 ± 1.91 | 12.79 ± 2.93 | 12.43 ± 1.57 | 0.897 |
IgM (μg/mL) | 352.91 ± 18.55 | 362.00 ± 31.08 | 362.62 ± 40.94 | 0.428 |
IL-1β (pg/mL) | 12.37 ± 2.06 | 12.29 ± 2.21 | 11.82 ± 0.98 | 0.619 |
IL-4 (pg/mL) | 10.55 ± 0.48 | 10.60 ± 1.00 | 10.12 ± 0.95 | 0.416 |
TNF-α (pg/mL) | 26.70 ± 2.13 | 26.95 ± 2.64 | 27.22 ± 3.08 | 0.131 |
14 d | ||||
IgA (μg/mL) | 46.49 ± 2.37 | 46.80 ± 1.73 | 49.22 ± 2.76 | 0.054 |
IgG (mg/mL) | 12.33 ± 1.08 | 12.67 ± 1.60 | 13.55 ± 0.96 | 0.108 |
IgM (μg/mL) | 349.80 ± 18.50 | 352.02 ± 22.62 | 370.41 ± 20.59 | 0.296 |
IL-1β (pg/mL) | 12.85 ± 0.68 | 11.80 ± 1.22 | 12.47 ± 0.95 | 0.093 |
IL-4 (pg/mL) | 10.70 ± 1.32 | 10.13 ± 1.03 | 11.01 ± 1.28 | 0.294 |
TNF-α (pg/mL) | 29.92 ± 0.78 | 26.61 ± 1.89 | 28.72 ± 3.68 | 0.158 |
21 d | ||||
IgA (μg/mL) | 43.64 ± 5.23 | 41.81 ± 2.29 | 44.82 ± 4.78 | 0.414 |
IgG (mg/mL) | 12.77 ± 1.22 b | 12.05 ± 1.05 b | 13.67 ± 0.81 a | 0.030 |
IgM (μg/mL) | 342.1 ± 25.41 | 336.4 ± 18.36 | 353.64 ± 45.29 | 0.588 |
IL-1β (pg/mL) | 12.66 ± 1.06 | 12.74 ± 1.43 | 12.41 ± 1.13 | 0.826 |
IL-4 (pg/mL) | 9.21 ± 1.16 | 8.33 ± 0.40 | 9.47 ± 1.15 | 0.069 |
TNF-α (pg/mL) | 28.71 ± 2.58 a | 25.93 ± 1.84 b | 30.05 ± 2.96 a | 0.021 |
28 d | ||||
IgA (μg/mL) | 44.23 ± 3.30 b | 43.34 ± 2.58 b | 48.62 ± 2.62 a | 0.002 |
IgG (mg/mL) | 12.85 ± 0.84 b | 12.56 ± 0.75 b | 14.66 ± 1.88 a | 0.006 |
IgM (μg/mL) | 329.06 ± 38.01 | 323.43 ± 33.84 | 340.98 ± 22.26 | 0.770 |
IL-1β (pg/mL) | 12.37 ± 2.06 | 12.51 ± 0.66 | 13.64 ± 1.25 | 0.207 |
IL-4 (pg/mL) | 9.05 ± 0.75 ab | 8.62 ± 0.36 b | 9.65 ± 0.81 a | 0.016 |
TNF-α (pg/mL) | 28.70 ± 2.13 a | 26.76 ± 1.80 b | 31.73 ± 2.49 a | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, J.; Guo, W.; Han, Z.; Xu, Y.; Xing, Y.; Phillips, C.J.C.; Shi, B. The Effects of Housing on Growth, Immune Function and Antioxidant Status of Young Female Lambs in Cold Conditions. Animals 2024, 14, 518. https://doi.org/10.3390/ani14030518
Xiao J, Guo W, Han Z, Xu Y, Xing Y, Phillips CJC, Shi B. The Effects of Housing on Growth, Immune Function and Antioxidant Status of Young Female Lambs in Cold Conditions. Animals. 2024; 14(3):518. https://doi.org/10.3390/ani14030518
Chicago/Turabian StyleXiao, Jin, Wenliang Guo, Zhipeng Han, Yuanqing Xu, Yuanyuan Xing, Clive J. C. Phillips, and Binlin Shi. 2024. "The Effects of Housing on Growth, Immune Function and Antioxidant Status of Young Female Lambs in Cold Conditions" Animals 14, no. 3: 518. https://doi.org/10.3390/ani14030518
APA StyleXiao, J., Guo, W., Han, Z., Xu, Y., Xing, Y., Phillips, C. J. C., & Shi, B. (2024). The Effects of Housing on Growth, Immune Function and Antioxidant Status of Young Female Lambs in Cold Conditions. Animals, 14(3), 518. https://doi.org/10.3390/ani14030518