Semiochemicals from Domestic Cat Urine and Feces Reduce Use of Scratching Surfaces
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods and Materials
2.1. Animals
2.2. Sample Collection
2.3. Urine Extraction
2.4. Feces Extraction
2.5. Gas Chromatography-Mass Spectrometry (GC-MS)
2.6. Behavioral Assay
2.7. Statistical Analysis
3. Results
3.1. Urine Volatiles
3.2. Feces Volatiles
3.3. Behavioral Assay
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Owner | Cat | Sex a | Age (yrs) | Multi-Cat House | Dog in House | Outdoor Access | Kids in House | Sample Collection (SC) or Behavioral Test (BT) |
---|---|---|---|---|---|---|---|---|
Lingna | Poo | SF | 1 | No | Yes | No | No | BT |
Jackie | SF | 2 | Yes | No | Yes | No | BT | |
Midnight | NM | 3 | ||||||
Andrea | Harley | SF | 1 | |||||
Marble | NM | 1 | ||||||
Buggy | SF | 1 | ||||||
Tigers | NM | 15 | ||||||
Mittens | SF | 2 | ||||||
Neighbor | Wisper | SF | 5 | Yes | No | Yes | Yes | BT |
Bonbon | NM | 9 | No | |||||
Fattie | NM | 10 | ||||||
Footie | NM | 10 | ||||||
Tristin | Bella | SF | 1 | Yes | No | No | No | BT |
Slick | NM | 1 | ||||||
Shelter | Smoky | M | 5 | BT | ||||
Leroy | M | 2 | BT | |||||
Deb | F | 3 | BT | |||||
Harvey | F | 1 | BT | |||||
Alley | M | 1 | BT | |||||
Mickey | M | 3 | BT and SC (urine and feces) | |||||
Butterzinger | F | 1 | BT and SC (urine) | |||||
Fancy | F | 3 | SC (feces) | |||||
Mickey2 | M | 1 | BT | |||||
Bitty | M | 1 | BT and SC (urine and feces) | |||||
Carrie | F | 3 | BT and SC (urine) | |||||
Bengency | M | 2 | BT | |||||
Shairy | F | 1 | BT | |||||
Mom | F | 3 | BT | |||||
Zeke | M | 1 | SC (urine and feces) | |||||
Karate | M | 1 | SC (feces) | |||||
Pep | M | 2 | SC (urine and feces) | |||||
Sundra | M | 3 | SC (feces) | |||||
Loki | M | 1 | SC (urine and feces) | |||||
Duke | M | 1 | SC (urine and feces) | |||||
Bruce | M | 3 | SC (urine and feces) | |||||
JoJo | F | 2 | SC (urine) | |||||
Sophira | F | 2 | SC (urine) | |||||
Jetson | F | 2 | SC (urine) | |||||
Dean | M | 3 | SC (feces) | |||||
Cat13 | F | 1 | SC (feces) | |||||
Zoie | F | 1 | SC (urine and feces) | |||||
Elsa | F | 2 | SC (feces) | |||||
Heidi | F | 1 | SC (feces) | |||||
Eleven | F | 1 | SC (urine and feces) | |||||
Sara | F | 2 | SC (feces) | |||||
Suize | F | 3 | SC (feces) |
References
- Pageat, P.; Lafont, C.; Falewée, C.; Bonnafous, L.; Gaultier, E.; Silliart, B. An Evaluation of Serum Prolactin in Anxious Dogs and Response to Treatment with Selegiline or Fluoxetine. Appl. Anim. Behav. Sci. 2007, 105, 342–350. [Google Scholar] [CrossRef]
- Mermet, N.; Coureaud, G.; McGrane, S.; Schaal, B. Odour-Guided Social Behaviour in Newborn and Young Cats: An Analytical Survey. Chemoecology 2007, 17, 187–199. [Google Scholar] [CrossRef]
- Shreve, K.R.V.; Udell, M.A. Stress, Security, and Scent: The Influence of Chemical Signals on the Social Lives of Domestic Cats and Implications for Applied Settings. Appl. Anim. Behav. Sci. 2017, 187, 69–76. [Google Scholar] [CrossRef]
- Vitale, K.R. Tools for Managing Feline Problem Behaviors: Pheromone Therapy. J. Feline Med. Surg. 2018, 20, 1024–1032. [Google Scholar] [CrossRef] [PubMed]
- Pageat, P.; Gaultier, E. Current Research in Canine and Feline Pheromones. Vet. Clin. Small Anim. Pract. 2003, 33, 187–211. [Google Scholar] [CrossRef] [PubMed]
- Cozzi, A.; Lecuelle, C.L.; Monneret, P.; Articlaux, F.; Bougrat, L.; Mengoli, M.; Pageat, P. Induction of Scratching Behaviour in Cats: Efficacy of Synthetic Feline Interdigital Semiochemical. J. Feline Med. Surg. 2013, 15, 872–878. [Google Scholar] [CrossRef] [PubMed]
- Feldman, H.N. Methods of Scent Marking in the Domestic Cat. Can. J. Zool. 1994, 72, 1093–1099. [Google Scholar] [CrossRef]
- Ishida, Y.; Shimizu, M. Influence of Social Rank on Defecating Behaviors in Feral Cats. J. Ethol. 1998, 16, 15–21. [Google Scholar] [CrossRef]
- Crowell-Davis, S.L.; Curtis, T.M.; Knowles, R.J. Social Organization in the Cat: A Modern Understanding. J. Feline Med. Surg. 2004, 6, 19–28. [Google Scholar] [CrossRef]
- Miyazaki, M.; Yamashita, T.; Suzuki, Y.; Saito, Y.; Soeta, S.; Taira, H.; Suzuki, A. A Major Urinary Protein of the Domestic Cat Regulates the Production of Felinine, a Putative Pheromone Precursor. Chem. Biol. 2006, 13, 1071–1079. [Google Scholar] [CrossRef]
- Miyazaki, T.; Nishimura, T.; Yamashita, T.; Miyazaki, M. Olfactory Discrimination of Anal Sac Secretions in the Domestic Cat and the Chemical Profiles of the Volatile Compounds. J. Ethol. 2018, 36, 99–105. [Google Scholar] [CrossRef]
- Miyazaki, M.; Nishimura, T.; Hojo, W.; Miyazaki, T.; Laine, R.A.; Yamashita, T. Potential Use of Domestic Cat (Felis catus) Urinary Extracts for Manipulating the Behavior of Free-Roaming Cats and Wild Small Felids. Appl. Anim. Behav. Sci. 2017, 196, 52–60. [Google Scholar] [CrossRef]
- McGlone, J.J.; Garcia, A.; Thompson, W.G.; Pirner, G.M. Maternal-Neonatal Pheromone/Interomone Added to Cat Litter Improves Litter Box Use and Reduces Aggression in Pair-Housed Cats. J. Appl. Anim. Welf. Sci. 2019, 22, 127–138. [Google Scholar] [CrossRef]
- Hart, B. Behavioral Aspects of Scratching in Cats. Feline Pr. 1972, 2, 6–8. [Google Scholar]
- Heath, S.E. Behaviour Problems and Welfare. In The Welfare of Cats; Springer: Berlin/Heidelberg, Germany, 2007; pp. 91–118. [Google Scholar]
- Heidenberger, E. Housing Conditions and Behavioural Problems of Indoor Cats as Assessed by Their Owners. Appl. Anim. Behav. Sci. 1997, 52, 345–364. [Google Scholar] [CrossRef]
- Mengoli, M.; Mariti, C.; Cozzi, A.; Cestarollo, E.; Lafont-Lecuelle, C.; Pageat, P.; Gazzano, A. Scratching Behaviour and Its Features: A Questionnaire-Based Study in an Italian Sample of Domestic Cats. J. Feline Med. Surg. 2013, 15, 886–892. [Google Scholar] [CrossRef]
- Wilson, C.; Bain, M.; DePorter, T.; Beck, A.; Grassi, V.; Landsberg, G. Owner Observations Regarding Cat Scratching Behavior: An Internet-Based Survey. J. Feline Med. Surg. 2016, 18, 791–797. [Google Scholar] [CrossRef]
- Moesta, A.; Keys, D.; Crowell-Davis, S. Survey of Cat Owners on Features of, and Preventative Measures for, Feline Scratching of Inappropriate Objects: A Pilot Study. J. Feline Med. Surg. 2018, 20, 891–899. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Plummer, R.; McGlone, J. Preference of Kittens for Scratchers. J. Feline Med. Surg. 2019, 21, 691–699. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; McGlone, J.J. Scratcher Preferences of Adult In-Home Cats and Effects of Olfactory Supplements on Cat Scratching. Appl. Anim. Behav. Sci. 2020, 227, 104997. [Google Scholar] [CrossRef]
- Bol, S.; Caspers, J.; Buckingham, L.; Anderson-Shelton, G.D.; Ridgway, C.; Buffington, C.T.; Schulz, S.; Bunnik, E.M. Responsiveness of Cats (Felidae) to Silver Vine (Actinidia polygama), Tatarian Honeysuckle (Lonicera tatarica), Valerian (Valeriana officinalis) and Catnip (Nepeta cataria). BMC Vet. Res. 2017, 13, 70. [Google Scholar] [CrossRef] [PubMed]
- Anastassiades, M.; Lehotay, S.J.; Štajnbaher, D.; Schenck, F.J. Fast and Easy Multiresidue Method Employing Acetonitrile Extraction/Partitioning and “Dispersive Solid-Phase Extraction” for the Determination of Pesticide Residues in Produce. J. AOAC Int. 2003, 86, 412–431. [Google Scholar] [CrossRef] [PubMed]
- Landsberg, G.M. Feline Scratching and Destruction and the Effects of Declawing. Vet. Clin. North Am. Small Anim. Pract. 1991, 21, 265–279. [Google Scholar] [CrossRef] [PubMed]
- Rebière, L.; Clark, A.C.; Schmidtke, L.M.; Prenzler, P.D.; Scollary, G.R. A Robust Method for Quantification of Volatile Compounds within and between Vintages Using Headspace-Solid-Phase Micro-Extraction Coupled with GC–MS—Application on Semillon Wines. Anal. Chim. Acta 2010, 660, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, C.; Miyazaki, T.; Yamashita, T.; Miyazaki, M. GC × GC-MS-Based Volatile Profiling of Male Domestic Cat Urine and the Olfactory Abilities of Cats to Discriminate Temporal Changes and Individual Differences in Urine. J. Chem. Ecol. 2019, 45, 579–587. [Google Scholar] [CrossRef]
- Hendriks, W.H.; Moughan, P.J.; Tarttelin, M.F.; Woolhouse, A.D. Felinine: A Urinary Amino Acid of Felidae. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 1995, 112, 581–588. [Google Scholar] [CrossRef]
- Hendriks, W.H.; Tarttelin, M.F.; Moughan, P.J. Twenty-Four Hour Feline Excretion Patterns in Entire and Castrated Cats. Physiol. Behav. 1995, 58, 467–469. [Google Scholar] [CrossRef]
- Barry, K.; Wojcicki, B.; Middelbos, I.; Vester, B.; Swanson, K.; Fahey Jr, G. Dietary Cellulose, Fructooligosaccharides, and Pectin Modify Fecal Protein Catabolites and Microbial Populations in Adult Cats. J. Anim. Sci. 2010, 88, 2978–2987. [Google Scholar] [CrossRef] [PubMed]
- Brosey, B.P.; Hill, R.C.; Scott, K.C. Gastrointestinal Volatile Fatty Acid Concentrations and pH in Cats. Am. J. Vet. Res. 2000, 61, 359–361. [Google Scholar] [CrossRef]
- Englyst, H.; Hay, S.; Macfarlane, G. Polysaccharide Breakdown by Mixed Populations of Human Faecal Bacteria. FEMS Microbiol. Ecol. 1987, 3, 163–171. [Google Scholar] [CrossRef]
- Passanisi, W.; Macdonald, D. Group Discrimination on the Basis of Urine in a Farm Cat Colony. Chem. Signals Vertebr. 1990, 5, 337–345. [Google Scholar]
- Pryor, P.A.; Hart, B.L.; Bain, M.J.; Cliff, K.D. Causes of Urine Marking in Cats and Effects of Environmental Management on Frequency of Marking. J. Am. Vet. Med. Assoc. 2001, 219, 1709–1713. [Google Scholar] [CrossRef]
- Bradshaw, J.W. The Behaviour of the Domestic Cat; Cabi: Wallingford, UK, 2012. [Google Scholar]
- Jensen, H.A.; Meilby, H.; Nielsen, S.S.; Sandøe, P. Movement Patterns of Roaming Companion Cats in Denmark—A Study Based on GPS Tracking. Animals 2022, 12, 1748. [Google Scholar] [CrossRef]
- Hart, B.L.; Eckstein, R.A. The Role of Gonadal Hormones in the Occurrence of Objectionable Behaviours in Dogs and Cats. Appl. Anim. Behav. Sci. 1997, 52, 331–344. [Google Scholar] [CrossRef]
- Diamond, J.; Dalton, P.; Doolittle, N.; Breslin, P.A. Gender-Specific Olfactory Sensitization: Hormonal and Cognitive Influences. Chem. Senses 2005, 30, i224–i225. [Google Scholar] [CrossRef] [PubMed]
- Stella, J.; Croney, C.; Buffington, T. Effects of Stressors on the Behavior and Physiology of Domestic Cats. Appl. Anim. Behav. Sci. 2013, 143, 157–163. [Google Scholar] [CrossRef]
- Ellis, S.L. Environmental Enrichment: Practical Strategies for Improving Feline Welfare. J. Feline Med. Surg. 2009, 11, 901–912. [Google Scholar] [CrossRef] [PubMed]
- Bian, Z.; Fan, Z.; Xiao, T.; Yan, J.; Ren, R.; Xu, S.; Deng, B.; Zhang, L. Effects of Species-Relevant Auditory Stimuli on Stress in Cats Exposed to Novel Environment. J. Appl. Anim. Welf. Sci. 2023, 1–10. [Google Scholar] [CrossRef] [PubMed]
Behavior | Definition |
---|---|
Scratching | With front claws extended, cat grips the material, and its claws withdraw and extend alternately. |
Interaction -not scratching | Other active behaviors exhibited by cats on the scratcher and the sock, including climbing on, pawing, kicking or rubbing against the scratcher; sniffing, licking, pawing, or rubbing against the sock. |
Total interaction | Sum of scratching and non-scratching interactions. |
Preference Index (PI) | PI of specific measurement was calculated as the measurement of one scratcher divided by the measurement summed for both control and treated scratchers. |
Peak a | RT | Candidate | Formula | m/z b | Matching c |
---|---|---|---|---|---|
a | 7.92 | 3-Mercapto-3-Methyl Butanol * | C5H12OS | 69 | 92.15% |
b | 10.17 | 2-4-Dimethyl-Benzaldehyde | C9H10O | 133 | 23.48% |
c | 12.24 | Cis-Jasmone | C11H16O | 79 | 43.04% |
d | 13.33 | 2,3-Dethydropiperidin-6-one | C5H7NO | 97 | 49.14% |
e | 13.82 | P-Cresol/4-Methyl-Phenol * | C7H8O | 107 | 31.30% |
f | 25.64 | 4-Heptanol, 2, 6-Dimethyl | C9H20O | 69 | 35.85% |
Candidate Molecule | Female | Male | SE a | Df b | Statistics c | p-Value d |
---|---|---|---|---|---|---|
3-Mercapto-3-Methyl Butanol | 0.02 | 0.14 | 0.02 | 6 | −3.04 | 0.02 |
2-4-Dimethyl-Benzaldehyde | 0.11 | 0.09 | 0.01 | 12 | 0.92 | 0.38 |
Cis-Jasmone | 0.09 | 0.04 | 0.02 | 7 | 1.42 | 0.19 |
2,3-Dethydropiperidin-6-one | 0.06 | 0.08 | 0.02 | 12 | −0.48 | 0.64 |
P-Cresol/4-Methyl-Phenol | 0.59 | 0.65 | 0.15 | 8 | −0.27 | 0.79 |
4-Heptanol, 2, 6-Dimethyl | 0.06 | 0.24 | 0.04 | 7 | −2.43 | 0.05 |
Peak a | RT | Candidate Molecules | Formula | m/z b | Matching c |
---|---|---|---|---|---|
a | 5.50 | Acetic acid * | C2H4O2 | 60 | 57.89% |
b | 6.50 | Propanoic acid | C3H6O2 | 74 | 34.47% |
c | 7.59 | Butanoic acid/butyric acid * | C4H8O2 | 60 | 78.24% |
d | 8.35 | Isovaleric acid/3-methyl-butanoic acid * | C5H10O2 | 60 | 69.56% |
e | 9.32 | Pentanoic acid | C5H10O2 | 60 | 46.37% |
f | 11.13 | Hexonoic acid | C6H12O2 | 60 | 80.65% |
g | 13.82 | P-cresol/4-methyl-phenol * | C7H8O | 107 | 30.73% |
h | 14.39 | 2-Piperidinone | C5H9NO | 99 | 76.51% |
i | 16.71 | 4-Methyl-5-thiazoleethanol | C6H9NOS | 112 | 67.16% |
j | 17.27 | Hexadecanoic acid,ethyl ester | C18H36O2 | 88 | 22.48% |
k | 17.98 | Q-Docecalactone | C12H22O | 85 | 40.66% |
l | 18.30 | 1-H indole | C8H7N | 117 | 31.36% |
m | 18.77 | Hexadecen-1-ol, trans-9- | C16H32O | 55 | 14.35% |
n | 20.56 | 9-Octadecenoic acid (Z)- ethyl ester | C20H38O2 | 55 | 14.97% |
o | 22.73 | Carbonic acid, ethyl octadecyl ester | C21H42O3 | 91 | 17.64% |
p | 23.11 | Propanedioic acid, phenol | C9H8O4 | 91 | 35.60% |
q | 34.11 | Hexadecanoic acid | C16H32O2 | 55 | 14.35% |
r | 35.62 | Oleic acid/8-Octadecenoc acid | C18H34O2 | 55 | 17.54% |
s | 52.39 | cis-Vaccenic acid | C18H34O2 | 55 | 16.37% |
t | 56.24 | Lenoelaidic acid | C18H32O2 | 67 | 10.89% |
Candidate Molecule | Female | Male | SE a | Statistics b | p-Value c |
---|---|---|---|---|---|
Acetic acid * | 0.40 | 0.52 | 0.07 | −1.07 | 0.14 |
Propanoic acid | 0.66 | 0.56 | 0.10 | 0.70 | 0.49 |
Butanoic acid/butyric acid | 2.78 | 4.85 | 0.63 | −2.28 | 0.04 |
Isovaleric acid/3-methyl-butanoic acid | 0.93 | 0.68 | 0.10 | 1.76 | 0.10 |
Pentanoic acid | 2.40 | 2.81 | 0.43 | −0.61 | 0.55 |
Hexonoic acid | 1.22 | 0.93 | 0.21 | 0.98 | 0.34 |
P-cresol/4-methyl-phenol * | 0.53 | 0.33 | 0.12 | 1.69 | 0.09 |
2-Piperidinone * | 0.25 | 0.20 | 0.05 | 0.62 | 0.53 |
4-Methyl-5-thiazoleethanol | 0.02 | 0.02 | 0.00 | 0.86 | 0.40 |
Hexadecanoic acid, ethyl ester * | 0.09 | 0.08 | 0.03 | 0.36 | 0.72 |
Q-Docecalactone * | 0.01 | 0.02 | 0.00 | −1.95 | 0.05 |
1-H indole * | 0.24 | 0.22 | 0.07 | 0.27 | 0.79 |
Hexadecen-1-ol, trans-9- * | 0.16 | 0.12 | 0.04 | 0.89 | 0.37 |
9-Octadecenoic acid (Z)-athyl ester * | 0.13 | 0.04 | 0.03 | 2.22 | 0.03 |
Carbonic acid, ethyl octadecyl ester * | 0.31 | 0.29 | 0.01 | 0.20 | 0.84 |
Propanedioic acid, phenol * | 0.23 | 0.44 | 0.11 | −0.71 | 0.48 |
Hexadecanoic acid | 0.15 | 0.15 | 0.03 | 0.02 | 0.99 |
Oleic acid/8-Octadecenoc acid * | 1.76 | 2.41 | 0.43 | −1.16 | 0.25 |
cis-Vaccenic acid * | 0.40 | 0.50 | 0.14 | −0.62 | 0.53 |
Lenoelaidic acid * | 0.40 | 0.52 | 0.07 | −1.07 | 0.14 |
Molecules | Female CI a | Male CI a | Statistics b | p-Value c |
---|---|---|---|---|
MMB (µg/mL urine) | 0.00–1.63 | 2.22–10.99 | 3.18 | <0.001 |
Butanoic Acid (µg/g DM) | 5050–18,348 | 16271–30,090 | 2.70 | 0.02 |
Measurement Preference Index (PI) a | Treatment | p-Value b | ||
---|---|---|---|---|
Control | Volatile | TRT | TRT*sex | |
Scratching duration PI | 0.63 0.08 b | 0.10 0.28 a | 0.0007 | 0.29 |
(95% CI) | (0.41, 0.82) | (0.01, 0.27) | ||
Interaction duration PI | 0.70 0.12 b | 0.30 0.32 a | 0.002 | 0.03 |
(95% CI) | (0.53, 0.85) | (0.15, 0.47) | ||
Scratching frequency PI | 0.56 0.09 b | 0.14 0.27 a | 0.006 | 0.14 |
(95% CI) | (0.34, 0.77) | (0.03, 0.33) | ||
Interaction frequency PI | 0.61 0.17 b | 0.39 0.29 a | 0.08 | 0.08 |
(95% CI) | (0.43, 0.77) | (0.27, 0.57) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Aviles-Rosa, E.O.; Bian, Z.; Surowiec, K.; McGlone, J.J. Semiochemicals from Domestic Cat Urine and Feces Reduce Use of Scratching Surfaces. Animals 2024, 14, 520. https://doi.org/10.3390/ani14030520
Zhang L, Aviles-Rosa EO, Bian Z, Surowiec K, McGlone JJ. Semiochemicals from Domestic Cat Urine and Feces Reduce Use of Scratching Surfaces. Animals. 2024; 14(3):520. https://doi.org/10.3390/ani14030520
Chicago/Turabian StyleZhang, Lingna, Edgar O. Aviles-Rosa, Zhaowei Bian, Kaz Surowiec, and John J. McGlone. 2024. "Semiochemicals from Domestic Cat Urine and Feces Reduce Use of Scratching Surfaces" Animals 14, no. 3: 520. https://doi.org/10.3390/ani14030520
APA StyleZhang, L., Aviles-Rosa, E. O., Bian, Z., Surowiec, K., & McGlone, J. J. (2024). Semiochemicals from Domestic Cat Urine and Feces Reduce Use of Scratching Surfaces. Animals, 14(3), 520. https://doi.org/10.3390/ani14030520