Application of Infrared Thermography in the Rehabilitation of Patients in Veterinary Medicine
Abstract
:Simple Summary
Abstract
1. Introduction
2. Search Methodology
3. Thermal Response Associated with Physical Therapy
4. Gait Evaluation and Lameness Recognition
5. Thermal Imaging as a Tool to Monitor the Treatment of Orthopedic Patients
6. Infrared Thermal Monitoring during Rehabilitation Techniques
7. Perspectives and Limitations of Infrared Thermal Imaging
Factor | Temperature Variation | Environment | Reference |
---|---|---|---|
Direct solar radiation | 0.7–0.8 °C | Exterior | Barreto et al. [91] |
Wind speed | 0.43–0.78 °C | Exterior | Church et al. [81] |
Distance from the object | 0.03–1.2 °C | Interior or exterior | Faye et al. [92], Montmany and Tattersall [93] |
Camera angle | 0.8–2 °C | Interior | Montmany and Tattersall [93], Jiao et al. [94] |
Hair length | 0.3–0.5 °C | Interior or exterior | Nomura et al. [95] |
Type of coat (hair, glabrous skin, feathers) | 2–3.6 °C | Interior or exterior | Mota-Rojas et al. [96] |
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tattersall, G.J. Infrared Thermography: A Non-Invasive Window into Thermal Physiology. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2016, 202, 78–98. [Google Scholar] [CrossRef] [PubMed]
- Mota-Rojas, D.; Pereira, A.M.F.; Wang, D.; Martínez-Burnes, J.; Ghezzi, M.; Hernández-Avalos, I.; Lendez, P.; Mora-Medina, P.; Casas, A.; Olmos-Hernández, A.; et al. Clinical Applications and Factors Involved in Validating Thermal Windows Used in Infrared Thermography in Cattle and River Buffalo to Assess Health and Productivity. Animals 2021, 11, 2247. [Google Scholar] [CrossRef] [PubMed]
- Ponamarev, V.; Konoplev, V.; Kovalev, S.; Yashin, A.; Prusakov, A.; Tuvardzhiev, A.; Kostrova, A. Physiotherapy in Treatment of Tendinitis in Horses. In Proceedings of the International Conference “Sustainable Development: Veterinary Medicine, Agriculture, Engineering and Ecology” (VMAEE2022), Moscow, Russia, 18–20 April 2022; AIP Publishing: Melville, NY, USA, 2023; p. 020036. [Google Scholar]
- Loughmiller, J.A.; Spire, M.F.; Dritz, S.S.; Fenwick, B.W.; Hosni, M.H.; Hogge, S.B. Relationship between Mean Body Surface Temperature Measured by Use of Infrared Thermography and Ambient Temperature in Clinically Normal Pigs and Pigs Inoculated with Actinobacillus Pleuropneumoniae. Am. J. Vet. Res. 2001, 62, 676–681. [Google Scholar] [CrossRef] [PubMed]
- Weschenfelder, A.V.; Saucier, L.; Maldague, X.; Rocha, L.M.; Schaefer, A.L.; Faucitano, L. Use of Infrared Ocular Thermography to Assess Physiological Conditions of Pigs Prior to Slaughter and Predict Pork Quality Variation. Meat Sci. 2013, 95, 616–620. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Oliva, A.; Hernández-Ávalos, I.; Olmos-Hernández, A.; Villegas-Juache, J.; Verduzco-Mendoza, A.; Mota-Rojas, D. Thermal Response of Laboratory Rats (Rattus Norvegicus) during the Application of Six Methods of Euthanasia Assessed by Infrared Thermography. Animals 2023, 13, 2820. [Google Scholar] [CrossRef] [PubMed]
- Čebulj-Kadunc, N.; Frangež, R.; Kruljc, P. Infrared Thermography in Equine Practice. Vet. Stanica 2020, 51, 425–432. [Google Scholar] [CrossRef]
- Childs, C. Body Temperature and Clinical Thermometry. In Thermoregulation: From Basic Neuroscience to Clinical Neurology, Part II; Romanovsky, A.A., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 467–482. [Google Scholar]
- Vainionpää, M. Thermographic Imaging in Cats and Dogs Usability as a Clinical Method; University of Helsinki: Helsinki, Finland, 2014. [Google Scholar]
- Mota-Rojas, D.; Olmos-Hernández, A.; Verduzco-Mendoza, A.; Lecona-Butrón, H.; Martínez-Burnes, J.; Mora-Medina, P.; Gómez-Prado, J.; Orihuela, A. Infrared Thermal Imaging Associated with Pain in Laboratory. Exp. Anim. 2021, 70, 1. [Google Scholar] [CrossRef]
- Soroko, M.; Henklewski, R.; Filipowski, H.; Jodkowska, E. The Effectiveness of Thermographic Analysis in Equine Orthopedics. J. Equine Vet. Sci. 2013, 33, 760–762. [Google Scholar] [CrossRef]
- Gabrić, D.; Aumiler, D.; Vuletić, M.; Gjorgievska, E.; Blašković, M.; Mladenov, M.; Pavlić, V. Thermal Evaluation by Infrared Thermography Measurement of Osteotomies Performed with Er:YAG Laser, Piezosurgery and Surgical Drill—An Animal Study. Materials 2021, 14, 3051. [Google Scholar] [CrossRef]
- Whittaker, A.L.; Muns, R.; Wang, D.; Martínez-Burnes, J.; Hernández-Ávalos, I.; Casas-Alvarado, A.; Domínguez-Oliva, A.; Mota-Rojas, D. Assessment of Pain and Inflammation in Domestic Animals Using Infrared Thermography: A Narrative Review. Animals 2023, 13, 2065. [Google Scholar] [CrossRef]
- Schiavon, G.; Capone, G.; Frize, M.; Zaffagnini, S.; Candrian, C.; Filardo, G. Infrared Thermography for the Evaluation of Inflammatory and Degenerative Joint Diseases: A Systematic Review. Cartilage 2021, 13, 1790S–1801S. [Google Scholar] [CrossRef]
- Chaudhry, S.; Fernando, R.; Screen, H.; Waugh, C.; Tucker, A.; Morrissey, D. The Use of Medical Infrared Thermography in the Detection of Tendinopathy: A Systematic Review. Phys. Ther. Rev. 2016, 21, 75–82. [Google Scholar] [CrossRef]
- Mota-Rojas, D.; Ogi, A.; Villanueva-García, D.; Hernández-Ávalos, I.; Casas-Alvarado, A.; Domínguez-Oliva, A.; Lendez, P.; Ghezzi, M. Thermal Imaging as a Method to Indirectly Assess Peripheral Vascular Integrity and Tissue Viability in Veterinary Medicine: Animal Models and Clinical Applications. Animals 2023, 14, 142. [Google Scholar] [CrossRef] [PubMed]
- Mota-Rojas, D.; Ghezzi, M.D.; Hernández-Avalos, I.; Domínguez-Oliva, A.; Casas-Alvarado, A.; Lendez, P.; Ceriani, C.; Wang, D.-H. Hypothalamic Neuromodulation of Hypothermia in Domestic Animals. Animals 2024, 15, 513. [Google Scholar] [CrossRef] [PubMed]
- Cid, V.; Carlos, D.L.; González, M.; Castillo, R.; Amín, E. Thermography Applied in Health: Clinical Case of Physical Rehabilitation. J. Agric. Life Sci. 2021, 8, 1–10. [Google Scholar]
- Lubkowska, A.; Pluta, W. Infrared Thermography as a Non-Invasive Tool in Musculoskeletal Disease Rehabilitation—The Control Variables in Applicability—A Systematic Review. Appl. Sci. 2022, 12, 4302. [Google Scholar] [CrossRef]
- Yarnell, K.; Fleming, J.; Stratton, T.D.; Brassington, R. Monitoring Changes in Skin Temperature Associated with Exercise in Horses on a Water Treadmill by Use of Infrared Thermography. J. Therm. Biol. 2014, 45, 110–116. [Google Scholar] [CrossRef]
- Guarnieri, P.; Pagnussatt, H.; Aniecevski, E.; Dal Santo, A.; Leite, F.; Valentini, F.D.A.; Facchi, C.S.; Zaccaron, G.; Bosetti, G.E.; Rossatto, G.; et al. Comparison between Infrared and Hot-Blade Beak Trimming Methods in White and Brown Pullets: Performance, Organ and Bone Development. Arq. Bras. Med. Vet. Zootec. 2020, 72, 2373–2380. [Google Scholar] [CrossRef]
- Corti, L. Nonpharmaceutical Approaches to Pain Management. Top. Companion Anim. Med. 2014, 29, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Formenton, M.R. Physiotherapy for Pain Control in Dogs and Cats. J. Yoga Physiother. 2018, 4, 555646. [Google Scholar] [CrossRef]
- Dybczyńska, M.; Goleman, M.; Garbiec, A.; Karpiński, M. Selected Techniques for Physiotherapy in Dogs. Animals 2022, 12, 1760. [Google Scholar] [CrossRef]
- Zheng, Y.; Chang, K.; Gong, X. Effects of Preconditioning with Transcutaneous Electrical Nerve Stimulation Monitored by Infrared Thermography on the Survival of Pedicled Perforator Flaps in a Rat Model. Ann. Plast. Surg. 2022, 89, 444–450. [Google Scholar] [CrossRef]
- Zielińska, P.; Soroko-Dubrovina, M.; Dudek, K.; Ruzhanova-Gospodinova, I.S. A Preliminary Study of the Influence of High Intensity Laser Therapy (HILT) on Skin Surface Temperature and Longissimus Dorsi Muscle Tone Changes in Thoroughbred Racehorses with Back Pain. Animals 2023, 13, 794. [Google Scholar] [CrossRef] [PubMed]
- Dewey, C.; Xie, H. The Scientific Basis of Acupuncture for Veterinary Pain Management: A Review Based on Relevant Literature from the Last Two Decades. Open Vet. J. 2021, 11, 203. [Google Scholar] [CrossRef]
- de Albuquerque, S.P.; Martins, O.d.C.; de Aguiar, A.; Silva, L.O.; Pacheco, A.D.; Pessoa, L.M.B.; Maggi, L.E.; de Souza, S.F. Pelvic Limb Thermography in Dogs Submitted to Different Thermotherapy Modalities. Turk. J. Vet. Anim. Sci. 2021, 45, 37–43. [Google Scholar] [CrossRef]
- Alves, J.C.; Santos, A.; Jorge, P.; Carreira, L.M. A Randomized Double-Blinded Controlled Trial on the Effects of Photobiomodulation Therapy in Dogs with Osteoarthritis. Am. J. Vet. Res. 2022, 83, 36. [Google Scholar] [CrossRef] [PubMed]
- Mota-Rojas, D.; Titto, C.G.; Orihuela, A.; Martínez-Burnes, J.; Gómez-Prado, J.; Torres-Bernal, F.; Flores-Padilla, K.; Carvajal-de la Fuente, V.; Wang, D. Physiological and Behavioral Mechanisms of Thermoregulation in Mammals. Animals 2021, 11, 1733. [Google Scholar] [CrossRef] [PubMed]
- Napolitano, F.; De Rosa, G.; Chay-Canul, A.; Álvarez-Macías, A.; Pereira, A.M.F.; Bragaglio, A.; Mora-Medina, P.; Rodríguez-González, D.; García-Herrera, R.; Hernández-Ávalos, I.; et al. The Challenge of Global Warming in Water Buffalo Farming: Physiological and Behavioral Aspects and Strategies to Face Heat Stress. Animals 2023, 13, 3103. [Google Scholar] [CrossRef] [PubMed]
- Redaelli, V.; Ludwig, N.; Nanni Costa, L.; Crosta, L.; Riva, J.; Luzi, F. Potential Application of Thermigraphy (IRT) in Animal Production and for Animal Welfare. A Case Report of Working Dogs. Ann. Ist. Super. Sanita 2014, 50, 147–152. [Google Scholar]
- von Schweinitz, D.G. Thermographic Diagnostics in Equine Back Pain. Vet. Clin. N. Am. Equine Pract. 1999, 15, 161–177. [Google Scholar] [CrossRef]
- Coelho, I.A.; Cerutti, M.L.; Arruda, G.; Kraus, S.I.; Lorbiéski, J.K.; de Souza, R.C.; Pansini, M.; Valente, C. Acupuncture and Laserpuncture as a Therapeutic Approach for Nociception and Inflammation: An Experimental Study in Mice. An. Acad. Bras. Cienc. 2023, 95, e20230104. [Google Scholar] [CrossRef]
- Trudova, L.; Stekolnikov, A.; Smolin, A.; Bluzma, A.; Titova, E. Physiotherapy in the Rehabilitation of Sledge Dogs. E3S Web Conf. 2021, 254, 1–6. [Google Scholar] [CrossRef]
- Parmen, V.; Pestean, C.; Ober, C.; Mircean, M.; Ognean, L.; Oana, L. Influence of Electroacupuncture on Thermal Changes in a Soft Tissue Defect. J. Acupunct. Meridian Stud. 2014, 7, 238–242. [Google Scholar] [CrossRef]
- Rizzo, M.; Arfuso, F.; Giudice, E.; Abbate, F.; Longo, F.; Piccione, G. Core and Surface Temperature Modification during Road Transport and Physical Exercise in Horse after Acupuncture Needle Stimulation. J. Equine Vet. Sci. 2017, 55, 84–89. [Google Scholar] [CrossRef]
- Casas-Alvarado, A.; Mota-Rojas, D.; Hernández-Ávalos, I.; Mora-Medina, P.; Olmos-Hernández, A.; Verduzco-Mendoza, A.; Reyes-Sotelo, B.; Martínez-Burnes, J. Advances in Infrared Thermography: Surgical Aspects, Vascular Changes, and Pain Monitoring in Veterinary Medicine. J. Therm. Biol. 2020, 92, 102664. [Google Scholar] [CrossRef]
- Mota-Rojas, D.; Martínez-Burnes, J.; Casas-Alvarado, A.; Gómez-Prado, J.; Hernández-Ávalos, I.; Domínguez-Oliva, A.; Lezama-García, K.; Jacome-Romero, J.; Rodríguez-González, D.; Pereira, A.M.F. Clinical Usefulness of Infrared Thermography to Detect Sick Animals: Frequent and Current Cases. CABI Rev. 2022, 2022, 1–27. [Google Scholar] [CrossRef]
- Mota-Rojas, D.; Pereira, A.M.F.; Martínez-Burnes, J.; Domínguez-Oliva, A.; Mora-Medina, P.; Casas-Alvarado, A.; Rios-Sandoval, J.; de Mira Geraldo, A.; Wang, D. Thermal Imaging to Assess the Health Status in Wildlife Animals under Human Care: Limitations and Perspectives. Animals 2022, 12, 3558. [Google Scholar] [CrossRef]
- Repac, J.; Alvarez, L.X.; Lamb, K.; Gillette, R.L. Evaluation of Thermographic Imaging in Canine Hindlimb Muscles after 6 min of Walking—A Pilot Study. Front. Vet. Sci. 2020, 7, 224. [Google Scholar] [CrossRef]
- Pichová, K.; Pavlin, S.; Košťál, Ľ.; Pintarič, Š.; Zupan Šemrov, M. Thermography as a Tool to Assess Training Effects in Military Working Dogs. J. Therm. Biol. 2023, 112, 103441. [Google Scholar] [CrossRef]
- Soroko, M.; Howell, K.; Dudek, K.; Wilk, I.; Zastrzeżyńska, M.; Janczarek, I. A Pilot Study into the Utility of Dynamic Infrared Thermography for Measuring Body Surface Temperature Changes during Treadmill Exercise in Horses. J. Equine Vet. Sci. 2018, 62, 44–46. [Google Scholar] [CrossRef]
- Farley, C.M.; Kaynaroglu, P.; Magness, D.; Riegel, R.J.; Otto, C.M. Thermal Imaging Following Exercise in Working Dogs. Front. Vet. Sci. 2021, 8, 705478. [Google Scholar] [CrossRef]
- Helton, W.S. Canine Ergonomics, 1st ed.; Helton, W.S., Ed.; CRC Press: Boca Raton, FL, USA, 2009; ISBN 9781420079920. [Google Scholar]
- Zink, C.; Van Dyke, B.J. Canine Sports Medicine and Rehabilitation; Wiley: Hoboken, NJ, USA, 2018; ISBN 9781119380382. [Google Scholar]
- Infernuso, T.; Loughin, C.A.; Marino, D.J.; Umbaugh, S.E.; Solt, P.S. Thermal Imaging of Normal and Cranial Cruciate Ligament-Deficient Stifles in Dogs. Vet. Surg. 2010, 39, 410–417. [Google Scholar] [CrossRef]
- Igna, C.; Mavromatis, S.; Bumb, D.; Sicoe, B.; Zaha, C.; Schuszler, L. Thermal Imaging of the Dogs with Cranial Cruciate Ligaments Ruptures. Lucr. Stiint. Med. Vet. 2017, 50, 232–241. [Google Scholar]
- McGowan, L.; Loughin, C.A.; Marino, D.J.; Umbaugh, S.E.; Liu, P.; Amini, M.; Solt, P.; Lesser, M.L.; Akerman, M. Medical Infrared Imaging of Normal and Dysplastic Elbows in Dogs. Vet. Surg. 2015, 44, 874–882. [Google Scholar] [CrossRef]
- Cain, A.A.; Davis, G.J.; Davis, S.; Bastian, R.P.; Marquez, V.; Probasco, H.; Desantis, E. Infrared Thermography as a Diagnostic Tool to Detect Cranial Cruciate Ligament Deficiency in Dogs. Can. J. Vet. Res. 2023, 87, 290–296. [Google Scholar]
- Alves, J.C.; Santos, A.; Jorge, P.; Lavrador, C.; Carreira, L.M. Evaluation of Digital Thermography Imaging to Assess and Monitor Treatment of Police Working Dogs with Naturally Occurring Hip Osteoarthritis. BMC Vet. Res. 2021, 17, 180. [Google Scholar] [CrossRef]
- Alves, J.C.; Santos, A.; Jorge, P.; Lavrador, C.; Carreira, L.M. Evaluation of the Thermographic Response of the Lumbar Region in Dogs with Bilateral Hip Osteoarthritis. J. Therm. Biol. 2023, 115, 103610. [Google Scholar] [CrossRef]
- Garcia, E.F.V.; Loughin, C.A.; Marino, D.J.; Sackman, J.; Umbaugh, S.E.; Fu, J.; Subedi, S.; Lesser, M.L.; Akerman, M.; Schossler, J.E.W. Medical Infrared Imaging and Orthostatic Analysis to Determine Lameness in the Pelvic Limbs of Dogs. Open Vet. J. 2017, 7, 342. [Google Scholar] [CrossRef]
- Casas-Alvarado, A.; Mota-Rojas, D.; Hernández-Ávalos, I.; Martínez-Burnes, J.; Rosas, M.E.; Miranda-Cortés, A.; Domínguez-Oliva, A.; Mora-Medina, P. Assessment of Thermal Response, Cardiorespiratory Parameters and Post-Operative Analgesia in Dogs Undergoing Ovariohysterectomy with Different Combinations of Epidural Analgesia and Isoflurane. J. Anim. Behav. Biometeorol. 2023, 11, e2023009. [Google Scholar] [CrossRef]
- Grossbard, B.P.; Loughin, C.A.; Marino, D.J.; Marino, L.J.; Sackman, J.; Umbaugh, S.E.; Solt, P.S.; Afruz, J.; Leando, P.; Lesser, M.L.; et al. Medical Infrared Imaging (Thermography) of Type I Thoracolumbar Disk Disease in Chondrodystrophic Dogs. Vet. Surg. 2014, 43, 869–876. [Google Scholar] [CrossRef]
- Imboden, I.; Waldern, N.M.; Wiestner, T.; Lischer, C.J.; Ueltschi, G.; Weishaupt, M.A. Short Term Analgesic Effect of Extracorporeal Shock Wave Therapy in Horses with Proximal Palmar Metacarpal/Plantar Metatarsal Pain. Vet. J. 2009, 179, 50–59. [Google Scholar] [CrossRef]
- Mazzotta, E.; Lisuzzo, A.; Tognato, E.; Lazzarini, A.; Meggiolaro, S.; Valentini, A.; Stelletta, C.; Fiore, E. Evaluation of Body Surface Temperature Variations in Dogs Affected by Spinal Cord Injuries during Physiotherapy Exercise in a Water Treadmill. J. Therm. Biol. 2022, 106, 103247. [Google Scholar] [CrossRef]
- LokeshBabu, D.S.; Vasant, P.J.; Jeyakumar, S.; Manimaran, A.; Kumaresan, A.; Pushpadass, H.A.; Sivaram, M.; Ramesha, K.P.; Kataktalware, M.A.; Siddaramanna; et al. Monitoring Foot Surface Temperature Using Infrared Thermal Imaging for Assessment of Hoof Health Status in Cattle: A Review. J. Therm. Biol. 2018, 78, 10–21. [Google Scholar] [CrossRef]
- Moreira-Marconi, E.; Moura-Fernandes, M.C.; Lopes-Souza, P.; Teixeira-Silva, Y.; Reis-Silva, A.; Marchon, R.M.; Guedes-Aguiar, E.d.O.; Paineiras-Domingos, L.L.; Sá-Caputo, D.d.C.d.; Morel, D.S.; et al. Evaluation of the Temperature of Posterior Lower Limbs Skin during the Whole Body Vibration Measured by Infrared Thermography: Cross-Sectional Study Analysis Using Linear Mixed Effect Model. PLoS ONE 2019, 14, e0212512. [Google Scholar] [CrossRef]
- Collins, P.J. A Randomized, Blinded and Controlled Study Using Digital Thermal Imaging to Measure Temperature Change Associated with Acupuncture in Dogs with Back Pain. Am. J. Tradit. Chin. Vet. Med. 2021, 16, 1–10. [Google Scholar] [CrossRef]
- Um, S.W.; Kim, M.S.; Lim, J.H.; Kim, S.Y.; Seo, K.M.; Nam, T.C. Thermographic Evaluation for the Efficacy of Acupuncture on Induced Chronic Arthritis in the Dog. J. Vet. Med. Sci. 2005, 67, 1283–1284. [Google Scholar] [CrossRef]
- Huntingford, J.L.; Petty, M.C. Evidence-Based Application of Acupuncture for Pain Management in Companion Animal Medicine. Vet. Sci. 2022, 9, 252. [Google Scholar] [CrossRef]
- Lee, S.-E.; Seo, J.-M.; Liu, J.; Hong, M.-S.; Lee, Y.-W.; Lee, J.-Y.; Song, K.-H.; Kim, D.-H. The Comparison on Changes of the Body Heats in Electroacupuncture Analgesia and Anesthesia by Ketamine Hydrochloride in Dogs. Am. J. Chin. Med. 2006, 34, 69–76. [Google Scholar] [CrossRef]
- Fry, L.M.; Neary, S.M.; Sharrock, J.; Rychel, J.K. Acupuncture for Analgesia in Veterinary Medicine. Top. Companion Anim. Med. 2014, 29, 35–42. [Google Scholar] [CrossRef]
- Queiroz, R.W.; Silva, V.L.; Rocha, D.R.; Costa, D.S.; Turco, S.H.N.; Silva, M.T.B.; Santos, A.A.; Oliveira, M.B.L.; Pereira, A.S.R.; Palheta-Junior, R.C. Changes in Cardiovascular Performance, Biochemistry, Gastric Motility and Muscle Temperature Induced by Acute Exercise on a Treadmill in Healthy Military Dogs. J. Anim. Physiol. Anim. Nutr. 2018, 102, 122–130. [Google Scholar] [CrossRef]
- Woo, S.C.; Lee, J.; Millis, D.L.; Drum, M.G. Thermographic Evaluation of the Duration of Skin Cooling after Cryotherapy in Dogs Following Tibial Plateau Leveling Osteotomy Surgery. Front. Vet. Sci. 2022, 9, 784327. [Google Scholar] [CrossRef]
- Lee, S.-H.; Cho, J.-H.; Kim, C.-H.; Lee, D. Effect of Rehabilitation in a Dog with Delayed Recovery Following TPLO: A Case Report. Animals 2023, 13, 2778. [Google Scholar] [CrossRef]
- Villanova Junior, J.A.; Dipp, G.; Viveiros, B.M.; Balardini, J.L.; Isaka, L.J.E.; Santos, C.L.; Gomes, G.H.; Pimpão, C.T.; Michelotto Junior, P.V. Exercise on a Vibratory Platform Increases Blood Perfusion on the Stifle Joint and Rectal Temperature in Healthy Dogs. Arq. Bras. Med. Vet. Zootec. 2020, 72, 305–311. [Google Scholar] [CrossRef]
- Agostinho, M.; Rahal, S.; Bonatelli, S.; Rosa, G.; Tsunemi, M.; Zadra, V.; Mamprim, M.J.; Takahira, R.; Souza, P.; Santos, I. Evaluation of Infrared Thermography, Arterial Doppler Ultrasound, and Doppler Echocardiography in Healthy Adult Dogs Exposed to a Single Session of Whole-Body Vibration at Different Frequencies. Ank. Üniversitesi Vet. Fakültesi Derg. 2023, 70, 1–7. [Google Scholar] [CrossRef]
- Mota-Rojas, D.; Wang, D.; Titto, C.G.; Gómez-Prado, J.; Carvajal-de la Fuente, V.; Ghezzi, M.; Boscato-Funes, L.; Barrios-García, H.; Torres-Bernal, F.; Casas-Alvarado, A.; et al. Pathophysiology of Fever and Application of Infrared Thermography (IRT) in the Detection of Sick Domestic Animals: Recent Advances. Animals 2021, 11, 2316. [Google Scholar] [CrossRef]
- Magnin, M.; Junot, S.; Cardinali, M.; Ayoub, J.Y.; Paquet, C.; Louzier, V.; Garin, J.M.B.; Allaouchiche, B. Use of Infrared Thermography to Detect Early Alterations of Peripheral Perfusion: Evaluation in a Porcine Model. Biomed. Opt. Express 2020, 11, 2431. [Google Scholar] [CrossRef]
- Li, X.; Chen, M.; Maharjan, S.; Cui, J.; Lu, L.; Gong, X. Evaluating Surgical Delay Using Infrared Thermography in an Island Pedicled Perforator Flap Rat Model. J. Reconstr. Microsurg. 2017, 33, 518–525. [Google Scholar] [CrossRef]
- de Weerd, L.; Miland, Å.O.; Mercer, J.B. Perfusion Dynamics of Free DIEP and SIEA Flaps during the First Postoperative Week Monitored with Dynamic Infrared Thermography. Ann. Plast. Surg. 2009, 62, 42–47. [Google Scholar] [CrossRef]
- Tenorio, X.; Mahajan, A.L.; Wettstein, R.; Harder, Y.; Pawlovski, M.; Pittet, B. Early Detection of Flap Failure Using a New Thermographic Device. J. Surg. Res. 2009, 151, 15–21. [Google Scholar] [CrossRef]
- Pouzot-Nevoret, C.; Barthélemy, A.; Goy-Thollot, I.; Boselli, E.; Cambournac, M.; Guillaumin, J.; Bonnet-Garin, J.-M.; Allaouchiche, B. Infrared Thermography: A Rapid and Accurate Technique to Detect Feline Aortic Thromboembolism. J. Feline Med. Surg. 2018, 20, 780–785. [Google Scholar] [CrossRef]
- Boerner, E.; Bauer, J.; Ratajczak, B.; Dereń, E.; Podbielska, H. Application of Thermovision for Analysis of Superficial Temperature Distribution Changes after Physiotherapy. J. Therm. Anal. Calorim. 2015, 120, 261–267. [Google Scholar] [CrossRef]
- Côrte, A.C.; Pedrinelli, A.; Marttos, A.; Souza, I.F.G.; Grava, J.; José Hernandez, A. Infrared Thermography Study as a Complementary Method of Screening and Prevention of Muscle Injuries: Pilot Study. BMJ Open Sport Exerc. Med. 2019, 5, e000431. [Google Scholar] [CrossRef]
- Postolache, O. Remote Sensing Technologies for Physiotherapy Assessment. In Proceedings of the 2017 10th International Symposium on Advanced Topics in Electrical Engineering (ATEE), Bucharest, Romania, 23–25 March 2017; pp. 305–312. [Google Scholar]
- Kozhevnikova, I.S.; Pankov, M.N.; Gribanov, A.V.; Startseva, L.F.; Ermoshina, N.A. The Use of Infrared Thermography in Modern Medicine (Literature Review). Hum. Ecol. 2017, 24, 39–46. [Google Scholar] [CrossRef]
- Freeman, E.; Johnson, J.F.; Godbold, J.C.; Riegel, R.J. Comparison of Infrared Thermal Imaging with Two Canine Pain Asessment Tools in Dogs Undergoing Tratment for Chronic Back Pain. Animals 2021. in review. [Google Scholar]
- Church, J.S.; Hegadoren, P.R.; Paetkau, M.J.; Miller, C.C.; Regev-Shoshani, G.; Schaefer, A.L.; Schwartzkopf-Genswein, K.S. Influence of Environmental Factors on Infrared Eye Temperature Measurements in Cattle. Res. Vet. Sci. 2014, 96, 220–226. [Google Scholar] [CrossRef]
- de Lima, V.; Piles, M.; Rafel, O.; López-Béjar, M.; Ramón, J.; Velarde, A.; Dalmau, A. Use of Infrared Thermography to Assess the Influence of High Environmental Temperature on Rabbits. Res. Vet. Sci. 2013, 95, 802–810. [Google Scholar] [CrossRef]
- Hyndman, T.H.; Bowden, R.; Wodward, A.P.; Pang, D.S.; Hampton, J. Uncontrolled Pain: A Call for Better Study Desing. Front. Vet. Sci. 2024, 11, 1328098. [Google Scholar] [CrossRef]
- Valentini, S.; Bruno, E.; Nanni, C.; Musella, V.; Antonucci, M.; Spinella, G. Superficial Heating Evaluation by Thermographic Imaging before and after Tecar Therapy in Six Dogs Submitted to a Rehabilitation Protocol: A Pilot Study. Animals 2021, 11, 249. [Google Scholar] [CrossRef]
- Rodrigues, P.G.; Freitas, L.M.D.; de Oliveira, K.; Martins, C.O.D.; Silva, C.M.; de Oliveira, C.G.; Lima Júnior, J.W.R.; Velarde, J.M.D.S. Thermal and Behavioral Response of Horses Submitted to Functional Exercises and Acupuncture. Ciência Rural 2022, 52, e20201046. [Google Scholar] [CrossRef]
- Dai, S.; Shiau, D.-S.; Zilberschtein, J. Correlation between Acupuncture Point LI-18 and PC-1 Sensitivity and Front Hoof Surface Temperature in Horses Using Infrared Thermography. Am. J. Tradit. Chin. Vet. Med. 2023, 18, 9–15. [Google Scholar] [CrossRef]
- Edner, A.; Lindberg, L.-G.; Broström, H.; Bergh, A. Does a Magnetic Blanket Induce Changes in Muscular Blood Flow, Skin Temperature and Muscular Tension in Horses? Equine Vet. J. 2015, 47, 302–307. [Google Scholar] [CrossRef]
- Casas-Alvarado, A.; Martínez-Burnes, J.; Mora-Medina, P.; Hernández-Avalos, I.; Domínguez-Oliva, A.; Lezama-García, K.; Gómez-Prado, J.; Mota-Rojas, D. Thermal and Circulatory Changes in Diverse Body Regions in Dogs and Cats Evaluated by Infrared Thermography. Animals 2022, 12, 789. [Google Scholar] [CrossRef]
- Faerber, J.; Ngoie, J. Integration of a Mobile Application Using Medical Infrared Imaging to Improve the Effectiveness of Physiotherapy Treatments. In Proceedings of the 42nd Conference of the Canadian Medical and Biological Engineering Society, Ottawa, ON, Canada, 21–24 May 2019; Volume 42, pp. 1–4. [Google Scholar]
- Dos Santos, M.G.R.; Da Silva, L.G.C.; Júnior, J.R.d.S.; Lemos, T.V. Thermographic: A Tool of Aid in Physical Therapy Diagnosis—Literature Review. Man. Ther. Posturol. Rehabil. J. 2014, 12, 220. [Google Scholar] [CrossRef]
- Barreto, C.D.; Alves, F.V.; de Oliveira Ramos, C.E.C.; de Paula Leite, M.C.; Leite, L.C.; Junior, N.K. Infrared Thermography for Evaluation of the Environmental Thermal Comfort for Livestock. Int. J. Biometeorol. 2020, 64, 881–888. [Google Scholar] [CrossRef]
- Faye, E.; Dangles, O.; Pincebourde, S. Distance Makes the Difference in Thermography for Ecological Studies. J. Therm. Biol. 2016, 56, 1–9. [Google Scholar] [CrossRef]
- Playà-Montmany, N.; Tattersall, G.J. Spot Size, Distance and Emissivity Errors in Field Applications of Infrared Thermography. Methods Ecol. Evol. 2021, 12, 828–840. [Google Scholar] [CrossRef]
- Jiao, L.; Dong, D.; Zhao, X.; Han, P. Compensation Method for the Influence of Angle of View on Animal Temperature Measurement Using Thermal Imaging Camera Combined with Depth Image. J. Therm. Biol. 2016, 62, 15–19. [Google Scholar] [CrossRef]
- Nomura, R.H.C.; de Freitas, I.B.; Guedes, R.L.; Araújo, F.F.; Mafra, A.C.D.N.; Ibañez, J.F.; Dornbusch, P.T. Thermographic Images from Healthy Knees between Dogs with Long and Short Hair. Ciência Rural 2018, 48, 1–7. [Google Scholar] [CrossRef]
- Mota-Rojas, D.; Titto, C.G.; de Mira Geraldo, A.; Martínez-Burnes, J.; Gómez, J.; Hernández-Ávalos, I.; Casas, A.; Domínguez, A.; José, N.; Bertoni, A.; et al. Efficacy and Function of Feathers, Hair, and Glabrous Skin in the Thermoregulation Strategies of Domestic Animals. Animals 2021, 11, 3472. [Google Scholar] [CrossRef] [PubMed]
Camera Model | Distance from the Animals | Resolution (Pixels) | Ambient Temperature (°C) | Species | Sample Size | Statistical Analysis | Reference |
---|---|---|---|---|---|---|---|
AVIO TVS-200 EX | 40 cm. | 320 × 240 | 26 | Dogs | 6 | ANOVA with Bonferroni | Valentini et al. [84] |
FLIR T64Sc | 1 m | n.s. | 28 | Horse | 12 | ANOVA with Tukey | Rodrigues et al. [85] |
IRIS-5000 | n.s. | n.s. | n.s. | Dogs | 8 | Paired t-test | Um et al. [61] |
Thermal CAM | 40 cm. | n.s. | 21–25 | Dogs | 67 | General linear model for repeated measures | Mazzotta et al. [57] |
n.s. | 1 m. | 320 × 240 | n.s. | Horse | 41 | Two-sided Wilcoxon signed-rank test | Dai et al. [86] |
FLIR C2 | 40 cm. | 320 × 240 | n.s. | Mice | 140 | Two-way ANOVA with Student–Newman–Keuls | Coelho et al. [34] |
IRIS-7.5 | 2.5–3 m | 320 × 340 | n.s. | Horse | 10 | ANOVA with Tukey | Edner et al. [87] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casas-Alvarado, A.; Ogi, A.; Villanueva-García, D.; Martínez-Burnes, J.; Hernández-Avalos, I.; Olmos-Hernández, A.; Mora-Medina, P.; Domínguez-Oliva, A.; Mota-Rojas, D. Application of Infrared Thermography in the Rehabilitation of Patients in Veterinary Medicine. Animals 2024, 14, 696. https://doi.org/10.3390/ani14050696
Casas-Alvarado A, Ogi A, Villanueva-García D, Martínez-Burnes J, Hernández-Avalos I, Olmos-Hernández A, Mora-Medina P, Domínguez-Oliva A, Mota-Rojas D. Application of Infrared Thermography in the Rehabilitation of Patients in Veterinary Medicine. Animals. 2024; 14(5):696. https://doi.org/10.3390/ani14050696
Chicago/Turabian StyleCasas-Alvarado, Alejandro, Asahi Ogi, Dina Villanueva-García, Julio Martínez-Burnes, Ismael Hernández-Avalos, Adriana Olmos-Hernández, Patricia Mora-Medina, Adriana Domínguez-Oliva, and Daniel Mota-Rojas. 2024. "Application of Infrared Thermography in the Rehabilitation of Patients in Veterinary Medicine" Animals 14, no. 5: 696. https://doi.org/10.3390/ani14050696
APA StyleCasas-Alvarado, A., Ogi, A., Villanueva-García, D., Martínez-Burnes, J., Hernández-Avalos, I., Olmos-Hernández, A., Mora-Medina, P., Domínguez-Oliva, A., & Mota-Rojas, D. (2024). Application of Infrared Thermography in the Rehabilitation of Patients in Veterinary Medicine. Animals, 14(5), 696. https://doi.org/10.3390/ani14050696