Population Structure and Genomic Characterisation of the Ashanti Dwarf Pig of Ghana
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Description of Study Area
2.2. Sample Collection and Ethical Approval
2.3. DNA Extraction, Quality Control, and Genotyping
2.4. Pig Genome Build
2.5. Quality Control
2.6. Population Genomic Parameters
2.6.1. Minor Allele Frequency
2.6.2. Heterozygosity and Levels of Inbreeding
2.7. Population Genomic Cluster Analysis
2.7.1. Principal Component Analysis
2.7.2. ADMIXTURE Analysis
2.7.3. FST Analysis
2.7.4. Gene Ontology (GO) Analysis
3. Results
3.1. Summary of Data
3.2. Inter-Population Genomic Diversity
3.3. Minor Allele Frequency
3.4. Heterozygosity and Levels of Inbreeding
3.5. Population Genomic Cluster Analysis
3.5.1. Principal Component Analysis
3.5.2. Admixture Analysis
3.5.3. Genetic Differentiation, Outlier Loci, and Some Candidate Genes under Selection
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Madzimure, J.; Chimonyo, M.; Zander, K.K.; Dzama, K. Potential for using indigenous pigs in subsistence-oriented and market-oriented small-scale farming systems of Southern Africa. Trop. Anim. Health Prod. 2012, 45, 135–142. [Google Scholar] [CrossRef]
- MoFA. Agricultural Production Estimates. Statistics, Research and Information Directorate (SRID); Ministry of Food and Agriculture: Accra, Ghana, 2013.
- Osei-Amponsah, R.; Skinner, B.M.; Adjei, D.O.; Bauer, J.; Larson, G.; Affara, N.A.; Sargent, C.A. Origin and phylogenetic status of the local Ashanti Dwarf pig (ADP) of Ghana based on genetic analysis. BMC Genom. 2017, 18, 193. [Google Scholar] [CrossRef] [PubMed]
- Ayizanga, R.A.; Kayang, B.B.; Adomako, K.; Asamoah, L. Rural pig production systems and breeding preferences of pig farmers in Northern Ghana. Ghana. J. Anim. Sci. 2018, 9, 49–57. [Google Scholar]
- Adjei, O.D.; Osei-Amponsah, R.; Ahunu, B.K. Morphological characterisation of local pigs in Ghana. Bull. Anim. Health Prod. Afr. AnGR Spec. Ed. 2015, 68, 295–300. [Google Scholar]
- Adjei, O.D.; Osei-Amponsah, R.; Ahunu, B.K. Characterization of local pig production systems in Ghana. Bull. Anim. Health Prod. Afr. 2015, 4, 337–342. [Google Scholar]
- Ayizanga, R.A.; Kayang, B.B.; Adomako, K.; Adenyo, C.; Inoue-Murayama, M.; Asamoah, L. Genetic diversity of some Ghanaian pigs based on microsatellite markers. Livest. Res. Rural. Dev. 2016, 28, 24. [Google Scholar]
- Aryee, S.N.D.; Osei-Amponsah, R.; Adjei, O.D.; Ahunu, B.K.; Skinner, B.M.; Sargent, C.A. Production practices of local pig farmers in Ghana. Int. J. Livest. Prod. 2019, 10, 175–181. [Google Scholar] [CrossRef]
- MoFA. Agriculture in Ghana: Facts and Figures; MoFA: Accra, Ghana, 2003.
- Ahunu, B.K.; Boa-Amponsem, K.; Okantah, S.A.; Aboagye, G.S.; Buadu, M.K. National Animal Breeding Plan for Ghana. A Draft Report on National Livestock Genetic Improvement. Ministry of Food and Agriculture, Accra, Ghana. (18) (PDF) Characterization of Local Pig Production Systems in Ghana Characterization Des Systemes De Production De Porcs Locaux Au Ghana Resume. Available online: https://www.researchgate.net/publication/352707540_characterization_of_local_pig_production_systems_in_ghana_characterization_des_systemes_de_production_de_porcs_locaux_au_ghana_resume (accessed on 13 November 2023).
- Hagan, B.A.; Asiedu, P.; Salifu, S.; Konlan, S. The economic impact of the genetic improvement of the Ashanti Black Pig to the Ghanaian pig industry. Bulletin of animal health and production in Africa. Bull. Des Santé Et Prod. Anim. En Afr. 2016, 64, 241–252. [Google Scholar]
- Gumma, M.K.; Thenkabail, P.S.; Hideto, F.; Nelson, A.; Dheeravath, V.; Busia, D.; Rala, A. Mapping Irrigated Areas of Ghana Using Fusion of 30 m and 250 m Resolution Remote-Sensing Data. Remote Sens. 2011, 3, 816–835. [Google Scholar] [CrossRef]
- Minia, Z. Climate change scenario development, in Ghana Climate Change Impacts, Vulnerability and Adaptation Assessment. Environ. Prot. Agency Accra 2008, 1, 2–13. [Google Scholar]
- Issifu, A.K.; Darko, F.D.; Paalo, S.A. Climate change, migration and farmer–herder conflict in Ghana. Confl. Resolut. Q. 2022, 39, 421–439. [Google Scholar] [CrossRef]
- Adams, F.; Ohene-Yankyera, K.; Aidoo, R.; Wongnaa, C.A. Economic benefits of livestock management in Ghana. Agric. Food Econ. 2021, 9, 17. [Google Scholar] [CrossRef]
- Boakye, E.A.; Gebrekirstos, A.; Hyppolite, D.N.; Barnes, V.R.; Porembski, S.; Bräuning, A. Carbon Isotopes of Riparian Forests Trees in the Savannas of the Volta Sub-Basin of Ghana Reveal Contrasting Responses to Climatic and Environmental Variations. Forests 2019, 10, 251. [Google Scholar] [CrossRef]
- Archibald, A.L.; Bolund, L.; Churcher, C.; Fredholm, M.; Groenen, M.A.M.; Harlizius, B.; Lee, K.-T.; Milan, D.; Rogers, J.; Rothschild, M.F.; et al. Pig genome sequence—Analysis and publication strategy. BMC Genom. 2010, 11, 438. [Google Scholar] [CrossRef] [PubMed]
- Warr, A.; Affara, N.; Aken, B.; Beiki, H.; Bickhart, D.M.; Billis, K.; Chow, W.; Eory, L.; Finlayson, H.; Flicek, P.; et al. An improved pig reference genome sequence to enable pig genetics and genomics research. GigaScience 2020, 9, giaa051. [Google Scholar] [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [PubMed]
- Sievert, C. Interactive Web-Based Data Visualization with R, Plotly, and Shiny; Chapman and Hall/CRC: Boca Raton, FL, USA, 2020. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing. 2017. Available online: https://www.r-project.org/ (accessed on 25 July 2020).
- Alexander, D.H.; Novembre, J.; Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009, 19, 1655–1664. [Google Scholar] [CrossRef]
- Wright, S. The genetical structure of populations. Ann. Eugen. 1949, 15, 323–354. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, F.; Achuthan, P.; Akanni, W.; Allen, J.; Amode, M.R.; Armean, I.M.; Bennett, R.; Bhai, J.; Billis, K.; Boddu, S.; et al. Ensembl 2019. Nucleic Acids Res. 2019, 47, D745–D751. [Google Scholar] [CrossRef]
- Sherman, B.T.; Hao, M.; Qiu, J.; Jiao, X.; Baseler, M.W.; Lane, H.C.; Imamichi, T.; Chang, W. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022, 50, W216–W221. [Google Scholar] [CrossRef]
- Hlongwane, N.L.; Hadebe, K.; Soma, P.; Dzomba, E.F.; Muchadeyi, F.C. Genome Wide Assessment of Genetic Variation and Population Distinctiveness of the Pig Family in South Africa. Front. Genet. 2020, 11, 344. [Google Scholar] [CrossRef] [PubMed]
- Albernaz-Gonçalves, R.; Olmos, G.; Hötzel, M.J. Exploring Farmers’ Reasons for Antibiotic Use and Misuse in Pig Farms in Brazil. Antibiotics 2021, 10, 331. [Google Scholar] [CrossRef] [PubMed]
- Traspov, A.; Deng, W.; Kostyunina, O.; Ji, J.; Shatokhin, K.; Lugovoy, S.; Zinovieva, N.; Yang, B.; Huang, L. Population structure and genome characterization of local pig breeds in Russia, Belorussia, Kazakhstan and Ukraine. Genet. Sel. Evol. 2016, 48, 16. [Google Scholar] [CrossRef] [PubMed]
- Halimani, T.E.; Muchadeyi, F.C.; Chimonyo, M.; Dzama, K. Opportunities for conservation and utilisation of local pig breeds in low-input production systems in Zimbabwe and South Africa. Trop. Anim. Health Prod. 2012, 45, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Han, W.; Tang, H.; Li, G.; Zhang, M.; Xu, R.; Liu, Y.; Yang, T.; Li, W.; Zou, J.; et al. Genomic diversity dynamics in conserved chicken populations are revealed by genome-wide SNPs. BMC Genom. 2018, 19, 598. [Google Scholar] [CrossRef] [PubMed]
- Jdeed, S.; Erdos, E.; Balint, B.L.; Uray, I.P. The role of ARID1A in the non-estrogenic modulation of IGF-1 signaling. Mol. Cancer Res. 2022, 20, 1071–1082. [Google Scholar] [CrossRef] [PubMed]
- Lettre, G.; Initiative, T.D.G.; Jackson, A.U.; Gieger, C.; Schumacher, F.R.; Berndt, S.; Sanna, S.; Eyheramendy, S.; Voight, B.F.; Butler, J.L.; et al. Identification of ten loci associated with height highlights new biological pathways in human growth. Nat. Genet. 2008, 40, 584–591. [Google Scholar] [CrossRef]
- Cassidy, F.C.; Charalambous, M. Genomic imprinting, growth and maternal–fetal interactions. J. Exp. Biol. 2018, 221 (Suppl. 1), jeb164517. [Google Scholar] [CrossRef]
- Barnes, A.; Fleischer, J. Growth rate and carcass characteristics of indigenous (Ashanti Dwarf) pig. Ghana J. Agric. Sci. 1998, 31, 217–221. [Google Scholar] [CrossRef]
- Wang, W.; Cao, X.H.; Miclăuș, M.; Xu, J.; Xiong, W. The Promise of Agriculture Genomics. Int. J. Genom. 2017, 2017, 9743749. [Google Scholar] [CrossRef]
- Berg, F.; Stern, S.; Andersson, K.; Andersson, L.; Moller, M. Refined localization of the FAT1 quantitative trait locus on pig chromosome 4 by marker-assisted backcrossing. BMC Genet. 2006, 7, 17. [Google Scholar] [CrossRef]
- Oh, T.; Do, D.T.; Van Vo, H.; Kwon, H.-I.; Lee, S.-C.; Kim, M.H.; Nguyen, D.T.T.; Le, Q.T.V.; Tran, T.M.; Nguyen, T.T.; et al. The Isolation and Replication of African Swine Fever Virus in Primary Renal-Derived Swine Macrophages. Front. Veter. Sci. 2021, 8, 645456. [Google Scholar] [CrossRef]
- Nguyen, V.; Mendelsohn, A.; Larrick, J.W. Interleukin-7 and Immunosenescence. J. Immunol. Res. 2017, 2017, 4807853. [Google Scholar] [CrossRef]
- Liu, X.; Leung, S.; Wang, C.; Tan, Z.; Wang, J.; Guo, T.B.; Fang, L.; Zhao, Y.; Wan, B.; Qin, X.; et al. Crucial role of interleukin-7 in T helper type 17 survival and expansion in autoimmune disease. Nat. Med. 2010, 16, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Medzhitov, R. Origin and physiological roles of inflammation. Nature 2008, 454, 428–435. [Google Scholar] [CrossRef] [PubMed]
- Manyo-Plange, N.L.; Barnes, A.R. Characterisation of Ashanti Dwarf Pig carcass. In Proceedings of the 23rd Animal Symposium of Ghana Animal Science Association, Kumasi, Ghana, 8–13 August 1996; pp. 39–42. [Google Scholar]
- Crawford, N.G.; Kelly, D.E.; Hansen, M.E.B.; Beltrame, M.H.; Fan, S.; Bowman, S.L.; Jewett, E.; Ranciaro, A.; Thompson, S.; Lo, Y.; et al. Loci associated with skin pigmentation identified in African populations. Science 2017, 358, 887. [Google Scholar] [CrossRef]
- Bunn, C.; Läderach, P.; Quaye, A.; Muilerman, S.; Noponen, M.R.; Lundy, M. Recommendation domains to scale out climate change adaptation in cocoa production in Ghana. Clim. Serv. 2019, 16, 100123. [Google Scholar] [CrossRef]
- King, R.A.; Pietsch, J.; Fryer, J.P.; Savage, S.; Brott, M.J.; Russell-Eggitt, I.; Summers, C.G.; Oetting, W.S. Tyrosinase gene mutations in oculocutaneous albinism 1 (OCA1): Definition of the phenotype. Hum. Genet. 2003, 113, 502–513. [Google Scholar] [CrossRef] [PubMed]
- Oetting, W.S.; Fryer, J.P.; Shriram, S.; King, R.A. Oculocutaneous Albinism Type 1: The Last 100 Years. Pigment. Cell Res. 2003, 16, 307–311. [Google Scholar] [CrossRef] [PubMed]
- Murisier, F.; Beermann, F. Genetics of pigment cells: Lessons from the tyrosinase gene family. Histol. Histopathol. 2006, 21, 567–578. [Google Scholar] [CrossRef] [PubMed]
- Chao, Y.-K.; Schludi, V.; Chen, C.-C.; Butz, E.; Nguyen, O.N.P.; Müller, M.; Krüger, J.; Kammerbauer, C.; Ben-Johny, M.; Vollmar, A.M.; et al. TPC2 polymorphisms associated with a hair pigmentation phenotype in humans result in gain of channel function by independent mechanisms. Proc. Natl. Acad. Sci. USA 2017, 114, E8595–E8602. [Google Scholar] [CrossRef] [PubMed]
Region | Ashanti Dwarf Pigs | Exotics | Crosses | Unknown | Total |
---|---|---|---|---|---|
Greater Accra region | 13 | 1 | 1 | 0 | 15 |
Western region | 12 | 5 | 9 | 0 | 26 |
Northern region | 4 | 2 | 0 | 4 | 10 |
Brong-Ahafo region | 17 | 0 | 5 | 2 | 24 |
Central Region | 5 | 2 | 5 | 0 | 12 |
Ashanti region | 4 | 0 | 4 | 0 | 8 |
Upper East region | 15 | 1 | 7 | 0 | 23 |
Upper West region | 13 | 0 | 3 | 0 | 16 |
Eastern region | 7 | 0 | 7 | 0 | 14 |
Volta region | 16 | 0 | 3 | 0 | 19 |
Total | 106 | 11 | 44 | 6 | 167 |
Population | n | %SNP > 0.05 | MAF ± SD | HO ± SD | HE ± SD | FIS ± SD |
---|---|---|---|---|---|---|
ADP | 106 | 0.88 | 0.26 ± 0.15 | 0.28 ± 0.14 | 0.34 ± 0.16 | 0.15 ± 0.17 |
Exotics | 11 | 0.83 | 0.25 ± 0.15 | 0.31 ± 0.19 | 0.32 ± 0.17 | 0.05 ± 0.11 |
Crosses | 44 | 0.87 | 0.26 ± 0.15 | 0.29 ± 0.15 | 0.34 ± 0.16 | 0.14 ± 0.12 |
Unknown | 6 | 0.77 | 0.23 ± 0.16 | 0.30 ± 0.23 | 0.31 ± 0.18 | 0.02 ± 0.06 |
All | 167 | 0.88 | 0.26 ± 0.15 | 0.29 ± 0.14 | 0.34 ± 0.15 | 0.15 ± 0.15 |
Populations | Number of Animals (N) | Mean FST | Weighted FST |
---|---|---|---|
All Ghanaian populations | 167 | 0.0156 | 0.0166 |
ADP vs. other Ghanaian pigs | 105 | 0.0119 | 0.0126 |
Exotics vs. other Ghanaian pigs | 11 | 0.0279 | 0.0349 |
Crosses vs. other Ghanaian pigs | 44 | 0.00684 | 0.00680 |
Populations | Number of Animals (N) | Mean FST | Weighted FST |
---|---|---|---|
Ashanti region vs. other regions | 8 | 0.015 | 0.02 |
Brong-Ahafo vs. other regions | 24 | 0.017 | 0.02 |
Central region vs. other regions | 12 | 0.014 | 0.016 |
Eastern region vs. other regions | 14 | 0.023 | 0.023 |
Greater Accra vs. other regions | 15 | 0.049 | 0.062 |
Northern region vs. other regions | 6 | 0.018 | 0.032 |
Upper East vs. other regions | 23 | 0.021 | 0.024 |
Upper West vs. other regions | 16 | 0.033 | 0.042 |
Volta region vs. other regions | 23 | 0.040 | 0.049 |
Western region vs. other regions | 26 | 0.030 | 0.035 |
Populations | Number of Animals (N) | Mean FST | Weighted FST |
---|---|---|---|
Southern sector | 90 | 0.054 | 0.057 |
Northern sector | 77 | 0.036 | 0.041 |
Predominantly crosses and exotics | 63 | 0.029 | 0.032 |
Predominantly ADPs | 104 | 0.057 | 0.061 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aryee, S.N.D.; Owusu-Adjei, D.; Osei-Amponsah, R.; Skinner, B.M.; Amuzu-Aweh, E.N.; Ahunu, B.; Enright, A.; Sargent, C.A. Population Structure and Genomic Characterisation of the Ashanti Dwarf Pig of Ghana. Animals 2024, 14, 792. https://doi.org/10.3390/ani14050792
Aryee SND, Owusu-Adjei D, Osei-Amponsah R, Skinner BM, Amuzu-Aweh EN, Ahunu B, Enright A, Sargent CA. Population Structure and Genomic Characterisation of the Ashanti Dwarf Pig of Ghana. Animals. 2024; 14(5):792. https://doi.org/10.3390/ani14050792
Chicago/Turabian StyleAryee, Sethlina Naa Dodua, Dennis Owusu-Adjei, Richard Osei-Amponsah, Benjamin Matthew Skinner, Esinam Nancy Amuzu-Aweh, Benjamin Ahunu, Anton Enright, and Carole Anne Sargent. 2024. "Population Structure and Genomic Characterisation of the Ashanti Dwarf Pig of Ghana" Animals 14, no. 5: 792. https://doi.org/10.3390/ani14050792
APA StyleAryee, S. N. D., Owusu-Adjei, D., Osei-Amponsah, R., Skinner, B. M., Amuzu-Aweh, E. N., Ahunu, B., Enright, A., & Sargent, C. A. (2024). Population Structure and Genomic Characterisation of the Ashanti Dwarf Pig of Ghana. Animals, 14(5), 792. https://doi.org/10.3390/ani14050792