Fetal Programming Influence on Microbiome Diversity and Ruminal and Cecal Epithelium in Beef Cattle
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Feeding Management
2.3. Histological Assessments
2.3.1. Ruminitis Incidence and Papillae Morphometric
2.3.2. Papillae Microscopic Histological Measurement
2.3.3. Cecum Morphometrics
2.4. rRNA 16S Sequences Samples
2.5. Statistical Analysis
2.5.1. Histological Analyses of Rumen and Cecum
2.5.2. rRNA 16S Sequencing Analysis
2.5.3. Pearson’s Correlation Analysis
3. Results
3.1. Rumenitis and Cecum Cells Score
3.2. Sequencing of Ruminal and Fecal Bacterial Communities
3.3. Pearson’s Correlation Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Biscarra-Bellio, J.C.; de Oliveira, G.B.; Marques, M.C.P.; Molento, C.F.M. Demand Changes Meat as Changing Meat Reshapes Demand: The Great Meat Revolution. Meat Sci. 2023, 196, 109040. [Google Scholar] [CrossRef]
- Souza, F.M.; Lopes, F.B.; Rosa, G.J.M.; da Silva Fernandes, R.; Magnabosco, V.S.; Magnabosco, C.U. Genetic Selection of Nellore Cattle Raised in Tropical Areas: Economic Indexes and Breeding Decisions Risks. Livest. Sci. 2022, 265, 105098. [Google Scholar] [CrossRef]
- Barcelos, S.D.S.; Nascimento, K.B.; da Silva, T.E.; Mezzomo, R.; Alves, K.S.; de Souza Duarte, M.; Gionbelli, M.P. The Effects of Prenatal Diet on Calf Performance and Perspectives for Fetal Programming Studies: A Meta-Analytical Investigation. Animals 2022, 12, 2145. [Google Scholar] [CrossRef]
- Zago, D.; Canozzi, M.E.A.; Barcellos, J.O.J. Pregnant Beef Cow’s Nutrition and Its Effects on Postnatal Weight and Carcass Quality of Their Progeny. PLoS ONE 2020, 15, e0237941. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, L.M.; Schoonmaker, J.P.; Resende, F.D.; Siqueira, G.R.; Neto, O.R.M.; Gionbelli, M.P.; Gionbelli, T.R.S. Marcio Machado Ladeira Effects of Protein Supplementation on Nellore Cows’ Reproductive Performance, Growth, Myogenesis, Lipogenesis and Intestine Development of the Progeny. Anim. Prod. Sci. 2020, 61, 371–380. [Google Scholar] [CrossRef]
- Costa, T.C.; Gionbelli, M.P.; Duarte, M.D.S. Fetal Programming in Ruminant Animals: Understanding the Skeletal Muscle Development to Improve Meat Quality. Anim. Front. 2021, 11, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Tomaszewska, E.; Dobrowolski, P.; Puzio, I.; Donaldson, J.; Muszyński, S. AcrylAmide-Induced PrenAtAl ProgrAmming of Bone Structure in MAmmAl Model. Ann. Anim. Sci. 2020, 20, 1257–1287. [Google Scholar] [CrossRef]
- D’Occhio, M.J.; Baruselli, P.S.; Campanile, G. Influence of Nutrition, Body Condition, and Metabolic Status on Reproduction in Female Beef Cattle: A Review. Theriogenology 2019, 125, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Omontese, B.O.; Sharma, A.K.; Davison, S.; Jacobson, E.; Di Constanzo, A.; Webb, M.J.; Gomez, A. Microbiome Network Traits in the Rumen Predict Average Daily Gain in Beef Cattle under Different Backgrounding Systems. Anim. Microbiome 2022, 4, 25. [Google Scholar] [CrossRef]
- Schalch Junior, F.J.; Polizel, G.H.G.; Cançado, F.A.C.Q.; Fernandes, A.C.; Mortari, I.; Pires, P.R.L.; Fukumasu, H.; Santana, M.H.d.A.; Saran Netto, A. Prenatal Supplementation in Beef Cattle and Its Effects on Plasma Metabolome of Dams and Calves. Metabolites 2022, 12, 347. [Google Scholar] [CrossRef]
- Polizel, G.H.G.; de Francisco Strefezzi, R.; Cracco, R.C.; Fernandes, A.C.; Zuca, C.B.; Castellar, H.H.; Baldin, C.G.; de Almeida Santana, M.H. Effects of Different Maternal Nutrition Approaches on Weight Gain and on Adipose and Muscle Tissue Development of Young Bulls in the Rearing Phase. Trop. Anim. Health Prod. 2021, 53, 536. [Google Scholar] [CrossRef]
- Polizel, G.H.G.; Espigolan, R.; Fantinato-Neto, P.; de Francisco Strefezzi, R.; Rangel, R.B.; de Carli, C.; Fernandes, A.C.; Dias, E.F.F.; Cracco, R.C.; de Almeida Santana, M.H. Different Prenatal Supplementation Strategies and Its Impacts on Reproductive and Nutrigenetics Assessments of Bulls in Finishing Phase. Vet. Res. Commun. 2023, 47, 457–471. [Google Scholar] [CrossRef]
- Cole, N.A.; Krehbiel, C.R.; Lemenager, R.P.; Erickson, G.E.; Caton, J.; Beauchemin, K.A.; Galyean, M.L.; Eisemann, J.H.; Tedeschi, L.O. Nutrient Requirements of Beef Cattle, 8th ed.; National Academies Press: Washington, DC, USA, 2016; ISBN 978-0-309-31702-3. [Google Scholar]
- McManus, W.R.; Lee, G.J.; Robinson, V.N.E. Microlesions on Rumen Papillae of Sheep Fed Diets of Wheat Grain. Res. Vet. Sci. 1977, 22, 135–137. [Google Scholar] [CrossRef]
- Daniel, J.L.P.; Resende Júnior, J.C.; Cruz, F.J. Participação Do Ruminoretículo e Omaso Na Superfície Absortiva Total Do Proventrículo de Bovinos. Braz. J. Vet. Res. Anim. Sci. 2006, 43, 688. [Google Scholar] [CrossRef]
- Resende-Junior, J.C.; Alonso, L.D.S.; Pereira, M.N.; Roca, M.G.; Duboc, M.V.; De Oliveira, E.C.; Melo, L.Q. De Effect of the Feeding Pattern on Rumen Wall. Braz. J. Vet. Anim. Sci 2006, 43, 526–536. [Google Scholar] [CrossRef]
- Odongo, N.E.; AlZahal, O.; Lindinger, M.I.; Duffield, T.F.; Valdes, E.V.; Terrell, S.P.; McBride, B.W. Effects of Mild Heat Stress and Grain Challenge on Acid-Base Balance and Rumen Tissue Histology in Lambs. J. Anim. Sci. 2006, 84, 447–455. [Google Scholar] [CrossRef] [PubMed]
- Bigham, M.L.; McManus, W. Whole Wheat Grain Feeding of Lambs. V.* Effects of Roughage and Wheat Grain Mixtures. Aust. J. Agric. Res. 1975, 26, 1053–1062. [Google Scholar] [CrossRef]
- Devant, M.; Penner, G.B.; Marti, S.; Quintana, B.; Fábregas, F.; Bach, A.; Arís, A. Behavior and Inflammation of the Rumen and Cecum in Holstein Bulls Fed High-Concentrate Diets with Different Concentrate Presentation Forms with or without Straw Supplementation. J. Anim. Sci. 2016, 94, 3902–3917. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M.C.S.; Dellaqua, J.V.T.; Sousa, O.A.; Santi, P.F.; Felizari, L.D.; Reis, B.Q.; Pinto, A.C.J.; Bertoldi, G.P.; Silvestre, A.M.; Watanabe, D.H.M.; et al. Feedlot Performance, Feeding Behavior, Carcass and Rumen Morphometrics Characteristics of Nellore Cattle Submitted to Strategic Diets Prior the Adaptation Period. Livest. Sci. 2020, 234, 103985. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg-Lyons, D.; Lozupone, C.A.; Turnbaugh, P.J.; Fierer, N.; Knight, R. Global Patterns of 16S RRNA Diversity at a Depth of Millions of Sequences per Sample. Proc. Natl. Acad. Sci. USA 2011, 108, 4516–4522. [Google Scholar] [CrossRef] [PubMed]
- SAS; Version 9.3.; Statistical Analysis System; SAS Institute Inc.: Cary, NC, USA, 2011.
- RStudio Team. RStudio: Integrated Development for R; RStudio Team: Vienna, Austria, 2021. [Google Scholar]
- Huber, W.; Carey, V.J.; Gentleman, R.; Anders, S.; Carlson, M.; Carvalho, B.S.; Bravo, H.C.; Davis, S.; Gatto, L.; Girke, T.; et al. Orchestrating High-Throughput Genomic Analysis with Bioconductor. Nat. Methods 2015, 12, 115–121. [Google Scholar] [CrossRef]
- Gentleman, R.C.; Carey, V.J.; Bates, D.M.; Bolstad, B.; Dettling, M.; Dudoit, S.; Ellis, B.; Gautier, L.; Ge, Y.; Gentry, J.; et al. Bioconductor: Open Software Development for Computational Biology and Bioinformatics. Genome Biol. 2004, 5, R80. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Glöckner, F.O.; Yilmaz, P.; Quast, C.; Gerken, J.; Beccati, A.; Ciuprina, A.; Bruns, G.; Yarza, P.; Peplies, J.; Westram, R.; et al. 25 Years of Serving the Community with Ribosomal RNA Gene Reference Databases and Tools. J. Biotechnol. 2017, 261, 169–176. [Google Scholar] [CrossRef] [PubMed]
- McMurdie, P.J.; Holmes, S. Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. EdgeR: A Bioconductor Package for Differential Expression Analysis of Digital Gene Expression Data. Bioinformatics 2009, 26, 139–140. [Google Scholar] [CrossRef] [PubMed]
- Law, C.W.; Chen, Y.; Shi, W.; Smyth, G.K. Voom: Precision Weights Unlock Linear Model Analysis Tools for RNA-Seq Read Counts. Genome Biol. 2014, 15, R29. [Google Scholar] [CrossRef] [PubMed]
- Wickham, H.; Navarro, D.; Pedersen, T.L. Ggplot2: Elegant Graphics for Data Analysis. Media 2009, 35, 10–1007. [Google Scholar]
- Zou, X.; Liu, G.; Meng, F.; Hong, L.; Li, Y.; Lian, Z.; Yang, Z.; Luo, C.; Liu, D. Exploring the Rumen and Cecum Microbial Community from Fetus to Adulthood in Goat. Animals 2020, 10, 1639. [Google Scholar] [CrossRef] [PubMed]
- Long, J.M.; Trubenbach, L.A.; Pryor, J.H.; Long, C.R.; Wickersham, T.A.; Sawyer, J.E.; Satterfield, M.C. Maternal Nutrient Restriction Alters Endocrine Pancreas Development in Fetal Heifers. Domest. Anim. Endocrinol. 2021, 74, 106580. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Lu, H.; Cheng, J.; Geng, Z.; Mao, S.; Xue, Y. Undernutrition Disrupts Cecal Microbiota and Epithelium Interactions, Epithelial Metabolism, and Immune Responses in a Pregnant Sheep Model. Microbiol. Spectr. 2023, 11, e0532022. [Google Scholar] [CrossRef]
- Birchenough, G.M.H.; Johansson, M.E.V.; Gustafsson, J.K.; Bergström, J.H.; Hansson, G.C. New Developments in Goblet Cell Mucus Secretion and Function. Mucosal Immunol. 2016, 176, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Marillier, R.G.; Michels, C.; Smith, E.M.; Fick, L.C.E.; Leeto, M.; Dewals, B.; Horsnell, W.G.C.; Brombacher, F. IL-4/IL-13 Independent Goblet Cell Hyperplasia in Experimental Helminth Infections. BMC Immunol. 2008, 9, 11. [Google Scholar] [CrossRef] [PubMed]
- Oeser, K.; Schwartz, C.; Voehringer, D. Conditional IL-4/IL-13-Deficient Mice Reveal a Critical Role of Innate Immune Cells for Protective Immunity against Gastrointestinal Helminths. Mucosal Immunol. 2015, 8, 672–682. [Google Scholar] [CrossRef]
- Kotunia, A.; Woliñski, J.; Laubitz, D.; Jurkowska, M.; Romé, V.; Guilloteau, P.; Zabielski, R. Effect of Sodium Butyrate on the Small Intestine Development in Neonatal Piglets Feed by Artificial Sow. J. Physiol. Pharmacol. 2006, 55, 59–68. [Google Scholar]
- Barker, D.J.P.; Eriksson, J.G.; Forsén, T.; Osmond, C. Fetal Origins of Adult Disease: Strength of Effects and Biological Basis. Int. J. Epidemiol. 2002, 31, 1235–1239. [Google Scholar] [CrossRef]
- Vautier, A.N.; Cadaret, C.N. Long-Term Consequences of Adaptive Fetal Programming in Ruminant Livestock. Front. Anim. Sci. 2022, 3, 778440. [Google Scholar] [CrossRef]
- Edwards, P.D.; Lavergne, S.G.; McCaw, L.K.; Wijenayake, S.; Boonstra, R.; McGowan, P.O.; Holmes, M.M. Maternal Effects in Mammals: Broadening Our Understanding of Offspring Programming. Front. Neuroendocrinol. 2021, 62, 100924. [Google Scholar] [CrossRef]
- Playford, R.J.; Weiser, M.J. Bovine Colostrum: Its Constituents and Uses. Nutrients 2021, 13, 265. [Google Scholar] [CrossRef]
- Hammer, C.J.; Thorson, J.F.; Meyer, A.M.; Redmer, D.A.; Luther, J.S.; Neville, T.L.; Reed, J.J.; Reynolds, L.P.; Caton, J.S.; Vonnahme, K.A. Effects of Maternal Selenium Supply and Plane of Nutrition during Gestation on Passive Transfer of Immunity and Health in Neonatal Lambs. J. Anim. Sci. 2011, 89, 3690–3698. [Google Scholar] [CrossRef]
- Vandenplas, Y.; Carnielli, V.P.; Ksiazyk, J.; Luna, M.S.; Migacheva, N.; Mosselmans, J.M.; Picaud, J.C.; Possner, M.; Singhal, A.; Wabitsch, M. Factors Affecting Early-Life Intestinal Microbiota Development. Nutrition 2020, 78, 110812. [Google Scholar] [CrossRef]
- Long, N.M.; Vonnahme, K.A.; Hess, B.W.; Nathanielsz, P.W.; Ford, S.P. Effects of Early Gestational Undernutrition on Fetal Growth, Organ Development, and Placentomal Composition in the Bovine. J. Anim. Sci. 2009, 87, 1950–1959. [Google Scholar] [CrossRef]
- Duarte, M.S.; Wei, S.; Harris, S.M.; Dodson, M.V.; Du, M. Enhancement of Adipogenesis and Fibrogenesis in Skeletal Muscle of Wagyu Compared with Angus Cattle. J. Anim. Sci. 2018, 91, 2938–2946. [Google Scholar] [CrossRef] [PubMed]
- Cavalcanti, L.F.L.; Borges, I.; Silva, V.L.; Silva, F.V.; Sá, H.C.M.; Maciel, I.C.F.; Paula, F.A.P.; Costa, E.H.O. Morfologia Dos Pré-Estômagos e de Papilas Ruminais de Cordeiras Santa Inês Em Crescimento Submetidas a Dois Planos Nutricionais. Pesqui. Vet. Bras. 2014, 34, 374–380. [Google Scholar] [CrossRef]
- De Andrade, N. Nutrition of Pregnant Ewes and Impact on Lamb Production: Fetal Programming; Faculdade de Ciências Agrárias e Veterinárias–UNESP: São Paulo, Brazil, 2017. [Google Scholar]
- Dirksen, G.U.; Liebich, H.G.; Mayer, E. Adaptive Changes of the Ruminal Mucosa and Their Functional and Clinical Significance. Bov. Pract. 1985, 20, 116–120. [Google Scholar] [CrossRef]
- Estevam, D.D.; Pereira, I.C.; Rigueiro, A.L.N.; Perdigão, A.; da Costa, C.F.; Rizzieri, R.A.; Pereira, M.C.S.; Martins, C.L.; Millen, D.D.; Arrigoni, M.D.B. Feedlot Performance and Rumen Morphometrics of Nellore Cattle Adapted to High-Concentrate Diets over Periods of 6, 9, 14 and 21 Days. Animal 2020, 14, 2298–2307. [Google Scholar] [CrossRef] [PubMed]
- Guzman, C.E.; Bereza-Malcolm, L.T.; De Groef, B.; Franks, A.E. Presence of Selected Methanogens, Fibrolytic Bacteria, and Proteobacteria in the Gastrointestinal Tract of Neonatal Dairy Calves from Birth to 72 Hours. PLoS ONE 2015, 10, e0133048. [Google Scholar] [CrossRef] [PubMed]
- Woodruff, K.L.; Hummel, G.L.; Austin, K.J.; Lake, S.L.; Cunningham-Hollinger, H.C. Calf Rumen Microbiome from Birth to Weaning and Shared Microbial Properties to the Maternal Rumen Microbiome. J. Anim. Sci. 2022, 100, skac264. [Google Scholar] [CrossRef]
- Newbold, C.J.; Ramos-Morales, E. Review: Ruminal Microbiome and Microbial Metabolome: Effects of Diet and Ruminant Host. Animal 2020, 14, S78–S86. [Google Scholar] [CrossRef]
- Jiao, J.; Li, X.; Beauchemin, K.A.; Tan, Z.; Tang, S.; Zhou, C. Rumen Development Process in Goats as Affected by Supplemental Feeding v. Grazing: Age-Related Anatomic Development, Functional Achievement and Microbial Colonisation. Br. J. Nutr. 2015, 113, 888–900. [Google Scholar] [CrossRef]
- Ratnakomala, S.; Perwitasari, U. Yopi The Amylase Production by Actinobacteria Isolated from Rumen Fluid. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2020; Volume 439. [Google Scholar] [CrossRef]
- Myer, P.R.; Smith, T.P.L.; Wells, J.E.; Kuehn, L.A.; Freetly, H.C. Rumen Microbiome from Steers Differing in Feed Efficiency. PLoS ONE 2015, 10, e0129174. [Google Scholar] [CrossRef]
- Li, F.; Hitch, T.C.A.; Chen, Y.; Creevey, C.J.; Guan, L.L. Comparative Metagenomic and Metatranscriptomic Analyses Reveal the Breed Effect on the Rumen Microbiome and Its Associations with Feed Efficiency in Beef Cattle 06 Biological Sciences 0604 Genetics 06 Biological Sciences 0605 Microbiology. Microbiome 2019, 7, 6. [Google Scholar] [CrossRef]
- Petri, R.M.; Schwaiger, T.; Penner, G.B.; Beauchemin, K.A.; Forster, R.J.; McKinnon, J.J.; McAllister, T.A. Characterization of the Core Rumen Microbiome in Cattle during Transition from Forage to Concentrate as Well as during and after an Acidotic Challenge. PLoS ONE 2013, 8, e83424. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.H.; Evans, P.; Morrison, M.; Mcsweeney, C. Identification of Metabolically Active Proteobacterial and Archaeal Communities in the Rumen by DNA- and RNA-Derived 16S RRNA Gene. J. Appl. Microbiol. 2013, 115, 644–653. [Google Scholar] [CrossRef]
- Lopes, D.R.G.; La Reau, A.J.; De Souza Duarte, M.; Detmann, E.; Bento, C.B.P.; Mercadante, M.E.Z.; Bonilha, S.F.M.; Suen, G.; Mantovani, H.C. The Bacterial and Fungal Microbiota of Nelore Steers Is Dynamic across the Gastrointestinal Tract and Its Fecal-Associated Microbiota Is Correlated to Feed Efficiency. Front. Microbiol. 2019, 10, 1263. [Google Scholar] [CrossRef] [PubMed]
- Luz Calle, M. Statistical Analysis of Metagenomics Data. Genom. Inform. 2019, 17, e6. [Google Scholar] [CrossRef] [PubMed]
- Solden, L.M.; Hoyt, D.W.; Collins, W.B.; Plank, J.E.; Daly, R.A.; Hildebrand, E.; Beavers, T.J.; Wolfe, R.; Nicora, C.D.; Purvine, S.O.; et al. New Roles in Hemicellulosic Sugar Fermentation for the Uncultivated Bacteroidetes Family BS11. ISME J. 2017, 11, 691–703. [Google Scholar] [CrossRef] [PubMed]
- Schober, P.; Schwarte, L.A. Correlation Coefficients: Appropriate Use and Interpretation. Anesth Analg 2018, 126, 1763–1768. [Google Scholar] [CrossRef] [PubMed]
- Gharechahi, J.; Vahidi, M.F.; Bahram, M.; Han, J.L.; Ding, X.Z.; Salekdeh, G.H. Metagenomic Analysis Reveals a Dynamic Microbiome with Diversified Adaptive Functions to Utilize High Lignocellulosic Forages in the Cattle Rumen. The ISME Journal 2020, 15, 1108–1120. [Google Scholar] [CrossRef]
- Kruger Ben Shabat, S.; Sasson, G.; Doron-Faigenboim, A.; Durman, T.; Yaacoby, S.; Berg Miller, M.E.; White, B.A.; Shterzer, N.; Mizrahi, I. Specific Microbiome-Dependent Mechanisms Underlie the Energy Harvest Efficiency of Ruminants. ISME J. 2016, 10, 2958–2972. [Google Scholar] [CrossRef]
- Van Gylswyk, N.O. Succiniclasticum Ruminis Gen. Nov., Sp. Nov., a Ruminal Bacterium Converting Succinate to Propionate as the Sole Energy-Yielding Mechanism. Int. J. Syst. Bacteriol. 1995, 45, 297–300. [Google Scholar] [CrossRef] [PubMed]
Diets | Initial | Intermediary | Finishing |
---|---|---|---|
Inclusion (%) | 50 | 62 | 73 |
Ingredients (% of DM) | |||
Corn silage | 50.00 | 38.75 | 27.50 |
Fine ground corn | 34.90 | 50.88 | 67.05 |
Soybean meal | 12.60 | 7.50 | 2.20 |
Urea | 0.50 | 0.87 | 1.25 |
Flexbeef 1 | 0.66 | - | 1.00 |
Flexbeef MD 2 | 0.34 | 1.00 | - |
Flexbeef MAX 3 | 1.00 | 1.00 | 1.00 |
Monensin, mg | 102.0 | 300.0 | 0.00 |
Virginiamycin, mg | 250.0 | 250.0 | 250.0 |
Chemical composition | |||
DM 4 (%) | 48.10 | 53.60 | 50.60 |
CP 4 (%DM) | 15.00 | 14.00 | 13.00 |
RDP 4 (%DM) | 10.31 | 10.18 | 10.00 |
NDF 4 (%DM) | 36.50 | 31.10 | 25.80 |
NDFe 4 (%DM) | 26.20 | 20.80 | 15.50 |
Ca 4 (%DM) | 0.66 | 0.61 | 0.55 |
P 4 (%DM) | 0.38 | 0.37 | 0.35 |
K 4 (%DM) | 1.00 | 0.81 | 0.61 |
S 4 (%DM) | 0.20 | 0.17 | 0.13 |
EE 4 (%DM) | 3.18 | 3.43 | 3.68 |
TDN 5 (%DM) | 71.00 | 73.6 | 76.2 |
Variables | Treatments | Mean | SE | p-Value | ||
---|---|---|---|---|---|---|
NP | PP | CP | ||||
Rumen measurements | ||||||
Macroscopic variables | ||||||
Number of papillae, n | 101.3 b | 122.9 a | 111.2 ab | 111.46 | 13.246 | 0.01 |
Microscopic variables | ||||||
Papillae thickness, µ | 164.6 | 178.7 | 176.8 | 173.4 | 40.181 | 0.34 |
KLT, µ | 12.55 | 12.75 | 12.19 | 12.49 | 2.144 | 0.63 |
Cecum measurements | ||||||
Crypt depth, µ | 8.86 a | 10.40 a | 6.47 b | 8.57 | 2.637 | <0.01 |
Goblet cells, n | 33.77 a | 19.70 b | 11.91 c | 21.79 | 9.078 | <0.01 |
ASV | Total | Kingdom | Phylum | Class | Order | Family | Genus |
---|---|---|---|---|---|---|---|
Rumen | |||||||
1440 | 119,904 | Bacteria | Bacteroidota | Bacteroidia | Bacteroidales | Prevotellaceae | Prevotella |
3278 | 69,851 | Bacteria | Firmicutes | Clostridia | Christensenellales | Christensenellaceae | R-7 Group |
3055 | 58,166 | Bacteria | Firmicutes | Negativicutes | Acidaminococcales | Acidaminococcaceae | Succiniclasticum |
617 | 49,365 | Bacteria | Bacteroidota | Bacteroidia | Bacteroidales | Rikenellaceae | RC9-gut Group |
1787 | 45,785 | Bacteria | Fibrobacterota | Fibrobacteria | Fibrobacterales | Fibrobacteraceae | Fibrobacter |
784 | 40,905 | Bacteria | Bacteroidota | Bacteroidia | Bacteroidales | F082 | N/A |
4449 | 36,740 | Bacteria | Firmicutes | Clostridia | Lachnospirales | Lachnospiraceae | N/A |
3440 | 34,880 | Bacteria | Firmicutes | Clostridia | Oscillospirales | Oscillospiraceae | NK4A214 Group |
4653 | 34,174 | Bacteria | Firmicutes | Clostridia | Lachnospirales | Lachanospiraceae | NK3A20 Group |
3908 | 31,554 | Bacteria | Firmicutes | Clostridia | Oscillospirales | Ruminococcoceae | Runinococcus |
Feces | |||||||
1490 | 127,598 | Bacteria | Bacteroidota | Bacteroidia | Bacteroidales | Prevotellaceae | Prevotella |
4556 | 61,220 | Bacteria | Firmicutes | Clostridia | Lachnospirales | Lachnospiraceae | N/A |
4965 | 41,327 | Bacteria | Firmicutes | Clostridia | Lachnospirales | Lachnospiraceae | Blautia |
3693 | 39,565 | Bacteria | Firmicutes | Clostridia | Clostridiales | Clostridiaceae | Clostridium |
2022 | 39,074 | Bacteria | Firmicutes | Bacilli | Erysipelotrichales | Erysipelotrichaceae | Turicibacter |
2773 | 34,951 | Bacteria | Firmicutes | Clostridia | Tissierellales | Peptostreptococcaceae | Romboutsia |
1455 | 31,118 | Bacteria | Bacteroidota | Bacteroidia | Bacteroidales | Prevotellaceae | NA |
2661 | 30,781 | Bacteria | Proteobacteria | proteobacteria | Aeromonadales | Succinivibrionaceae | Succinivibrio |
4496 | 26,519 | Bacteria | Firmicutes | Clostridia | Lachnospirales | Lachnospiraceae | Agathobacter |
3846 | 25,090 | Bacteria | Firmicutes | Clostridia | Oscillospirales | Ruminococcaceae | Faecalibacterium |
ASV | p-Value | Adj. p-Value | Kingdom | Phylum | Class | Order | Family |
---|---|---|---|---|---|---|---|
Rumen | |||||||
695 | 0.0032615 | 0.1304584 | Bacteria | Bacteroidota | Bacteroidia | Bacteroidales | Bacteroidales_BS11 |
3637 | 0.0285711 | 0.5406086 | Bacteria | Firmicutes | Clostridia | Clostridia_or | Hungateiclostridiaceae |
3908 | 0.0405456 | 0.5406086 | Bacteria | Firmicutes | Clostridia | Oscillospirales | Ruminococcaceae |
4260 | 0.0673547 | 0.6008402 | Bacteria | Firmicutes | Clostridia | Lachnospirales | Defluviitaleaceae |
3651 | 0.0751050 | 0.6008402 | Bacteria | Firmicutes | Clostridia | Monoglobales | Monoglobaceae |
Feces | |||||||
4556 | 0.0522220 | 0.9885435 | Bacteria | Firmicutes | Clostridia | Lactobacillales | Lachnospiraceae |
2058 | 0.0860555 | 0.9885435 | Bacteria | Firmicutes | Bacilli | Lactobacillales | Lachnospiraceae |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dias, E.F.F.; de Carvalho, F.E.; Polizel, G.H.G.; Cançado, F.A.C.Q.; Furlan, É.; Fernandes, A.C.; Schalch Júnior, F.J.; Santos, G.E.C.; Ferraz, J.B.S.; Santana, M.H.d.A. Fetal Programming Influence on Microbiome Diversity and Ruminal and Cecal Epithelium in Beef Cattle. Animals 2024, 14, 870. https://doi.org/10.3390/ani14060870
Dias EFF, de Carvalho FE, Polizel GHG, Cançado FACQ, Furlan É, Fernandes AC, Schalch Júnior FJ, Santos GEC, Ferraz JBS, Santana MHdA. Fetal Programming Influence on Microbiome Diversity and Ruminal and Cecal Epithelium in Beef Cattle. Animals. 2024; 14(6):870. https://doi.org/10.3390/ani14060870
Chicago/Turabian StyleDias, Evandro Fernando Ferreira, Felipe Eguti de Carvalho, Guilherme Henrique Gebim Polizel, Fernando Augusto Correia Queiroz Cançado, Édison Furlan, Arícia Christofaro Fernandes, Fernando José Schalch Júnior, Gianluca Elmi Chagas Santos, José Bento Sterman Ferraz, and Miguel Henrique de Almeida Santana. 2024. "Fetal Programming Influence on Microbiome Diversity and Ruminal and Cecal Epithelium in Beef Cattle" Animals 14, no. 6: 870. https://doi.org/10.3390/ani14060870
APA StyleDias, E. F. F., de Carvalho, F. E., Polizel, G. H. G., Cançado, F. A. C. Q., Furlan, É., Fernandes, A. C., Schalch Júnior, F. J., Santos, G. E. C., Ferraz, J. B. S., & Santana, M. H. d. A. (2024). Fetal Programming Influence on Microbiome Diversity and Ruminal and Cecal Epithelium in Beef Cattle. Animals, 14(6), 870. https://doi.org/10.3390/ani14060870