Dietary Supplementation with Bupleuri Radix Reduces Oxidative Stress Occurring during Growth by Regulating Rumen Microbes and Metabolites
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Experimental Design and Sample Collection
2.3. Measurement of Serum Oxidative Parameters
2.4. Measurement of Rumen Enzyme Activity
2.5. Microbiome Sample Processing and Sequencing
2.6. Bacterial Metagenome Bioinformatics and Statistical Analysis
2.7. Rumen Fluid Sample Processing and Metabolite Profiling Analysis
2.8. Data Analysis
2.9. Co-Occurrence Network Analysis
2.10. Correlation Analysis
3. Results
3.1. The Impact of Different BR % and Ages on Serum Oxidative Indicators
3.2. Impact of BR on Rumen Enzyme Activities
3.3. Impact of BR on Rumen Microbiota
3.4. The Impact of BR on the Coexistence Patterns of Rumen Microbes
3.5. Impact of BR on Rumen Metabolites
3.6. Spearman Correlation Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alharthi, A.S.M. Maternal Rumen-Protected Methionine Supplementation Alters Dairy Calf Development, Postnatal Growth, Plasma Biomarkers, and Liver One-Carbon Metabolism. Ph.D. Thesis, University of Illinois at Urbana-Champaign, Champaign, IL, USA, 2019. [Google Scholar]
- Cecchini, S.; Fazio, F. Assessment of total (anti) oxidant status in goat kids. Arch. Anim. Breed. 2021, 64, 139–146. [Google Scholar] [CrossRef]
- Cuervo, W.; Sordillo, L.M.; Abuelo, A. Oxidative stress compromises lymphocyte function in neonatal dairy calves. Antioxidants 2021, 10, 255. [Google Scholar] [CrossRef]
- Mutinati, M.; Pantaleo, M.; Roncetti, M.; Piccinno, M.; Rizzo, A.; Sciorsci, R.L. Oxidative stress in neonatology. A review. Reprod. Domest. Anim. 2014, 49, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Ranade, R.; Talukder, S.; Muscatello, G.; Celi, P. Assessment of oxidative stress biomarkers in exhaled breath condensate and blood of dairy heifer calves from birth to weaning. Vet. J. 2014, 202, 583–587. [Google Scholar] [CrossRef] [PubMed]
- Elolimy, A.A.; Liang, Y.; Lopes, M.G.; Loor, J.J. Antioxidant networks and the microbiome as components of efficiency in dairy cattle. Livest. Sci. 2021, 251, 104656. [Google Scholar] [CrossRef]
- Surai, P.F.; Kochish, I.I.; Fisinin, V.I.; Juniper, D.T. Revisiting oxidative stress and the use of organic selenium in dairy cow nutrition. Animals 2019, 9, 462. [Google Scholar] [CrossRef] [PubMed]
- Abuelo, A.; Hernández, J.; Benedito, J.L.; Castillo, C. Redox biology in transition periods of dairy cattle: Role in the health of periparturient and neonatal animals. Antioxidants 2019, 8, 20. [Google Scholar] [CrossRef]
- Celi, P. The role of oxidative stress in small ruminants’ health and production. Rev. Bras. Zootec. 2010, 39, 348–363. [Google Scholar] [CrossRef]
- Chauhan, S.; Ponnampalam, E.N.; Celi, P.; Hopkins, D.L.; Leury, B.J.; Dunshea, F.R. High dietary vitamin E and selenium improves feed intake and weight gain of finisher lambs and maintains redox homeostasis under hot conditions. Small Rumin. Res. 2016, 137, 17–23. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, Y.; Zhang, J.; Chen, D. Isolation and characterization of an anti-complementary polysaccharide D3-S1 from the roots of Bupleurum smithii. Int. Immunopharmacol. 2007, 7, 175–182. [Google Scholar] [CrossRef]
- Yang, F.; Dong, X.; Yin, X.; Wang, W.; You, L.; Ni, J. Radix Bupleuri: A review of traditional uses, botany, phytochemistry, pharmacology, and toxicology. BioMed Res. Int. 2017, 2017, 7597596. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.; Zhao, J.; Chen, H.; Xin, C.; Wang, B.; Yu, M.; Wei, J. Traditional use, germplasm identification, phytochemistry, pharmacology of Bupleuri Radix: A review. Med. Plant Biol. 2023, 2, 18. [Google Scholar] [CrossRef]
- Motohashi, H.; Sukigara, H.; Tahara, Y.; Saito, K.; Yamazaki, M.; Shiraishi, T.; Kikuchi, Y.; Haraguchi, A.; Shibata, S. Polyporus and Bupleuri radix effectively alter peripheral circadian clock phase acutely in male mice. Nutr. Res. 2017, 43, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-M.; Kim, S.C.; Chung, I.K.; Cheon, W.H.; Ku, S.K. Antioxidant and protective effects of Bupleurum falcatum on the L-thyroxine-induced hyperthyroidism in rats. Evid.-Based Complement. Altern. Med. 2012, 2012, 578497. [Google Scholar] [CrossRef] [PubMed]
- Jia, R.; Gu, Z.; He, Q.; Du, J.; Cao, L.; Jeney, G.; Xu, P.; Yin, G. Anti-oxidative, anti-inflammatory and hepatoprotective effects of Radix Bupleuri extract against oxidative damage in tilapia (Oreochromis niloticus) via Nrf2 and TLRs signaling pathway. Fish Shellfish. Immunol. 2019, 93, 395–405. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.; Peng, X.; Wu, C.; Cai, T.; Liu, J.; Shu, G. Effects of dietary inclusion of Radix Bupleuri extract on the growth performance, and ultrastructural changes and apoptosis of lung epithelial cells in broilers exposed to atmospheric ammonia. J. Anim. Sci. 2021, 99, skab313. [Google Scholar] [CrossRef] [PubMed]
- Miron, J.; Ben-Ghedalia, D.; Morrison, M. Invited review: Adhesion mechanisms of rumen cellulolytic bacteria. J. Dairy Sci. 2001, 84, 1294–1309. [Google Scholar] [CrossRef]
- Mizrahi, I.; Wallace, R.J.; Moraïs, S. The rumen microbiome: Balancing food security and environmental impacts. Nat. Rev. Microbiol. 2021, 19, 553–566. [Google Scholar] [CrossRef]
- Parish, J.A.; Rivera, J.D.; Boland, H.T. Understanding the Ruminant Animal Digestive System; Mississippi State University: Lansing, MI, USA, 2009. [Google Scholar]
- Shandilya, S.; Kumar, S.; Jha, N.K.; Kesari, K.K.; Ruokolainen, J. Interplay of gut microbiota and oxidative stress: Perspective on neurodegeneration and neuroprotection. J. Adv. Res. 2022, 38, 223–244. [Google Scholar] [CrossRef]
- Cholewińska, P.; Górniak, W.; Wojnarowski, K. Impact of selected environmental factors on microbiome of the digestive tract of ruminants. BMC Vet. Res. 2021, 17, 25. [Google Scholar] [CrossRef]
- Hao, Y.; Gong, Y.; Huang, S.; Ji, S.; Wang, W.; Wang, Y.; Yang, H.; Cao, Z.; Li, S. Effects of age, diet CP, NDF, EE, and starch on the rumen bacteria community and function in dairy cattle. Microorganisms 2021, 9, 1788. [Google Scholar] [CrossRef]
- Liu, Z.; Dong, L.; Jia, K.; Zhan, H.; Zhang, Z.; Shah, N.P.; Tao, X.; Wei, H. Sulfonation of Lactobacillus plantarum WLPL04 exopolysaccharide amplifies its antioxidant activities in vitro and in a Caco-2 cell model. J. Dairy Sci. 2019, 102, 5922–5932. [Google Scholar] [CrossRef]
- Xing, J.; Wang, G.; Zhang, Q.; Liu, X.; Yin, B.; Fang, D.; Zhao, J.; Zhang, H.; Chen, Y.Q.; Chen, W. Determining antioxidant activities of lactobacilli by cellular antioxidant assay in mammal cells. J. Funct. Foods 2015, 19, 554–562. [Google Scholar] [CrossRef]
- Gu, F.; Zhu, S.; Hou, J.; Tang, Y.; Liu, J.X.; Xu, Q.; Sun, H.Z. The hindgut microbiome contributes to host oxidative stress in postpartum dairy cows by affecting glutathione synthesis process. Microbiome 2023, 11, 87. [Google Scholar] [CrossRef]
- Li, T.; Zhang, T.; Gao, H.; Liu, R.; Gu, M.; Yang, Y.; Cui, T.; Lu, Z.; Yin, C. Tempol ameliorates polycystic ovary syndrome through attenuating intestinal oxidative stress and modulating of gut microbiota composition-serum metabolites interaction. Redox Biol. 2021, 41, 101886. [Google Scholar] [CrossRef] [PubMed]
- Mohajeri, M.H.; La Fata, G.; Steinert, R.E.; Weber, P. Relationship between the gut microbiome and brain function. Nutr. Rev. 2018, 76, 481–496. [Google Scholar] [CrossRef] [PubMed]
- Petry, A.L.; Huntley, N.F.; Bedford, M.R.; Patience, J.F. Xylanase increased the energetic contribution of fiber and improved the oxidative status, gut barrier integrity, and growth performance of growing pigs fed insoluble corn-based fiber. J. Anim. Sci. 2020, 98, skaa233. [Google Scholar] [CrossRef]
- Salar-Amoli, J.; Baghbanzadeh, A. Oxidative stress in Shaal sheep of different age groups. Turk. J. Vet. Anim. Sci. 2010, 34, 379–383. [Google Scholar] [CrossRef]
- Walther, F.J.; Jobe, A.H.; Ikegami, M. Repetitive prenatal glucocorticoid therapy reduces oxidative stress in the lungs of preterm lambs. J. Appl. Physiol. 1998, 85, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, W.; Wang, R.; Meng, Z.; Duan, Y.; An, X.; Qi, J. Dietary supplementation of ferulic acid improves performance and alleviates oxidative stress of lambs in a cold environment. Can. J. Anim. Sci. 2019, 99, 705–712. [Google Scholar] [CrossRef]
- Junqueira, V.B.; Barros, S.B.; Chan, S.S.; Rodrigues, L.; Giavarotti, L.; Abud, R.L.; Deucher, G.P. Aging and oxidative stress. Mol. Asp. Med. 2004, 25, 5–16. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Mills, K.; le Cessie, S.; Noordam, R.; van Heemst, D. Ageing, age-related diseases and oxidative stress: What to do next? Ageing Res. Rev. 2020, 57, 100982. [Google Scholar] [CrossRef]
- Mezzetti, A.; Lapenna, D.; Romano, F.; Costantini, F.; Pierdomenico, S.D.; De Cesare, D.; Cuccurullo, F.; Riario-Sforza, G.; Zuliani, G.; Fellin, R.; et al. Systemic oxidative stress and its relationship with age and illness. J. Am. Geriatr. Soc. 1996, 44, 823–827. [Google Scholar] [CrossRef]
- Nussey, D.H.; Pemberton, J.M.; Pilkington, J.G.; Blount, J.D. Life history correlates of oxidative damage in a free-living mammal population. Funct. Ecol. 2009, 23, 809–817. [Google Scholar] [CrossRef]
- Liang, Y.; Bao, Y.; Gao, X.; Deng, K.; An, S.; Wang, Z.; Huang, X.; Liu, D.; Liu, Z.; Wang, F.; et al. Effects of spirulina supplementation on lipid metabolism disorder, oxidative stress caused by high-energy dietary in Hu sheep. Meat Sci. 2020, 164, 108094. [Google Scholar] [CrossRef]
- Kafantaris, I.; Kotsampasi, B.; Christodoulou, V.; Kokka, E.; Kouka, P.; Terzopoulou, Z.; Gerasopoulos, K.; Stagos, D.; Mitsagga, C.; Giavasis, I.; et al. Grape pomace improves antioxidant capacity and faecal microflora of lambs. J. Anim. Physiol. Anim. Nutr. 2017, 101, e108–e121. [Google Scholar] [CrossRef]
- Mei, X.; Gohal, S.A.; Alatwi, E.S.; Hui, Y.; Yang, C.; Song, Y.; Zhou, C.; Liu, M.C. Sulfation of quercitrin, epicatechin and rutin by human cytosolic sulfotransferases (SULTs): Differential effects of SULT genetic polymorphisms. Planta Medica 2021, 87, 498–506. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.-R.; Shin, J.; Guevarra, R.B.; Lee, J.H.; Kim, D.W.; Seol, K.H.; Ju-Hoon, L.; Hyeun Bum, K.; Isaacson, R.E. Deciphering diversity indices for a better understanding of microbial communities. J. Microbiol. Biotechnol. 2017, 27, 2089–2093. [Google Scholar] [CrossRef]
- Evans, N.J.; Brown, J.M.; Murray, R.D.; Getty, B.; Birtles, R.J.; Hart, C.A.; Carter, S.D. Characterization of novel bovine gastrointestinal tract Treponema isolates and comparison with bovine digital dermatitis treponemes. Appl. Environ. Microbiol. 2011, 77, 138–147. [Google Scholar] [CrossRef]
- Spence, C.; Wells, W.G.; Smith, C.J. Characterization of the primary starch utilization operon in the obligate anaerobe Bacteroides fragilis: Regulation by carbon source and oxygen. J. Bacteriol. 2006, 188, 4663–4672. [Google Scholar] [CrossRef]
- Guo, W.; Tang, X.; Zhang, Q.; Zhao, J.; Mao, B.; Zhang, H.; Cui, S. Mitigation of Dextran-Sodium-Sulfate-Induced Colitis in Mice through Oral Administration of Microbiome-Derived Inosine and Its Underlying Mechanisms. Int. J. Mol. Sci. 2023, 24, 13852. [Google Scholar] [CrossRef]
- Zou, B.; Long, F.; Xue, F.; Qu, M. Alleviation effects of niacin supplementation on beef cattle subjected to heat stress: A metagenomic insight. Front. Microbiol. 2022, 13, 975346. [Google Scholar] [CrossRef]
- Akbarian, A.; Michiels, J.; Degroote, J.; Majdeddin, M.; Golian, A.; De Smet, S. Association between heat stress and oxidative stress in poultry; mitochondrial dysfunction and dietary interventions with phytochemicals. J. Anim. Sci. Biotechnol. 2016, 7, 37. [Google Scholar] [CrossRef] [PubMed]
- Altan, Ö.; Pabuçcuoğlu, A.; Altan, A.; Konyalioğlu, S.; Bayraktar, H. Effect of heat stress on oxidative stress, lipid peroxidation and some stress parameters in broilers. Br. Poult. Sci. 2003, 44, 545–550. [Google Scholar] [CrossRef] [PubMed]
- Belhadj Slimen, I.; Najar, T.; Ghram, A.; Dabbebi, H.; Ben Mrad, M.; Abdrabbah, M. Reactive oxygen species, heat stress and oxidative-induced mitochondrial damage. A review. Int. J. Hyperth. 2014, 30, 513–523. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Decuypere, E.; Buyse, J. Acute heat stress induces oxidative stress in broiler chickens. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2006, 144, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Bajaj, J.S.; Heuman, D.M.; Hylemon, P.B.; Sanyal, A.J.; White, M.B.; Monteith, P.; Noble, N.A.; Unser, A.B.; Daita, K.; Fisher, A.R.; et al. Altered profile of human gut microbiome is associated with cirrhosis and its complications. J. Hepatol. 2014, 60, 940–947. [Google Scholar] [CrossRef] [PubMed]
- Bajaj, J.S.; Hylemon, P.B.; Ridlon, J.M.; Heuman, D.M.; Daita, K.; White, M.B.; Monteith, P.; Noble, N.A.; Sikaroodi, M.; Gillevet, P.M. Colonic mucosal microbiome differs from stool microbiome in cirrhosis and hepatic encephalopathy and is linked to cognition and inflammation. Am. J. Physiol.-Gastrointest. Liver Physiol. 2012, 303, G675–G685. [Google Scholar] [CrossRef]
- Schnabl, B.; Brenner, D.A. Interactions between the intestinal microbiome and liver diseases. Gastroenterology 2014, 146, 1513–1524. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Mo, W.; Zheng, C.; Li, W.; Tang, J.; Wu, X. Alleviating effects of noni fruit polysaccharide on hepatic oxidative stress and inflammation in rats under a high-fat diet and its possible mechanisms. Food Funct. 2020, 11, 2953–2968. [Google Scholar] [CrossRef] [PubMed]
- Tezuka, Y.; Irikawa, S.; Kaneko, T.; Banskota, A.H.; Nagaoka, T.; Xiong, Q.; Hase, K.; Kadota, S. Screening of Chinese herbal drug extracts for inhibitory activity on nitric oxide production and identification of an active compound of Zanthoxylum bungeanum. J. Ethnopharmacol. 2001, 77, 209–217. [Google Scholar] [CrossRef]
- Moharrery, A.; Das, T.K. Correlation between microbial enzyme activities in the rumen fluid of sheep under different treatments. Reprod. Nutr. Dev. 2001, 41, 513–529. [Google Scholar] [CrossRef]
- Howard, B. Metabolism of carbohydrates by rumen bacteria. Proc. Nutr. Soc. 1959, 18, 103–108. [Google Scholar] [CrossRef]
- Nagaraja, T.; Titgemeyer, E. Ruminal acidosis in beef cattle: The current microbiological and nutritional outlook. J. Dairy Sci. 2007, 90, E17–E38. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, H.F.; Zhou, Z.; Gomes, M.S.; Peixoto, P.M.; Bonsaglia, E.C.; Canisso, I.F.; Weimer, B.C.; Lima, F.S. Rumen and lower gut microbiomes relationship with feed efficiency and production traits throughout the lactation of Holstein dairy cows. Sci. Rep. 2022, 12, 4904. [Google Scholar] [CrossRef] [PubMed]
- Ali, B.R.; Zhou, L.; Graves, F.M.; Freedman, R.B.; Black, G.W.; Gilbert, H.J.; Hazlewood, G.P. Cellulases and hemicellulases of the anaerobic fungus Piromyces constitute a multiprotein cellulose-binding complex and are encoded by multigene families. FEMS Microbiol. Lett. 1995, 125, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wang, X.; Yan, G.; Lei, J.; Zhou, Y.; Wu, L.; Wang, T.; Zhang, X.; Ye, D.; Li, Y. Anti-versus pro-inflammatory metabololipidome upon cupping treatment. Cell. Physiol. Biochem. 2018, 45, 1377–1389. [Google Scholar] [CrossRef]
- JIN, Y.; Kim, E.N.; Lim, J.H.; Kim, H.D.; Kim, Y.; Ban, T.H.; Park, C.W.; Choi, B.S. P0135 Effect of Lysophosphatidic Acid Regulation on the Aging Kidney. Nephrol. Dial. Transplant. 2020, 35 (Suppl. S3), gfaa142.P0135. [Google Scholar] [CrossRef]
- Dang, V.T.; Zhong, L.H.; Huang, A.; Deng, A.; Werstuck, G.H. Glycosphingolipids promote pro-atherogenic pathways in the pathogenesis of hyperglycemia-induced accelerated atherosclerosis. Metabolomics 2018, 14, 92. [Google Scholar] [CrossRef]
- Deng, P.; Barney, J.; Petriello, M.C.; Morris, A.J.; Wahlang, B.; Hennig, B. Hepatic metabolomics reveals that liver injury increases PCB 126-induced oxidative stress and metabolic dysfunction. Chemosphere 2019, 217, 140–149. [Google Scholar] [CrossRef]
- Wu, T.; Yang, L.; Guo, X.; Zhang, M.; Liu, R.; Sui, W. Raspberry anthocyanin consumption prevents diet-induced obesity by alleviating oxidative stress and modulating hepatic lipid metabolism. Food Funct. 2018, 9, 2112–2120. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.; Li, S.; Wang, J.; Liu, C.; Gao, L.; Zeng, Y.; Mao, R.; Cui, B.; Ji, H.; Chen, Z. Induced sputum metabolomic profiles and oxidative stress are associated with chronic obstructive pulmonary disease (COPD) severity: Potential use for predictive, preventive, and personalized medicine. EPMA J. 2020, 11, 645–659. [Google Scholar] [CrossRef] [PubMed]
- Mo, Q.; Kulyar, M.F.E.A.; Ding, Y.; Zhang, Y.; Pan, H.; Li, J. Thiram induces myocardial oxidative damage and apoptosis in broilers via interfering their cardiac metabolism. Ecotoxicol. Environ. Saf. 2022, 247, 114225. [Google Scholar] [CrossRef]
- Mei, S.; Song, X.; Wang, Y.; Wang, J.; Su, S.; Zhu, J.; Geng, Y. Studies on protection of astaxanthin from oxidative damage induced by H2O2 in RAW 264.7 cells based on 1H NMR metabolomics. J. Agric. Food Chem. 2019, 67, 13568–13576. [Google Scholar] [CrossRef]
- He, W.; Xi, Q.; Cui, H. Liang-Ge decoction ameliorates acute lung injury in septic model rats through reducing inflammatory response, oxidative stress, apoptosis, and modulating host metabolism. Front. Pharmacol. 2022, 13, 926134. [Google Scholar] [CrossRef]
- Gao, Y.; Zhu, J.; Sun, M.; Wang, S.; Liu, H. Metabolomics study based on GC-MS reveals a protective function of luteolin against glutamate-induced PC12 cell injury. Biomed. Chromatogr. 2023, 37, e5537. [Google Scholar] [CrossRef]
Ingredients | Content |
---|---|
Corn | 28.85 |
Soybean meal | 7.50 |
Premix | 3.20 |
Alfalfa grass | 22.45 |
Corn for silage | 38.00 |
Total | 100 |
Nutrient levels (%) | |
Crude protein | 18.91 |
Crude fat | 1.80 |
Crude fiber | 10.79 |
Crude ash | 3.70 |
Ca | 0.32 |
P | 0.15 |
Lysine | ≥0.4 |
Digested energy | 11.13% |
Index | Node | Edge | Average Clustering Coefficient | |
---|---|---|---|---|
Group | ||||
CON | 19 | 122 | 0.64 | |
BR4 | 19 | 80 | 0.37 |
Index | Compounds | log2FC | Type |
---|---|---|---|
MW0056698 | [(2R)-3-phosphonooxy-2-tetradecanoyloxypropyl] 22-methyltricosanoate | −6.64 | down |
MW0050887 | 1-docosanoyl-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycerol | −5.91 | down |
MW0055943 | [(2R)-1-[(Z)-icos-11-enoyl]oxy-3-phosphonooxypropan-2-yl] (Z)-docos-13-enoate | −5.42 | down |
MW0059317 | PE-NMe(15:0/22:5(7Z,10Z,13Z,16Z,19Z)) | −5.10 | down |
MW0055459 | Oleamide | −4.97 | down |
MW0056678 | [(2R)-2-(10-methyldodecanoyloxy)-3-phosphonooxypropyl] 20-methylhenicosanoate | −4.85 | down |
MW0011905 | 1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine | −4.77 | down |
MW0054512 | LPA(a-25:0/0:0) | −4.75 | down |
MW0069033 | TG(15:0/15:0/22:5(4Z,7Z,10Z,13Z,16Z)) | −4.72 | down |
MW0014404 | 4alpha-Formyl-4beta-methyl-5alpha-cholesta-8,24-dien-3beta-ol | −4.55 | down |
MW0050448 | DG(20:0/22:5(4Z,7Z,10Z,13Z,16Z)/0:0) | −4.43 | down |
MW0057500 | PC(22:1(13Z)/22:5(4Z,7Z,10Z,13Z,16Z)) | −4.41 | down |
MW0050299 | DG(18:4(6Z,9Z,12Z,15Z)/20:3(5Z,8Z,11Z)/0:0) | −4.39 | down |
MW0194046 | 1,2-Dimyristoyl-sn-glycero-3-phosphocholine | −4.35 | down |
MW0055873 | 1-eicosanoyl-2-(9Z-tetradecenoyl)-glycero-3-phosphate | −4.22 | down |
MW0055915 | [(2R)-2-(15-methylhexadecanoyloxy)-3-phosphonooxypropyl] icosanoate | −4.18 | down |
MW0055897 | 1-eicosanoyl-2-(13Z,16Z-docosadienoyl)-glycero-3-phosphate | −4.17 | down |
MW0128991 | (5-{8-[1-(2,4-dihydroxyphenyl)-3-(3,4-dihydroxyphenyl)-2-hydroxypropyl]-3,5,7-trihydroxy-3,4-dihydro-2H-1-benzopyran-2-yl}-2-hydroxyphenyl)oxidanesulfonic acid | 4.28 | up |
MW0014628 | 5,6-DHET | 4.39 | up |
MW0126581 | spirolide C | 6.76 | up |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, C.; Li, H.; Wang, F.; Qin, J.; Huang, Y.; Zhao, W. Dietary Supplementation with Bupleuri Radix Reduces Oxidative Stress Occurring during Growth by Regulating Rumen Microbes and Metabolites. Animals 2024, 14, 927. https://doi.org/10.3390/ani14060927
Pan C, Li H, Wang F, Qin J, Huang Y, Zhao W. Dietary Supplementation with Bupleuri Radix Reduces Oxidative Stress Occurring during Growth by Regulating Rumen Microbes and Metabolites. Animals. 2024; 14(6):927. https://doi.org/10.3390/ani14060927
Chicago/Turabian StylePan, Cheng, Haiyan Li, Fuqiang Wang, Jianping Qin, Yanping Huang, and Wangsheng Zhao. 2024. "Dietary Supplementation with Bupleuri Radix Reduces Oxidative Stress Occurring during Growth by Regulating Rumen Microbes and Metabolites" Animals 14, no. 6: 927. https://doi.org/10.3390/ani14060927
APA StylePan, C., Li, H., Wang, F., Qin, J., Huang, Y., & Zhao, W. (2024). Dietary Supplementation with Bupleuri Radix Reduces Oxidative Stress Occurring during Growth by Regulating Rumen Microbes and Metabolites. Animals, 14(6), 927. https://doi.org/10.3390/ani14060927