Whole-Genome Identification and Characterization of the DKK Gene Family and Its Transcription Profiles: An Analysis of the Chinese Soft-Shell Turtle (Pelodiscus sinensis)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Whole-Genome Identification and a Physicochemical Analysis of the DKK Genes
2.2. Analysis of Phylogeny and Synteny within the DKK Gene Family
2.3. Analysis of Gene Structure, Structural Domains, and Promoter Conserved Sites
2.4. Transcription Factor Analysis and Signal Peptides
2.5. Sexually Dimorphic Expression Profiling of the DKK Gene Family Based on Transcriptomics Data
2.6. Quantitative Real-Time Fluorescence-Based PCR Analysis of the DKK Gene Family
2.6.1. Sample Collection
2.6.2. RNA Extraction, cDNA Synthesis, and Quantitative Real-Time PCR (qRT-PCR)
3. Results
3.1. Identification and Physicochemical Characterization of DKK Gene Family Members in the Genome of P. sinensis
3.2. Phylogenetic Analysis of the DKK Genes
3.3. Collinear Analysis
3.4. Gene Structures
3.5. Prediction of Structural Domains and Signal Peptides of the DKK Family
3.6. Transcription Factor Predictions and Conserved Promoter Loci of the DKK Gene Family
3.7. Gonadal Transcriptional Profiling
3.8. Expression Profiling of the DKK Genes in Different Tissues of P. sinensis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Katase, N.; Nagano, K.; Fujita, S. DKK3 expression and function in head and neck squamous cell carcinoma and other cancers. J. Oral Biosci. 2020, 62, 9–15. [Google Scholar] [CrossRef]
- Del Barco Barrantes, I.; Davidson, G.; Gröne, H.J.; Westphal, H.; Niehrs, C. Dkk1 and noggin cooperate in mammalian head induction. Genes Dev. 2003, 17, 2239–2244. [Google Scholar] [CrossRef]
- Glinka, A.; Wu, W.; Delius, H.; Monaghan, A.P.; Blumenstock, C.; Niehrs, C. Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 1998, 391, 357–362. [Google Scholar] [CrossRef]
- Monaghan, A.P.; Kioschis, P.; Wu, W.; Zuniga, A.; Bock, D.; Poustka, A.; Delius, H.; Niehrs, C. Dickkopf genes are co-ordinately expressed in mesodermal lineages. Mech. Dev. 1999, 87, 45–56. [Google Scholar] [CrossRef]
- Wen, B.; Hu, S.; Yin, J.; Wu, J.; Guo, W. Molecular Evolution and Protein Structure Variation of Dkk Family. Genes 2023, 14, 1863. [Google Scholar] [CrossRef]
- Patel, S.; Barkell, A.M.; Gupta, D.; Strong, S.L.; Bruton, S.; Muskett, F.W.; Addis, P.W.; Renshaw, P.S.; Slocombe, P.M.; Doyle, C.; et al. Structural and functional analysis of Dickkopf 4 (Dkk4): New insights into Dkk evolution and regulation of Wnt signaling by Dkk and Kremen proteins. J. Biol. Chem. 2018, 293, 12149–12166. [Google Scholar] [CrossRef]
- Kikuchi, A.; Matsumoto, S.; Sada, R. Dickkopf signaling, beyond Wnt-mediated biology. Semin. Cell Dev. Biol. 2022, 125, 55–65. [Google Scholar] [CrossRef]
- Wang, H.; Duan, X.L.; Qi, X.L.; Meng, L.; Xu, Y.S.; Wu, T.; Dai, P.G. Concurrent Hypermethylation of SFRP2 and DKK2 Activates the Wnt/β-Catenin Pathway and Is Associated with Poor Prognosis in Patients with Gastric Cancer. Mol. Cells 2017, 40, 45–53. [Google Scholar] [CrossRef]
- Devotta, A.; Hong, C.S.; Saint-Jeannet, J.P. Dkk2 promotes neural crest specification by activating Wnt/β-catenin signaling in a GSK3β independent manner. eLife 2018, 7, e34404. [Google Scholar] [CrossRef]
- Liang, J.; Sun, L.; Li, Y.; Liu, W.; Li, D.; Chen, P.; Wang, X.; Hui, J.; Zhou, J.; Liu, H.; et al. Wnt signaling modulator DKK4 inhibits colorectal cancer metastasis through an AKT/Wnt/β-catenin negative feedback pathway. J. Biol. Chem. 2022, 298, 102545. [Google Scholar] [CrossRef]
- Lou, X.; Meng, Y.; Hou, Y. A literature review on function and regulation mechanism of DKK4. J. Cell. Mol. Med. 2021, 25, 2786–2794. [Google Scholar] [CrossRef]
- Chouhan, S.; Singh, S.; Athavale, D.; Ramteke, P.; Vanuopadath, M.; Nair, B.G.; Nair, S.S.; Bhat, M.K. Sensitization of hepatocellular carcinoma cells towards doxorubicin and sorafenib is facilitated by glucosedependent alterations in reactive oxygen species, P-glycoprotein and DKK4. J. Biosci. 2020, 45, 97. [Google Scholar] [CrossRef]
- Gao, C.; Xie, R.; Ren, C.; Yang, X. Dickkopf-1 expression is a novel prognostic marker for gastric cancer. J. Biomed. Biotechnol. 2012, 2012, 804592. [Google Scholar] [CrossRef]
- Untergasser, G.; Martowicz, A.; Hermann, M.; Töchterle, S.; Meyer, D. Distinct expression patterns of dickkopf genes during late embryonic development of Danio rerio. Gene Expr. Patterns 2011, 11, 491–500. [Google Scholar] [CrossRef]
- Hamzehzadeh, L.; Caraglia, M.; Atkin, S.L.; Sahebkar, A. Dickkopf homolog 3 (DKK3): A candidate for detection and treatment of cancers? J. Cell. Physiol. 2018, 233, 4595–4605. [Google Scholar] [CrossRef]
- Cruciat, C.M.; Niehrs, C. Secreted and transmembrane wnt inhibitors and activators. Cold Spring Harb. Perspect. Biol. 2013, 5, a015081. [Google Scholar] [CrossRef]
- Ostler, J.B.; Jones, C. The Bovine Herpesvirus 1 Latency-Reactivation Cycle, a Chronic Problem in the Cattle Industry. Viruses 2023, 15, 552. [Google Scholar] [CrossRef]
- Pakula, H.; Xiang, D.; Li, Z. A Tale of Two Signals: AR and WNT in Development and Tumorigenesis of Prostate and Mammary Gland. Cancers 2017, 9, 14. [Google Scholar] [CrossRef]
- Kaneko, K.J.; DePamphilis, M.L. Soggy, a spermatocyte-specific gene, lies 3.8 kb upstream of and antipodal to TEAD-2, a transcription factor expressed at the beginning of mouse development. Nucleic Acids Res. 2000, 28, 3982–3990. [Google Scholar] [CrossRef]
- Kohn, M.J.; Kaneko, K.J.; DePamphilis, M.L. DkkL1 (Soggy), a Dickkopf family member, localizes to the acrosome during mammalian spermatogenesis. Mol. Reprod. Dev. 2005, 71, 516–522. [Google Scholar] [CrossRef]
- Kohn, M.J.; Sztein, J.; Yagi, R.; DePamphilis, M.L.; Kaneko, K.J. The acrosomal protein Dickkopf-like 1 (DKKL1) facilitates sperm penetration of the zona pellucida. Fertil. Steril. 2010, 93, 1533–1537. [Google Scholar] [CrossRef]
- Yan, Q.; Tang, A.; Lai, Y.; Cai, Z.; Gui, Y. Expression difference of Dickkopf-like 1 gene (DKKL1) in testis of normal and male infertile patients. J. Pract. Med. 2014, 30, 36–39. [Google Scholar] [CrossRef]
- Yan, Q.; Ma, Y.; Chen, R.; Zhou, X.; Qiao, J.; Xian, Y.; Feng, L.; Chen, C. Expression of DKKL1 in spermatozoa of men with asthenospermia. J. S. Med. Univ. 2018, 38, 324–328. [Google Scholar] [CrossRef]
- Wang, F.; Chen, Z.; Cheng, Y.; Hou, G.; Ji, S.; Zhang, Y.; Li, J.; Zhu, C.; Wu, Y.; Song, G. Nutritional evaluation of two strains of Chinese soft-shelled turtle, Pelodiscus sinensis. J. Food Compos. Anal. 2021, 101, 103971. [Google Scholar] [CrossRef]
- Zhu, J.; Lei, L.; Chen, C.; Wang, Y.; Liu, X.; Geng, L.; Li, R.; Chen, H.; Hong, X.; Yu, L.; et al. Whole-Transcriptome Analysis Identifies Gender Dimorphic Expressions of Mrnas and Non-Coding Rnas in Chinese Soft-Shell Turtle (Pelodiscus sinensis). Biology 2022, 11, 834. [Google Scholar] [CrossRef]
- Sun, W.; Cai, H.; Zhang, G.; Zhang, H.; Bao, H.; Wang, L.; Ye, J.; Qian, G.; Ge, C. Dmrt1 is required for primary male sexual differentiation in Chinese soft-shelled turtle Pelodiscus sinensis. Sci. Rep. 2017, 7, 4433. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Sun, W.; Bao, H.; Liang, X.; Li, P.; Shi, S.; Wang, Z.; Qian, G.; Ge, C. The forkhead factor Foxl2 participates in the ovarian differentiation of Chinese soft-shelled turtle Pelodiscus sinensis. Dev. Biol. 2022, 492, 101–110. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, L.; Sun, W.; Li, P.; Zhou, Y.; Qian, G.; Ge, C. Knockdown of R-spondin1 leads to partial sex reversal in genetic female Chinese soft-shelled turtle Pelodiscus sinensis. Gen. Comp. Endocrinol. 2021, 309, 113788. [Google Scholar] [CrossRef]
- Zhou, Y.; Sun, W.; Cai, H.; Bao, H.; Zhang, Y.; Qian, G.; Ge, C. The Role of Anti-Müllerian Hormone in Testis Differentiation Reveals the Significance of the TGF-β Pathway in Reptilian Sex Determination. Genetics 2019, 213, 1317–1327. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, Y.; Lei, L.; Chen, C.; Ji, L.; Li, J.; Wu, C.; Yu, W.; Luo, L.; Chen, W.; et al. Comparative genomic survey and functional analysis of DKKL1 during spermatogenesis in the Chinese soft-shelled turtle (Pelodiscus sinensis). Int. J. Biol. Macromol. 2024, 254, 127696. [Google Scholar] [CrossRef]
- Lei, L.; Chen, C.; Zhu, J.; Wang, Y.; Liu, X.; Liu, H.; Geng, L.; Su, J.; Li, W.; Zhu, X. Transcriptome analysis reveals key genes and pathways related to sex differentiation in the Chinese soft-shelled turtle (Pelodiscus sinensis). Comp. Biochem. Physiol. Part D Genom. Proteom. 2022, 42, 100986. [Google Scholar] [CrossRef]
- Fu, Y.; He, J.; Liu, L.; Huang, X.; Xu, Y.; Wang, C. Comprehensive Genome-Wide Analysis of Wnt Gene Family and Expression Profiling during Limb Regeneration in Portunus trituberculatus. Fishes 2022, 7, 258. [Google Scholar] [CrossRef]
- Lu, S.; Wang, J.; Chitsaz, F.; Derbyshire, M.K.; Geer, R.C.; Gonzales, N.R.; Gwadz, M.; Hurwitz, D.I.; Marchler, G.H.; Song, J.S.; et al. CDD/SPARCLE: The conserved domain database in 2020. Nucleic Acids Res. 2020, 48, D265–D268. [Google Scholar] [CrossRef]
- Letunic, I.; Khedkar, S.; Bork, P. SMART: Recent updates, new developments and status in 2020. Nucleic Acids Res. 2021, 49, D458–D460. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Liang, Y.; Zhang, R.; Zhang, B.; Song, X.; Liu, J.; Lu, M.; Qin, Z.; Li, D.; Li, S.; et al. Genome-Wide Identification of the PP2C Gene Family and Analyses with Their Expression Profiling in Response to Cold Stress in Wild Sugarcane. Plants 2023, 12, 2418. [Google Scholar] [CrossRef] [PubMed]
- Pervez, M.T.; Babar, M.E.; Nadeem, A.; Aslam, M.; Awan, A.R.; Aslam, N.; Hussain, T.; Naveed, N.; Qadri, S.; Waheed, U.; et al. Evaluating the accuracy and efficiency of multiple sequence alignment methods. Evol. Bioinform. Online 2014, 10, 205–217. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Zhang, G.; Zhang, Z.; Wan, Z.; Liu, Z.; Lv, J.; Yu, J. Genome-wide identification and expression analysis of BZR gene family and associated responses to abiotic stresses in cucumber (Cucumis sativus L.). BMC Plant Biol. 2023, 23, 214. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Gao, T.; Shu, J.; Cui, J. A systematic approach to RNA-associated motif discovery. BMC Genom. 2018, 19, 146. [Google Scholar] [CrossRef] [PubMed]
- Almagro Armenteros, J.J.; Tsirigos, K.D.; Sønderby, C.K.; Petersen, T.N.; Winther, O.; Brunak, S.; von Heijne, G.; Nielsen, H. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 2019, 37, 420–423. [Google Scholar] [CrossRef]
- Gaffo, E.; Buratin, A.; Dal Molin, A.; Bortoluzzi, S. Sensitive, reliable and robust circRNA detection from RNA-seq with CirComPara2. Brief. Bioinform. 2022, 23, bbab418. [Google Scholar] [CrossRef] [PubMed]
- Hua, Y.; Dai, B.; Luo, Y.; Ding, Y. Integrated analysis of multiple metabolome and transcriptome revealed the accumulation of flavonoids and associated molecular regulation mechanisms in Rubus chingii Hu at different developmental stages. Plant Physiol. Biochem. 2023, 204, 108085. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Zhang, M.; Cha, M.; Xiang, J.; Yi, X. Chromosome-level genome assembly of the Siberian chipmunk (Tamias sibiricus). Sci. Data 2022, 9, 783. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Smyth, G.K.; Shi, W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014, 30, 923–930. [Google Scholar] [CrossRef] [PubMed]
- Si, Y.; Zhang, L.; Zhang, L.; Zhao, F.; Wang, Q.; Qian, G.; Yin, S. Transcriptome analysis provides insight into the role of the melanin pathway in two differently pigmented strains of the turtle Pelodiscus sinensis. Dev. Genes Evol. 2019, 229, 183–195. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Zhang, Y.; Zhang, M.; Qu, C.; Zou, G.; Liang, H. Characterization and expression pattern of Wnt5b gene in Pelodiscus sinensis. Aquac. Res. 2022, 53, 2937–2946. [Google Scholar] [CrossRef]
- Liu, M.; Sun, W.; Ma, Z.; Zheng, T.; Huang, L.; Wu, Q.; Zhao, G.; Tang, Z.; Bu, T.; Li, C.; et al. Genome-wide investigation of the AP2/ERF gene family in tartary buckwheat (Fagopyum tataricum). BMC Plant Biol. 2019, 19, 84. [Google Scholar] [CrossRef]
- Gil, N.; Ulitsky, I. Regulation of gene expression by cis-acting long non-coding RNAs. Nat. Rev. Genet. 2020, 21, 102–117. [Google Scholar] [CrossRef]
- Garcia-Moreno, S.A.; Lin, Y.T.; Futtner, C.R.; Salamone, I.M.; Capel, B.; Maatouk, D.M. CBX2 is required to stabilize the testis pathway by repressing Wnt signaling. PLoS Genet. 2019, 15, e1007895. [Google Scholar] [CrossRef]
- Knarston, I.M.; Robevska, G.; van den Bergen, J.A.; Eggers, S.; Croft, B.; Yates, J.; Hersmus, R.; Looijenga, L.H.J.; Cameron, F.J.; Monhike, K.; et al. NR5A1 gene variants repress the ovarian-specific WNT signaling pathway in 46,XX disorders of sex development patients. Hum. Mutat. 2019, 40, 207–216. [Google Scholar] [CrossRef]
- Hernandez Gifford, J.A. The role of WNT signaling in adult ovarian folliculogenesis. Reproduction 2015, 150, R137–R148. [Google Scholar] [CrossRef] [PubMed]
- Nicol, B.; Guiguen, Y. Expression profiling of Wnt signaling genes during gonadal differentiation and gametogenesis in rainbow trout. Sex. Dev. 2011, 5, 318–329. [Google Scholar] [CrossRef] [PubMed]
- Davidson, G. LRPs in WNT Signalling. Handb. Exp. Pharmacol. 2021, 269, 45–73. [Google Scholar] [CrossRef] [PubMed]
- Ren, Q.; Chen, J.; Liu, Y. LRP5 and LRP6 in Wnt Signaling: Similarity and Divergence. Front. Cell Dev. Biol. 2021, 9, 670960. [Google Scholar] [CrossRef] [PubMed]
- Katoh, M.; Katoh, M. WNT signaling and cancer stemness. Essays Biochem. 2022, 66, 319–331. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Shou, J.; Chen, X. Dickkopf-1, an inhibitor of the Wnt signaling pathway, is induced by p53. Oncogene 2000, 19, 1843–1848. [Google Scholar] [CrossRef] [PubMed]
- Voorham, Q.J.; Janssen, J.; Tijssen, M.; Snellenberg, S.; Mongera, S.; van Grieken, N.C.; Grabsch, H.; Kliment, M.; Rembacken, B.J.; Mulder, C.J.; et al. Promoter methylation of Wnt-antagonists in polypoid and nonpolypoid colorectal adenomas. BMC Cancer 2013, 13, 603. [Google Scholar] [CrossRef] [PubMed]
- Becking, T.; Giraud, I.; Raimond, M.; Moumen, B.; Chandler, C.; Cordaux, R.; Gilbert, C. Diversity and evolution of sex determination systems in terrestrial isopods. Sci. Rep. 2017, 7, 1084. [Google Scholar] [CrossRef]
- Gonen, N.; Lovell-Badge, R. The regulation of Sox9 expression in the gonad. Curr. Top Dev. Biol. 2019, 134, 223–252. [Google Scholar] [CrossRef]
- Uchida, A.; Imaimatsu, K.; Suzuki, H.; Han, X.; Ushioda, H.; Uemura, M.; Imura-Kishi, K.; Hiramatsu, R.; Takase, H.M.; Hirate, Y.; et al. SOX17-positive rete testis epithelium is required for Sertoli valve formation and normal spermiogenesis in the male mouse. Nat. Commun. 2022, 13, 7860. [Google Scholar] [CrossRef]
- Gubbay, J.; Collignon, J.; Koopman, P.; Capel, B.; Economou, A.; Münsterberg, A.; Vivian, N.; Goodfellow, P.; Lovell-Badge, R. A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature 1990, 346, 245–250. [Google Scholar] [CrossRef]
- Sinclair, A.H.; Berta, P.; Palmer, M.S.; Hawkins, J.R.; Griffiths, B.L.; Smith, M.J.; Foster, J.W.; Frischauf, A.M.; Lovell-Badge, R.; Goodfellow, P.N. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 1990, 346, 240–244. [Google Scholar] [CrossRef]
- Larney, C.; Bailey, T.L.; Koopman, P. Switching on sex: Transcriptional regulation of the testis-determining gene Sry. Development 2014, 141, 2195–2205. [Google Scholar] [CrossRef]
- Sekido, R.; Lovell-Badge, R. Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer. Nature 2008, 453, 930–934. [Google Scholar] [CrossRef]
- Barrionuevo, F.; Scherer, G. SOX E genes: SOX9 and SOX8 in mammalian testis development. Int. J. Biochem. Cell Biol. 2010, 42, 433–436. [Google Scholar] [CrossRef] [PubMed]
- Yano, A.; Nicol, B.; Guerin, A.; Guiguen, Y. The duplicated rainbow trout (Oncorhynchus mykiss) T-box transcription factors 1, tbx1a and tbx1b, are up-regulated during testicular development. Mol. Reprod. Dev. 2011, 78, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Xu, X.; Xu, X.; Li, Y.; Zhao, P.; Chen, X.; Shen, X.; Zhang, Z.; Chen, Y.; Liu, S.; et al. Genome-wide identification, evolution analysis of cytochrome P450 monooxygenase multigene family and their expression patterns during the early somatic embryogenesis in Dimocarpus longan Lour. Gene 2022, 826, 146453. [Google Scholar] [CrossRef] [PubMed]
- Yan, Q.; Wu, X.; Chen, C.; Diao, R.; Lai, Y.; Huang, J.; Chen, J.; Yu, Z.; Gui, Y.; Tang, A.; et al. Developmental expression and function of DKKL1/Dkkl1 in humans and mice. Reprod. Biol. Endocrinol. 2012, 10, 51. [Google Scholar] [CrossRef] [PubMed]
- Piek, A.; Suthahar, N.; Voors, A.A.; de Boer, R.A.; Silljé, H.H.W. A combined bioinformatics, experimental and clinical approach to identify novel cardiac-specific heart failure biomarkers: Is Dickkopf-3 (DKK3) a possible candidate? Eur. J. Heart Fail. 2020, 22, 2065–2074. [Google Scholar] [CrossRef] [PubMed]
- Claver, J.A.; Quaglia, A.I. Comparative morphology, development, and function of blood cells in nonmammalian vertebrates. J. Exot. Pet Med. 2009, 18, 87–97. [Google Scholar] [CrossRef]
- Chu, H.Y.; Chen, Z.; Wang, L.; Zhang, Z.K.; Tan, X.; Liu, S.; Zhang, B.T.; Lu, A.; Yu, Y.; Zhang, G. Dickkopf-1: A Promising Target for Cancer Immunotherapy. Front. Immunol. 2021, 12, 658097. [Google Scholar] [CrossRef]
- Heil, J.; Olsavszky, V.; Busch, K.; Klapproth, K.; de la Torre, C.; Sticht, C.; Sandorski, K.; Hoffmann, J.; Schönhaber, H.; Zierow, J.; et al. Bone marrow sinusoidal endothelium controls terminal erythroid differentiation and reticulocyte maturation. Nat. Commun. 2021, 12, 6963. [Google Scholar] [CrossRef]
- Hirata, H.; Hinoda, Y.; Majid, S.; Chen, Y.; Zaman, M.S.; Ueno, K.; Nakajima, K.; Tabatabai, Z.L.; Ishii, N.; Dahiya, R. DICKKOPF-4 activates the noncanonical c-Jun-NH2 kinase signaling pathway while inhibiting the Wnt-canonical pathway in human renal cell carcinoma. Cancer 2011, 117, 1649–1660. [Google Scholar] [CrossRef]
- Fan, H.Y.; O’Connor, A.; Shitanaka, M.; Shimada, M.; Liu, Z.; Richards, J.S. Beta-catenin (CTNNB1) promotes preovulatory follicular development but represses LH-mediated ovulation and luteinization. Mol. Endocrinol. 2010, 24, 1529–1542. [Google Scholar] [CrossRef]
- Sanchez, A.M.; Viganò, P.; Quattrone, F.; Pagliardini, L.; Papaleo, E.; Candiani, M.; Panina-Bordignon, P. The WNT/β-catenin signaling pathway and expression of survival promoting genes in luteinized granulosa cells: Endometriosis as a paradigm for a dysregulated apoptosis pathway. Fertil. Steril. 2014, 101, 1688–1696. [Google Scholar] [CrossRef]
- Ye, S.; Wang, J.; Yang, S.; Xu, W.; Xie, M.; Han, K.; Zhang, B.; Wu, Z. Specific inhibitory protein Dkk-1 blocking Wnt/β-catenin signaling pathway improve protectives effect on the extracellular matrix. J. Huazhong Univ. Sci. Technol. Med. Sci. 2011, 31, 657. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.B.; Zhang, C. Dickkopf (Dkk) 1 promotes the differentiation of mouse embryonic stem cells toward neuroectoderm. In Vitro Cell Dev. Biol. Anim. 2009, 45, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Manuylov, N.L.; Smagulova, F.O.; Leach, L.; Tevosian, S.G. Ovarian development in mice requires the GATA4-FOG2 transcription complex. Development 2008, 135, 3731–3743. [Google Scholar] [CrossRef] [PubMed]
- Amberg, J.J.; Goforth, R.R.; Sepúlveda, M.S. Antagonists to the Wnt cascade exhibit sex-specific expression in gonads of sexually mature shovelnose sturgeon. Sex. Dev. 2013, 7, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Bai, D.P.; Chen, Y.; Hu, Y.Q.; He, W.F.; Shi, Y.Z.; Fan, Q.M.; Luo, R.T.; Li, A. Transcriptome analysis of genes related to gonad differentiation and development in Muscovy ducks. BMC Genom. 2020, 21, 438. [Google Scholar] [CrossRef]
- Jeays-Ward, K.; Dandonneau, M.; Swain, A. Wnt4 is required for proper male as well as female sexual development. Dev. Biol. 2004, 276, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Ohinata, Y.; Ohta, H.; Shigeta, M.; Yamanaka, K.; Wakayama, T.; Saitou, M. A signaling principle for the specification of the germ cell lineage in mice. Cell 2009, 137, 571–584. [Google Scholar] [CrossRef] [PubMed]
- Takase, H.M.; Nusse, R. Paracrine Wnt/β-catenin signaling mediates proliferation of undifferentiated spermatogonia in the adult mouse testis. Proc. Natl. Acad. Sci. USA 2016, 113, E1489–E1497. [Google Scholar] [CrossRef] [PubMed]
Primer Name | Sequence (5′–3′) | Product Size (bp) |
---|---|---|
DKK1-F DKK1-R | CCTCAACTCCAACGCTATCAA | 123 |
ACGGGCTGGTGCTTGTTA | ||
DKK2-F DKK2-R | ATCGGCAAGGAGAGGCATAC | 130 |
TCTCTGTGGCAACGCTTCTT | ||
DKK3-F DKK3-R | GGAGGAGGCGAGTCTGA | 181 |
TTTGGTGTCCGTGTTGG | ||
DKK3L-F DKK3L-R | TGTATTCGCTGCCCTACCAC | 240 |
TGTGGCACTGGCCAAACATA | ||
DKK4-F DKK4-R | GCGTTCCTGAAGAATGGT ACTCCTGATGGCGTTGTAG | 97 |
DKKL1-F DKKL1-R | ATGGCTAGCAGCCTGTGTCT GACCTGGCAAAGAGATGGAG | 230 |
Ef1α-F Ef1α-R | ACTCGTCCAACTGACAAGCCTC CACGGCGAACATCTTTCACAG | 337 |
Name | Gene ID | Number of Amino Acid | Molecular Weight |
---|---|---|---|
DKK1 | XM_006130932.3 | 261 | 28,025.89 |
DKK2 | XM_006119304.3 | 268 | 29,923.9 |
DKK3 | XM_006113024.2 | 389 | 43,169.58 |
DKK3L | XM_025186202.1 | 201 | 22,229.6 |
DKK4 | XM_006113233.3 | 218 | 23,646.1 |
DKKL1 | XM_014572465.2 | 222 | 24,848.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zhu, J.; Chen, C.; Ji, L.; Hong, X.; Liu, X.; Chen, H.; Wei, C.; Zhang, J.; Zhu, X.; et al. Whole-Genome Identification and Characterization of the DKK Gene Family and Its Transcription Profiles: An Analysis of the Chinese Soft-Shell Turtle (Pelodiscus sinensis). Animals 2024, 14, 931. https://doi.org/10.3390/ani14060931
Wang Y, Zhu J, Chen C, Ji L, Hong X, Liu X, Chen H, Wei C, Zhang J, Zhu X, et al. Whole-Genome Identification and Characterization of the DKK Gene Family and Its Transcription Profiles: An Analysis of the Chinese Soft-Shell Turtle (Pelodiscus sinensis). Animals. 2024; 14(6):931. https://doi.org/10.3390/ani14060931
Chicago/Turabian StyleWang, Yongchang, Junxian Zhu, Chen Chen, Liqin Ji, Xiaoyou Hong, Xiaoli Liu, Haigang Chen, Chengqing Wei, Junjie Zhang, Xinping Zhu, and et al. 2024. "Whole-Genome Identification and Characterization of the DKK Gene Family and Its Transcription Profiles: An Analysis of the Chinese Soft-Shell Turtle (Pelodiscus sinensis)" Animals 14, no. 6: 931. https://doi.org/10.3390/ani14060931
APA StyleWang, Y., Zhu, J., Chen, C., Ji, L., Hong, X., Liu, X., Chen, H., Wei, C., Zhang, J., Zhu, X., & Li, W. (2024). Whole-Genome Identification and Characterization of the DKK Gene Family and Its Transcription Profiles: An Analysis of the Chinese Soft-Shell Turtle (Pelodiscus sinensis). Animals, 14(6), 931. https://doi.org/10.3390/ani14060931