Infrared Spectroscopy of Synovial Fluid Shows Accuracy as an Early Biomarker in an Equine Model of Traumatic Osteoarthritis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Surgical Protocol
2.2. Postoperative Exercise and Clinical Assessment
2.3. Synovial Fluid Sample Collection
2.4. Infrared Spectroscopy of Synovial Fluid
2.5. Analyses of Synovial Fluid Spectral Data
2.5.1. Spectral Pre-Processing
2.5.2. Classification Model Development
- (1)
- The sampling day (task 1; Days 0, 7, 14, 21, 28, 35, 42, 49, 56, and 63; 10 classes);
- (2)
- The joint sampled in OA horses (task 2; OA joint vs. OA Control; 2 classes);
- (3)
- The joint sampled in Sham horses (task 3; Sham joint vs. Sham Control, 2 classes);
- (4)
- The intervention joint sampled between horse groups (task 4: OA joint vs. Sham joint, 2 classes);
- (5)
- All joints sampled in both horse groups (task 5a: OA joint, OA Control, Sham joint vs. Sham Control; 4 classes);
- (6)
- The OA joint sample vs. any other (task 5b; 2 classes);
- (7)
- The horse group (task 6; OA versus Sham; 2 classes);
- (8)
- The samples classified day × joint group except for Day 0 (i.e., before interventions) for which OA and Sham groups were pooled (task 7a; Day 0, Day 7 × OA joint, Day 7 × OA Control, Day 7 × Sham joint, Day 7 × Sham Control joint, Day 14 × OA joint, Day 14 × OA Control, Day 14 × Sham joint, Day 14 × Sham Control joint, Day 21 × OA joint, Day 21 × OA Control, Day 21 × Sham joint, Day 21 × Sham Control joint, Day 28 × OA joint, Day 28 × OA Control, Day 28 × Sham joint, Day 28 × Sham Control joint, Day 35 × OA joint, Day 35 × OA Control, Day 35 × Sham joint, Day 35 × Sham Control joint, Day 42 × OA joint, Day 42 × OA Control, Day 42 × Sham joint, Day 42 × Sham Control joint, Day 49 × OA joint, Day 49 × OA Control, Day 49 × Sham joint, Day 49 × Sham Control joint, Day 56 × OA joint, Day 56 × OA Control, Day 56 × Sham joint, Day 56 × Sham Control joint, Day 63 × OA joint, Day 63 × OA Control, Day 63 × Sham joint, Day 63 × Sham Control joint; 37 classes);
- (9)
- Similarly comparing the day × OA joint sampled vs. any other (task 7b; 19 classes), and the variation among horses (task 8, horse labels 1 to 17; 17 classes).
3. Results
3.1. Spectral Pre-Processing
3.2. Classification of Synovial Fluid IR Spectra
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clegg, P.; Booth, T. Drugs Used to Treat Osteoarthritis in the Horse. Practice 2000, 22, 594–603. [Google Scholar] [CrossRef]
- Caron, J.; Genovese, R. Principles and Practices of Joint Disease Treatment. In Diagnosis and Management of Lameness in the Horse; Ross, M.W., Dyson, S.J., Eds.; Elsevier Saunders: St. Louis, MO, USA, 2011; pp. 746–764. ISBN 978-1-4160-6069-7. [Google Scholar]
- Kane, A.; Traub-Dargatz, J.; Losinger, W.C.; Garber, L.P. The Occurrence and Causes of Lameness and Laminitis in the US Horse Population. Proc. Am. Assoc. Equine Pract. 2000, 46, 277–280. [Google Scholar]
- Kraus, V.B.; Burnett, B.; Coindreau, J.; Cottrell, S.; Eyre, D.; Gendreau, M.; Gardiner, J.; Garnero, P.; Hardin, J.; Henrotin, Y.; et al. Application of Biomarkers in the Development of Drugs Intended for the Treatment of Osteoarthritis. Osteoarthr. Cartil. 2011, 19, 515–542. [Google Scholar] [CrossRef]
- Lotz, M.; Martel-Pelletier, J.; Christiansen, C.; Brandi, M.-L.; Bruyère, O.; Chapurlat, R.; Collette, J.; Cooper, C.; Giacovelli, G.; Kanis, J.A.; et al. Value of Biomarkers in Osteoarthritis: Current Status and Perspectives. Ann. Rheum. Dis. 2013, 72, 1756–1763. [Google Scholar] [CrossRef]
- Kraus, V.B.; Karsdal, M.A. Clinical Monitoring in Osteoarthritis: Biomarkers. Osteoarthr. Cartil. 2022, 30, 1159–1173. [Google Scholar] [CrossRef]
- World Health Organization. Biomarkers in Risk Assessment: Validity and Validation; Environmental Health Criteria; World Health Organization: Geneva, Switzerland, 2001; ISBN 978-92-4-157222-4.
- Garner, B.; Stoker, A.; Kuroki, K.; Evans, R.; Cook, C.R.; Cook, J. Using Animal Models in Osteoarthritis Biomarker Research. J. Knee Surg. 2011, 24, 251–264. [Google Scholar] [CrossRef] [PubMed]
- Kraus, V.B.; Blanco, F.J.; Englund, M.; Henrotin, Y.; Lohmander, L.S.; Losina, E.; Önnerfjord, P.; Persiani, S. OARSI Clinical Trials Recommendations: Soluble Biomarker Assessments in Clinical Trials in Osteoarthritis. Osteoarthr. Cartil. 2015, 23, 686–697. [Google Scholar] [CrossRef] [PubMed]
- Mobasheri, A.; Henrotin, Y. Biomarkers of (Osteo)Arthritis. Biomarkers 2015, 20, 513–518. [Google Scholar] [CrossRef] [PubMed]
- McIlwraith, C.W. Use of Synovial Fluid and Serum Biomarkers in Equine Bone and Joint Disease: A Review. Equine Vet. J. 2005, 37, 473–482. [Google Scholar] [CrossRef] [PubMed]
- Kawcak, C.E.; Frisbie, D.D.; Werpy, N.M.; Park, R.D.; McIlwraith, C.W. Effects of Exercise vs. Experimental Osteoarthritis on Imaging Outcomes. Osteoarthr. Cartil. 2008, 16, 1519–1525. [Google Scholar] [CrossRef] [PubMed]
- Frisbie, D.D.; McIlwraith, C.W.; de Grauw, J.C. Synovial Fluid and Serum Biomarkers. In Joint Disease in the Horse; McIlwraith, C.W., Frisbie, D.D., Kawcak, C.E., van Weeren, R., MacIlwraith, C.W., van Weeren, P.R., Eds.; Elsevier: St. Louis, MO, USA, 2016; pp. 179–191. ISBN 978-1-4557-5969-9. [Google Scholar]
- Malek, S.; Marini, F.; Buono, S.C.; Trumble, T.N. Serum and Synovial Fluid Panel of Biomarkers in Detection of Early Post-Traumatic Osteoarthritis in a Clinically Induced Equine Model. Osteoarthr. Cartil. 2023, 31, S111–S113. [Google Scholar] [CrossRef]
- Frisbie, D.D.; Mc Ilwraith, C.W.; Arthur, R.M.; Blea, J.; Baker, V.A.; Billinghurst, R.C. Serum Biomarker Levels for Musculoskeletal Disease in Two- and Three-Year-Old Racing Thoroughbred Horses: A Prospective Study of 130 Horses. Equine Vet. J. 2010, 42, 643–651. [Google Scholar] [CrossRef] [PubMed]
- Vijarnsorn, M.; Riley, C.B.; Shaw, R.A.; McIlwraith, C.W.; Ryan, D.A.J.; Rose, P.L.; Spangler, E. Use of Infrared Spectroscopy for Diagnosis of Traumatic Arthritis in Horses. AJVR 2006, 67, 1286–1292. [Google Scholar] [CrossRef] [PubMed]
- Vijarnsorn, M.; Riley, C.B.; Ryan, D.A.J.; Rose, P.L.; Shaw, R.A. Identification of Infrared Absorption Spectral Characteristics of Synovial Fluid of Horses with Osteochondrosis of the Tarsocrural Joint. AJVR 2007, 68, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Van Weeren, P.R.; Firth, E.C. Future Tools for Early Diagnosis and Monitoring of Musculoskeletal Injury: Biomarkers and CT. Vet. Clin. N. Am. Equine Pract. 2008, 24, 153–175. [Google Scholar] [CrossRef] [PubMed]
- Legrand, C.B.; Lambert, C.J.; Comblain, F.V.; Sanchez, C.; Henrotin, Y.E. Review of Soluble Biomarkers of Osteoarthritis: Lessons from Animal Models. Cartilage 2017, 8, 211–233. [Google Scholar] [CrossRef] [PubMed]
- Kraus, V.B. Osteoarthritis Year 2010 in Review: Biochemical Markers. Osteoarthr. Cartil. 2011, 19, 346–353. [Google Scholar] [CrossRef]
- Kanamoto, T.; Mae, T.; Yokoyama, T.; Tanaka, H.; Ebina, K.; Nakata, K. Significance and Definition of Early Knee Osteoarthritis. Ann. Jt. 2019, 5, 1–4. [Google Scholar] [CrossRef]
- Frisbie, D.D.; Kawcak, C.E.; Trotter, G.W.; Powers, B.E.; Walton, R.M.; McIlwraith, C.W. Effects of Triamcinolone Acetonide on an in Vivo Equine Osteochondral Fragment Exercise Model. Equine Vet. J. 1997, 29, 349–359. [Google Scholar] [CrossRef]
- Foland, J.W.; Mcilwraith, C.W.; Trotter, G.W.; Powers, B.E.; Lamar, C.H. Effect of Betamethasone and Exercise on Equine Carpal Joints with Osteochondral Fragments. Vet. Surg. 1994, 23, 369–376. [Google Scholar] [CrossRef]
- Frisbie, D.; Ray, C.; Ionescu, M.; Poole, M.; Chapman, P.; McIlwraith, C.W. Measurement of Synovial Fluid and Serum Concentrations of the 846 Epitope of Chondroitin Sulfate and of Carboxy Propeptides of Type II Procollagen for Diagnosis of Osteochondral Fragmentation in Horses. Am. J. Vet. Res. 1999, 60, 306–309. [Google Scholar] [CrossRef]
- Frisbie, D.D.; Ghivizzani, S.C.; Robbins, P.D.; Evans, C.H.; McIlwraith, C.W. Treatment of Experimental Equine Osteoarthritis by in Vivo Delivery of the Equine Interleukin-1 Receptor Antagonist Gene. Gene Ther. 2002, 9, 12–20. [Google Scholar] [CrossRef]
- Frisbie, D.D.; Al-Sobayil, F.; Billinghurst, R.C.; Kawcak, C.E.; McIlwraith, C.W. Changes in Synovial Fluid and Serum Biomarkers with Exercise and Early Osteoarthritis in Horses. Osteoarthr. Cartil. 2008, 16, 1196–1204. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Romero, C.; Blanco, F.J. Proteomics Role in the Search for Improved Diagnosis, Prognosis and Treatment of Osteoarthritis. Osteoarthr. Cartil. 2010, 18, 500–509. [Google Scholar] [CrossRef]
- Yu, C.; Zhao, B.; Li, Y.; Zang, H.; Li, L. Vibrational Spectroscopy in Assessment of Early Osteoarthritis—A Narrative Review. IJMS 2021, 22, 5235. [Google Scholar] [CrossRef] [PubMed]
- Smith, B.C. Fundamentals of Fourier Transform Infrared Spectroscopy, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2011; ISBN 978-0-429-14058-7. [Google Scholar]
- Shaw, R.A.; Kotowich, S.; Eysel, H.H.; Jackson, M.; Thomson, G.T.D.; Mantsch, H.H. Arthritis Diagnosis Based upon the Near-Infrared Spectrum of Synovial Fluid. Rheumatol. Int. 1995, 15, 159–165. [Google Scholar] [CrossRef]
- Eysel, H.H.; Jackson, M.; Nikulin, A.; Somorjai, R.L.; Thomson, G.T.D.; Mantsch, H.H. A Novel Diagnostic Test for Arthritis: Multivariate Analysis of Infrared Spectra of Synovial Fluid. Biospectroscopy 1997, 3, 161–167. [Google Scholar] [CrossRef]
- Canvin, J.M.G. Infrared Spectroscopy: Shedding Light on Synovitis in Patients with Rheumatoid Arthritis. Rheumatology 2003, 42, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Malek, S.; Marini, F.; Rochat, M.C.; Béraud, R.; Wright, G.M.; Riley, C.B. Infrared Spectroscopy of Synovial Fluid as a Potential Screening Approach for the Diagnosis of Naturally Occurring Canine Osteoarthritis Associated with Cranial Cruciate Ligament Rupture. Osteoarthr. Cartil. Open 2020, 2, 100120. [Google Scholar] [CrossRef]
- Kraus, V.B. Biomarkers as Drug Development Tools: Discovery, Validation, Qualification and Use. Nat. Rev. Rheumatol. 2018, 14, 354–362. [Google Scholar] [CrossRef]
- Kester, W.O. Guide for Veterinary Service and Judging of Equestrian Events, 3rd ed.; American Assiciation of Equine Practitioners: Golden, CO, USA, 1984. [Google Scholar]
- Panizzi, L.; Vignes, M.; Dittmer, K.E.; Waterland, M.R.; Rogers, C.W.; Sano, H.; McIlwraith, C.W.; Pemberton, S.; Owen, M.; Riley, C.B. Infrared Spectroscopy of Serum Fails to Identify Early Biomarker Changes in an Equine Model of Traumatic Osteoarthritis. Osteoarthr. Cartil. Open 2022, 4, 100297. [Google Scholar] [CrossRef] [PubMed]
- Barnes, R.J.; Dhanoa, M.S.; Lister, S.J. Standard Normal Variate Transformation and De-Trending of near-Infrared Diffuse Reflectance Spectra. Appl. Spectrosc. 1989, 43, 772–777. [Google Scholar] [CrossRef]
- Lê Cao, K.-A.; Welham, Z. Multivariate Data Integration Using R: Methods and Applications with the mixOmics Package, 1st ed.; Computational biology series; CRC Press: Boca Raton, FL, USA, 2022; ISBN 978-1-00-302686-0. [Google Scholar]
- Hastie, T.; Tibshirani, R.; Friedman, J.H. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed.; Springer series in statistics; Springer: New York, NY, USA, 2009; ISBN 978-0-387-84857-0. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Chollet, F.; Allaire, J.J. Deep Learning with R; Manning: Shelter Island, NY, USA, 2018; ISBN 978-1-61729-554-6. [Google Scholar]
- James, G.; Witten, W.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning: With Applications in R; Springer texts in statistics; Springer: New York, NY, USA, 2013; ISBN 978-1-4614-7137-0. [Google Scholar]
- Coates, J. Interpretation of Infrared Spectra, a Practical Approach. In Encyclopedia of Analytical Chemistry; Meyers, R., Ed.; John Wiley & Sons Ltd.: Chichester, UK, 2000; pp. 10815–10837. [Google Scholar]
- Malek, S.; Sun, H.; Rochat, M.C.; Béraud, R.; Bailey, T.R.; Wright, G.M.; Riley, C.B. Infrared Spectroscopy of Serum as a Potential Diagnostic Screening Approach for Naturally Occurring Canine Osteoarthritis Associated with Cranial Cruciate Ligament Rupture. Osteoarthr. Cartil. 2020, 28, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Saxne, T.; Heinegård, D. Cartilage Oligomeric Matrix Protein: A Novel Marker of Cartilage Turnover Detectable in Synovial Fluid and Blood. Rheumatology 1992, 31, 583–591. [Google Scholar] [CrossRef] [PubMed]
- Song, S.Y.; Han, Y.D.; Hong, S.Y.; Kim, K.; Yang, S.S.; Min, B.-H.; Yoon, H.C. Chip-Based Cartilage Oligomeric Matrix Protein Detection in Serum and Synovial Fluid for Osteoarthritis Diagnosis. Anal. Biochem. 2012, 420, 139–146. [Google Scholar] [CrossRef]
- Cadet, F.; Pérez-Guaita, D.; Garrigues, S.; De La Guardia, M. Quantitative Analysis, Infrared. In Encyclopedia of Analytical Chemistry; Meyers, R.A., Ed.; Wiley: Hoboken, NJ, USA, 2022; pp. 1–49. ISBN 978-0-471-97670-7. [Google Scholar]
- Elsohaby, I.; McClure, J.T.; Riley, C.B.; Bryanton, J.; Bigsby, K.; Shaw, R.A. Centrifugal Ultrafiltration of Human Serum for Improving Immunoglobulin A Quantification Using Attenuated Total Reflectance Infrared Spectroscopy. J. Pharm. Biomed. Anal. 2018, 150, 413–419. [Google Scholar] [CrossRef]
- Tashima, T.; Mukai, Y.; Arahata, M.; Oda, N.; Hisamitsu, M.; Tokuda, K.; Okamoto, R.; Takeuchi, S. Ultra-Broadband Quantum Infrared Spectroscopy. Optica 2024, 11, 81. [Google Scholar] [CrossRef]
- Clarke, E.J.; Lima, C.; Anderson, J.R.; Castanheira, C.; Beckett, A.; James, V.; Hyett, J.; Goodacre, R.; Peffers, M.J. Optical Photothermal Infrared Spectroscopy Can Differentiate Equine Osteoarthritic Plasma Extracellular Vesicles from Healthy Controls. Anal. Methods 2022, 14, 3661–3670. [Google Scholar] [CrossRef] [PubMed]
- Narama, I.; Masuoka-Nishiyama, M.; Matsuura, T.; Ozaki, K.; Nagatani, M.; Morishima, T. Morphogenesis of Degenerative Changes Predisposing Dogs to Rupture of the Cranial Cruciate Ligament. J. Vet. Med. Sci. 1996, 58, 1091–1097. [Google Scholar] [CrossRef] [PubMed]
- Comerford, E.J.; Tarlton, J.F.; Wales, A.; Bailey, A.J.; Innes, J.F. Ultrastructural Differences in Cranial Cruciate Ligaments from Dogs of Two Breeds with a Differing Predisposition to Ligament Degeneration and Rupture. J. Comp. Pathol. 2006, 134, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, D.; Bao, S.; Canfield, P.J.; Allanson, M.; Husband, A.J. Elevation of Immunoglobulin Deposition in the Synovial Membrane of Dogs with Cranial Cruciate Ligament Rupture. Vet. Immunol. Immunopathol. 1998, 65, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Doom, M.; De Bruin, T.; De Rooster, H.; Van Bree, H.; Cox, E. Immunopathological Mechanisms in Dogs with Rupture of the Cranial Cruciate Ligament. Vet. Immunol. Immunopathol. 2008, 125, 143–161. [Google Scholar] [CrossRef]
- Viitanen, M.; Bird, J.; Maisi, P.; Smith, R.; Tulamo, R.-M.; May, S. Differences in the Concentration of Various Synovial Fluid Constituents between the Distal Interphalangeal Joint, the Metacarpophalangeal Joint and the Navicular Bursa in Normal Horses. Res. Vet. Sci. 2000, 69, 63–67. [Google Scholar] [CrossRef]
- Riley, C.B.; Vijarnsorn, M.; Hou, S.; Shaw, R.A. Biochemical Variation among Normal Equine Carpal and Tarsocrural Joint Fluids Are Detected by Infrared Spectral Characteristics and a Modified Approach to Linear Discriminant Analysis. GSFT J. Vet. Sci. 2014, 1, 1–7. [Google Scholar] [CrossRef]
Comparison Task | No. of Classes | Prediction Accuracy (%) | |
---|---|---|---|
1 | Day | 10 | 87 |
2 | OA vs. OA Control joints | 2 | 75 |
3 | Sham vs. Sham Control joints | 2 | 61 |
4 | OA joint vs. Sham joint | 2 | 70 |
5a | Joint group (OA vs. OA Control vs. Sham vs. Sham Control) | 4 | 53 |
5b | OA joint vs. any other joint | 2 | 80 |
6 | Horse group (OA vs. Sham) | 2 | 68 |
7a | Day × joint group | 37 | 38 |
7b | Day × OA joint | 9 | 67 |
8 | Horse sampled among all horses | 17 | 46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panizzi, L.; Vignes, M.; Dittmer, K.E.; Waterland, M.R.; Rogers, C.W.; Sano, H.; McIlwraith, C.W.; Riley, C.B. Infrared Spectroscopy of Synovial Fluid Shows Accuracy as an Early Biomarker in an Equine Model of Traumatic Osteoarthritis. Animals 2024, 14, 986. https://doi.org/10.3390/ani14070986
Panizzi L, Vignes M, Dittmer KE, Waterland MR, Rogers CW, Sano H, McIlwraith CW, Riley CB. Infrared Spectroscopy of Synovial Fluid Shows Accuracy as an Early Biomarker in an Equine Model of Traumatic Osteoarthritis. Animals. 2024; 14(7):986. https://doi.org/10.3390/ani14070986
Chicago/Turabian StylePanizzi, Luca, Matthieu Vignes, Keren E. Dittmer, Mark R. Waterland, Chris W. Rogers, Hiroki Sano, C. Wayne McIlwraith, and Christopher B. Riley. 2024. "Infrared Spectroscopy of Synovial Fluid Shows Accuracy as an Early Biomarker in an Equine Model of Traumatic Osteoarthritis" Animals 14, no. 7: 986. https://doi.org/10.3390/ani14070986
APA StylePanizzi, L., Vignes, M., Dittmer, K. E., Waterland, M. R., Rogers, C. W., Sano, H., McIlwraith, C. W., & Riley, C. B. (2024). Infrared Spectroscopy of Synovial Fluid Shows Accuracy as an Early Biomarker in an Equine Model of Traumatic Osteoarthritis. Animals, 14(7), 986. https://doi.org/10.3390/ani14070986