Broiler Age Differently Affects Apparent Metabolizable Energy and Net Energy of Expanded Soybean Meal
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Expanded Soybean Meal and Diets
2.2. Birds and Experiment Design
2.3. Respiration Chambers
2.4. AME Measurement and Chemical Analysis
2.5. Calculation
2.5.1. Respiratory Data
2.5.2. Energy Values of Diets
2.5.3. Retained Nitrogen and Retained Energy
2.5.4. Energy Values of ESBMs
2.6. Statistical Analyses
3. Results
4. Discussion
4.1. Chemical Composition of Expanded Soybean Meal
4.2. Effects of Diet Characteristics on Growth Performance, Nitrogen Balance, Energy Values and Energy Balance
4.3. Energy Values of Expanded Soybean Meals Measured by Using Difference Method
4.4. Relationships between Energy Values and Nutrient Contents
4.5. Broiler Age Influences Energy Values of Expanded Soybean Meal
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ali, M.; Joseph, M.; Alfaro-Wisaquillo, M.C.; Quintana-Ospina, G.A.; Penuela-Sierra, L.M.; Patino, D.; Vu, T.; Mian, R.; Toomer, O.; Oviedo-Rondon, E.O. Influence of extruded soybean meal with varying fat and oleic acid content on nitrogen-corrected apparent metabolizable energy in broilers. Poult. Sci. 2024, 103, 103408. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Liu, G.H.; Liao, R.B.; Chang, Y.L.; Huang, X.Y.; Wu, Y.B.; Yang, H.M.; Yan, H.J.; Cai, H.Y. Apparent metabolizable and net energy values of corn and soybean meal for broiler breeding cocks. Poult. Sci. 2017, 96, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Perryman, K.R.; Dozier, W.A. Apparent metabolizable energy and apparent ileal amino acid digestibility of low and ultra-low oligosaccharide soybean meals fed to broiler chickens1. Poult. Sci. 2012, 91, 2556–2563. [Google Scholar] [CrossRef]
- Rojas, O.J.; Stein, H.H. Processing of ingredients and diets and effects on nutritional value for pigs. J. Anim. Sci. Biotechnol. 2017, 8, 751–763. [Google Scholar] [CrossRef] [PubMed]
- Jahanian, R.; Rasouli, E. Effect of extrusion processing of soybean meal on ileal amino acid digestibility and growth performance of broiler chicks. Poult. Sci. 2016, 95, 2871–2878. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, W.J.; Stark, C.R.; Ferket, P.R.; Brake, J. Evaluation of soybean meal source and particle size on broiler performance, nutrient digestibility, and gizzard development. Poult. Sci. 2013, 92, 2914–2922. [Google Scholar] [CrossRef]
- Armsby, H.P.; Fries, J.A. Net energy values of feeding stuffs for cattle. J. Agric. Res. 1915, 3, 435–491. [Google Scholar]
- Latshaw, J.D.; Moritz, J.S. Partitioning of metabolizable energy by broiler chickens. Poult. Sci. 2009, 88, 98–105. [Google Scholar] [CrossRef] [PubMed]
- De Groote, G. A comparison of a new net energy system with the metabolisable energy system in broiler diet formulation, performance and profitability 1. Br. Poult. Sci. 1974, 15, 75–95. [Google Scholar] [CrossRef]
- Van der klis, J.D.; Kwakernaak, C.; Jansman, B.M. Energy in poultry diets: Adjusted AME or net energy? In Proceedings of the 21st Annual Australian Poultry Science Symposium, Sydney, Australia, 1–3 February 2010; pp. 44–49. [Google Scholar]
- Swick, R.A.; Wu, S.; Zuo, J.; Rodgers, N.; Barekatain, M.R.; Choct, M. Implications and development of a net energy system for broilers. Anim. Prod. Sci. 2013, 53, 1231–1237. [Google Scholar] [CrossRef]
- Bartov, I. Differential effect of age on metabolisable energy content of high protein-low energy and low protein-high energy diets in young broiler chicks. Br. Poult. Sci. 1995, 36, 631–643. [Google Scholar] [CrossRef] [PubMed]
- Begin, J.J. A comparison of the ability of the Japanese quail and light breed chicken to metabolize and utilize energy. Poult. Sci. 1968, 47, 1278–1281. [Google Scholar] [CrossRef] [PubMed]
- Khalil, M.M.; Abdollahi, M.R.; Zaefarian, F.; Chrystal, P.V.; Ravindran, V. Broiler Age Influences the Apparent Metabolizable Energy of Soybean Meal and Canola Meal. Animals 2023, 13, 219. [Google Scholar] [CrossRef] [PubMed]
- Wecke, C.; Liebert, F. Age and Gender Dependent Deposition of Crude Nutrients and Energy in Fast Growing Meat-Type Chickens. Open J. Anim. Sci. 2019, 9, 35–50. [Google Scholar] [CrossRef]
- Santos, F.R.; Stringhini, J.H.; Oliveira, P.R.; Duarte, E.F.; Minafra, C.S.; Café, M.B. Values of metabolizable energy and metabolization of nutrients for slow- and fast-growing birds at different ages. Rev. Bras. Ciênc. Avíc. 2015, 17, 517–522. [Google Scholar] [CrossRef]
- Bertechini, A.G.; Kato, R.K.; Freitas, L.F.V.D.; Castro, R.T.D.C.; Mazzuco, H. Metabolizable energy values of soybean meals and soybean oil for broilers at different ages. Acta Sci. Anim. Sci. 2018, 41, 44540. [Google Scholar] [CrossRef]
- Kiarie, E.; Kim, I.H.; Nyachoti, C.M. Effect of genotype on heat production and net energy value of a corn-soybean meal-based diet fed to growing pigs. Vet. Med. 2016, 60, 489–498. [Google Scholar] [CrossRef]
- Tillman, P.B.; Waldroup, P.W. Assessment of extruded grain amaranth as a feed ingredient for broilers. Apparent Metabolizable Energy Values. Poult. Sci. 1988, 67, 641–646. [Google Scholar] [CrossRef] [PubMed]
- AOAC International. Official Methods of Analysis, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2007. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Thiex, N.J.; Anderson, S.; Gildemeister, B. Crude fat, diethyl ether extraction, in feed, cereal grain, and forage (Randall/Soxtec/submersion method): Collaborative study. J. AOAC Int. 2003, 86, 888–898. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, L.R.; Mwandemele, O.D.; McWhirter, K.S. Estimation of sucrose, raffinose and stachyose in soybean seeds. Food Chem. 1985, 17, 85–93. [Google Scholar] [CrossRef]
- Brouwer, E. Report of sub-committee on constants and factors. In Proceedings of the 3rd Symposium on Energy Metabolism, Troon, Scotland, May 1964; Blaxter, K.L., Ed.; Academic Press: London, UK, 1965; pp. 441–443. [Google Scholar]
- Noblet, J.; Dubois, S.; Lasnier, J.; Warpechowski, M.; Dimon, P.; Carré, B.; van Milgen, J.; Labussière, E. Fasting heat production and metabolic BW in group-housed broilers. Animal 2015, 9, 1138–1144. [Google Scholar] [CrossRef] [PubMed]
- Hill, F.W.; Anderson, D.L. Comparison of metabolizable energy and productive energy determinations with growing chicks. J. Nutr. 1958, 64, 587–603. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.K.; Ban, Z.; Classen, H.L.; Yang, H.; Yan, X.; Choct, M.; Wu, S.B. Net energy, energy utilization, and nitrogen and energy balance affected by dietary pea supplementation in broilers. Anim. Nutr. 2021, 7, 506–511. [Google Scholar] [CrossRef] [PubMed]
- Elwakeel, E.A.; Titgemeyer, E.C.; Cheng, Z.J.; Nour, A.M.; Nasser, M.E. In Vitro assessment of the nutritive value of expanded soybean meal for dairy cattle. J. Anim. Sci. Biotechnol. 2012, 3, 10. [Google Scholar] [CrossRef] [PubMed]
- Sens, R.F.; Bassi, L.S.; Almeida, L.M.; Rosso, D.F.; Teixeira, L.V.; Maiorka, A. Effect of different doses of phytase and protein content of soybean meal on growth performance, nutrient digestibility, and bone characteristics of broilers. Poult. Sci. 2021, 100, 100917. [Google Scholar] [CrossRef] [PubMed]
- Douglas, M.W.; Parsons, C.M. Effect of presolvent extraction processing method on the nutritional value of soybean meal for chicks. Poult. Sci. 2000, 79, 1623–1626. [Google Scholar] [CrossRef] [PubMed]
- Noblet, J.; Wu, S.; Choct, M. Methodologies for energy evaluation of pig and poultry feeds: A Review. Anim. Nutr. 2022, 8, 185–203. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Sung, J.Y.; Kim, B.G. The influence of protein concentrations in basal diet on metabolizable energy of full-fat soybeans and soy protein isolate determined by the difference procedure in pigs. Anim. Feed Sci. Technol. 2022, 288, 115299. [Google Scholar] [CrossRef]
- MacLeod, M.G. Effects of feeding by crop intubation on energy metabolism and physical activity in domestic cockerels. Br. Poult. Sci. 1991, 32, 1089–1095. [Google Scholar] [CrossRef] [PubMed]
- Tancharoenrat, P.; Ravindran, V.; Zaefarian, F.; Ravindran, G. Influence of age on the apparent metabolisable energy and total tract apparent fat digestibility of different fat sources for broiler chickens. Anim. Feed Sci. Technol. 2013, 186, 186–192. [Google Scholar] [CrossRef]
- Barekatain, M.R.; Noblet, J.; Wu, S.B.; Iji, P.A.; Choct, M.; Swick, R.A. Effect of sorghum distillers dried grains with solubles and microbial enzymes on metabolizable and net energy values of broiler diets. Poult. Sci. 2014, 93, 2793–2801. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.B.; Swick, R.A.; Noblet, J.; Rodgers, N.; Cadogan, D.; Choct, M. Net energy prediction and energy efficiency of feed for broiler chickens. Poult. Sci. 2019, 98, 1222–1234. [Google Scholar] [CrossRef]
- Ning, R.; Cheng, Z.; Liu, X.; Ban, Z.; Guo, Y.; Nie, W. Evaluating and predicting net energy value of wheat and wheat bran for broiler chickens. Anim. Biosci. 2022, 35, 1760–1770. [Google Scholar] [CrossRef] [PubMed]
- Syafwan; Noferdiman; Zubaida, S.; Pasaribu, T.M.; Adrizal. Estimation of energy and protein requirements of Arabic hens during rearing period by free choice feeding. Trop. Anim. Sci. J. 2021, 44, 462–477. [Google Scholar] [CrossRef]
- Cerrate, S.; Ekmay, R.; England, J.A.; Coon, C. Predicting nutrient digestibility and energy value for broilers. Poult. Sci. 2019, 98, 3994–4007. [Google Scholar] [CrossRef] [PubMed]
- Barzegar, S.; Wu, S.B.; Noblet, J.; Choct, M.; Swick, R.A. Energy efficiency and net energy prediction of feed in laying hens. Poult. Sci. 2019, 98, 5746–5758. [Google Scholar] [CrossRef] [PubMed]
- Barzegar, S.; Wu, S.B.; Swick, R.A. Metabolizable energy of ingredients in peak layers. In Proceedings of the 28th Australian Poultry Science Symposium, Sydney, NSW, Australia, 4–7 February 2017; pp. 13–15. [Google Scholar]
- Carré, B.; Lessire, M.; Juin, H. Prediction of the net energy value of broiler diets. Animal 2014, 8, 1395–1401. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.W.; Koo, B.; Nyachoti, C.M. Net energy content of canola meal fed to growing pigs and effect of experimental methodology on energy values1. J. Anim. Sci. 2018, 96, 1441–1452. [Google Scholar] [CrossRef] [PubMed]
- Lopez, G.; Leeson, S. Assessment of the nitrogen correction factor in evaluating metabolizable energy of corn and soybean meal in diets for broilers. Poult. Sci. 2008, 87, 298–306. [Google Scholar] [CrossRef]
- Jaworski, N.W.; Liu, D.W.; Li, D.F.; Stein, H.H. Wheat bran reduces concentrations of digestible, metabolizable, and net energy in diets fed to pigs, but energy values in wheat bran determined by the difference procedure are not different from values estimated from a linear regression procedure. J. Anim. Sci. 2016, 94, 3012–3021. [Google Scholar] [CrossRef] [PubMed]
- Latifi, M.; Moravej, H.; Ghaziani, F.; Kim, W.K. Determination of prediction equations for apparent metabolizable energy corrected for nitrogen of corn gluten meal and canola meal in broilers. Poult. Sci. 2023, 102, 102587. [Google Scholar] [CrossRef] [PubMed]
- Son, A.R.; Park, C.S.; Kim, B.G. Determination and prediction of digestible and metabolizable energy concentrations in byproduct feed ingredients fed to growing pigs. Asian-Australas J. Anim. Sci. 2017, 30, 546–553. [Google Scholar] [CrossRef]
- Son, J.; Kim, J.; Jo, H.; Kim, B.G. Fecal amylase-treated neutral detergent fiber and ash contents as independent variables can predict metabolizable energy and coefficient of energy digestibility of diets for growing pigs without dietary information. Anim. Feed. Sci. Technol. 2023, 305, 115790. [Google Scholar] [CrossRef]
- Noblet, J.; Perez, J.M. Prediction of digestibility of nutrients and energy values of pig diets from chemical analysis. J. Anim. Sci. 1993, 71, 3389–3398. [Google Scholar] [CrossRef] [PubMed]
- Batal, A.B.; Parsons, C.M. Utilization of different soy products as affected by age in chicks. Poult. Sci. 2003, 82, 454–462. [Google Scholar] [CrossRef] [PubMed]
- Shires, A.; Thompson, J.R.; Turner, B.V.; Kennedy, P.M.; Goh, Y.K. Rate of passage of corn-canola meal and corn-soybean meal diets through the gastrointestinal tract of broiler and White Leghorn chickens. Poult. Sci. 1987, 66, 289–298. [Google Scholar] [CrossRef]
- Yang, Z.; Pirgozliev, V.R.; Rose, S.P.; Woods, S.; Yang, H.M.; Wang, Z.Y.; Bedford, M.R. Effect of age on the relationship between metabolizable energy and digestible energy for broiler chickens. Poult. Sci. 2020, 99, 320–330. [Google Scholar] [CrossRef] [PubMed]
- Leeson, S.U.O.G.; Caston, L.; Summers, J.D. Broiler response to energy or energy and protein dilution in the finisher diet. Poult. Sci. 1996, 75, 522–528. [Google Scholar] [CrossRef]
- Black, J.L. Modelling energy metabolism in the pig-Critical evaluation of a simple reference model. In Modelling Growth in the Pig; Moughan, P.J., Verstegen, M.W.N., Visser-Reyneveld, M.I., Eds.; Wageningen Pers: Wageningen, The Netherlands, 1995; pp. 83–100. [Google Scholar]
- Krás, R.V.; Kessler, A.D.M.; Ribeiro, A.; Henn, J.D.; Bockor, L.; Sbrissia, A.F. Effect of dietary fiber, genetic strain and age on the digestive metabolism of broiler chickens. Braz. J. Poult. Sci. 2013, 15, 83–90. [Google Scholar] [CrossRef]
Item | ESBM1 | ESBM2 | ESBM3 |
---|---|---|---|
Analyzed nutrient content (as fed basis) | |||
Dry matter (%) | 88.44 | 88.70 | 88.28 |
Gross energy (MJ/kg) | 17.15 | 17.46 | 17.26 |
Crude protein (%) | 43.46 | 46.18 | 46.31 |
Either extract (%) | 0.98 | 0.90 | 0.80 |
NDF (%) | 11.66 | 11.03 | 9.60 |
ADF (%) | 8.94 | 6.50 | 5.98 |
Ash (%) | 6.12 | 6.20 | 6.27 |
Sucrose | 3.47 | 5.25 | 5.61 |
Stachyose | 1.20 | 3.12 | 3.10 |
Raffinose | 1.09 | 1.93 | 1.74 |
Essential amino acid (%, DM basis) | |||
Argnine | 2.10 | 2.19 | 2.07 |
Lysine | 2.07 | 2.13 | 2.23 |
Threonine | 1.51 | 1.53 | 1.56 |
Phenylalanine | 1.58 | 1.71 | 1.48 |
Valine | 1.83 | 1.96 | 1.95 |
Isoleucine | 1.60 | 1.60 | 1.69 |
Leucine | 2.84 | 2.94 | 2.97 |
Histidine | 0.78 | 0.85 | 0.85 |
Nonessential amino acid (%, DM basis) | |||
Asparagine | 4.30 | 4.63 | 4.58 |
Serine | 2.47 | 2.59 | 2.56 |
Glutamate | 6.28 | 6.54 | 6.51 |
Alanine | 2.38 | 2.47 | 2.46 |
Proline | 2.23 | 2.26 | 2.02 |
Items | Basal Diets | |
---|---|---|
Grower Phase | Finisher Phase | |
Energy-yielding ingredients (%, as-fed basis) | ||
Corn | 60.82 | 59.35 |
Soybean meal | 21.42 | 20.60 |
Corn gluten meal | 2.60 | 2.00 |
Soybean oil | 4.50 | 6.00 |
DDGS | 3.00 | 4.00 |
Peanut meal | 3.00 | 4.00 |
L-lysine, HCl, 70% | 1.00 | 0.96 |
DL-methionine, 99% | 0.25 | 0.24 |
L-threonine, 99% | 0.14 | 0.15 |
L-tryptophan | 0.03 | |
Nonenergy-yielding ingredients (%, as fed basis) | ||
Limestone | 0.90 | 0.92 |
Salt | 0.27 | 0.26 |
Sodium humate | 0.20 | 0.20 |
Sodium bicarbonate | 0.12 | 0.01 |
Calcium bicarbonate | 1.14 | 0.70 |
Choline | 0.11 | 0.11 |
Vitamin-mineral premix 1 | 0.50 | 0.50 |
Total ingredients | 100.00 | 100.00 |
Analyzed nutrient content (DM basis) | ||
Gross energy (MJ/kg) | 19.52 | 20.07 |
Crude protein (%) | 21.83 | 21.57 |
Either extract (%) | 7.67 | 10.06 |
Ash (%) | 5.88 | 6.10 |
Items | Test Diets 1 | Test Diets 2 | Test Diets 3 | |||
---|---|---|---|---|---|---|
10 to 16 Day | 24 to 30 Day | 10 to 16 Day | 24 to 30 Day | 10 to 16 Day | 24 to 30 Day | |
Dietary composition (%, as-fed basis) 2 | ||||||
Energy-yielding diets | 71.76 | 72.30 | 71.76 | 72.30 | 71.76 | 72.30 |
Nonenergy-yielding diets | 3.24 | 2.70 | 3.24 | 2.70 | 3.24 | 2.70 |
ESBM1 | 25.00 | 25.00 | ||||
ESBM2 | 25.00 | 25.00 | ||||
ESBM3 | 25.00 | 25.00 | ||||
Total | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Analyzed nutrient content (%, DM basis) | ||||||
Gross energy (MJ/kg) | 19.47 | 19.70 | 19.41 | 19.79 | 19.46 | 19.82 |
Crude protein | 28.82 | 28.75 | 29.22 | 28.97 | 29.49 | 29.15 |
Either extract | 6.34 | 7.47 | 6.10 | 7.58 | 5.91 | 7.51 |
Ash | 6.51 | 6.27 | 6.50 | 6.65 | 6.50 | 6.50 |
Items | Basal Diet | Test Diets | Mean | SEM | p-Value | ||
---|---|---|---|---|---|---|---|
ESBM1 | ESBM2 | ESBM3 | |||||
Growth performance | |||||||
BW (g) | 607.38 | 607.96 | 630.75 | 620.25 | 616.58 | 9.661 | 0.823 |
Feed intake (g/bird/day) | 65.84 | 63.12 | 69.04 | 69.03 | 65.86 | 1.689 | 0.696 |
AME intake (kJ/bird/day) 1 | 1031.51 | 913.68 | 956.63 | 977.10 | 977.41 | 23.632 | 0.328 |
AME intake/BW gain (kJ/g) | 16.46 | 14.22 | 13.85 | 14.72 | 14.82 | 0.408 | 0.084 |
Nitrogen balance (g/bird/day) | |||||||
Intake | 1.77 b | 2.42 a | 2.34 a | 2.39 a | 2.23 | 0.066 | <0.001 |
Excreta | 0.52 b | 0.87 a | 0.83 a | 0.93 a | 0.79 | 0.036 | <0.001 |
Retained 2 | 1.25 | 1.55 | 1.50 | 1.46 | 1.44 | 0.043 | 0.053 |
Energy values (MJ/kg) | |||||||
AME | 15.68 a | 14.43 b | 14.28 b | 14.16 b | 14.66 | 0.169 | 0.001 |
AMEn 3 | 14.84 a | 13.42 b | 13.50 b | 12.97 b | 13.68 | 0.176 | <0.001 |
NE | 8.51 | 8.05 | 8.15 | 8.00 | 8.19 | 0.179 | 0.759 |
Energy utilization | |||||||
AME/GE | 0.80 a | 0.74 b | 0.75 b | 0.72 b | 0.75 | 0.009 | 0.001 |
NE/AME | 0.54 | 0.56 | 0.57 | 0.57 | 0.56 | 0.012 | 0.889 |
Energy balance (kJ/kg BW0.70/day) | |||||||
RE total 4 | 623.43 | 501.13 | 620.84 | 593.27 | 580.81 | 40.064 | 0.677 |
as protein 4 | 329.68 b | 403.82 a | 396.92 a | 378.88 ab | 377.01 | 10.476 | 0.016 |
as fat 4 | 293.75 | 97.30 | 223.92 | 214.40 | 203.80 | 28.610 | 0.078 |
RQ 5 | 0.99 | 0.98 | 0.99 | 0.99 | 0.99 | 0.007 | 0.905 |
HP 6 | 1201.34 | 1089.74 | 1088.36 | 1105.57 | 1123.47 | 21.085 | 0.153 |
HI 7 | 751.35 | 639.75 | 638.36 | 655.57 | 673.47 | 20.261 | 0.124 |
Items | Basal Diet | Test Diets | Mean | SEM | p-Value | ||
---|---|---|---|---|---|---|---|
ESBM1 | ESBM2 | ESBM3 | |||||
Growth performance | |||||||
BW (g) | 1740.8 | 1750.6 | 1775.2 | 1737.8 | 1751.1 | 11.19 | 0.660 |
Feed intake (g/bird/day) | 140.82 | 131.63 | 140.56 | 130.54 | 135.89 | 3.219 | 0.552 |
AME intake (MJ/bird/day) 1 | 2.11 | 1.83 | 1.96 | 1.82 | 1.93 | 0.050 | 0.127 |
AME intake/BW gain (kJ/g) | 19.09 | 17.41 | 17.25 | 16.45 | 17.55 | 0.410 | 0.130 |
Nitrogen balance (g/bird/day) | |||||||
Intake | 4.34 b | 5.74 a | 5.88 a | 5.90 a | 5.46 | 0.170 | <0.001 |
Excreta | 1.70 b | 2.55 a | 2.56 a | 2.56 a | 2.34 | 0.109 | 0.003 |
Retained 2 | 2.64 b | 3.19 a | 3.32 a | 3.35 a | 3.12 | 0.094 | 0.014 |
Energy values (MJ/kg) | |||||||
AME | 14.96 | 13.93 | 13.99 | 14.04 | 14.23 | 0.167 | 0.083 |
AMEn 3 | 14.24 a | 13.05 b | 13.08 b | 13.14 b | 13.38 | 0.166 | 0.018 |
NE | 9.39 | 8.21 | 8.45 | 8.32 | 8.61 | 0.204 | 0.149 |
Energy utilization | |||||||
AME/GE | 0.75 | 0.71 | 0.71 | 0.71 | 0.72 | 0.008 | 0.227 |
NE/AME | 0.63 | 0.58 | 0.60 | 0.59 | 0.60 | 0.010 | 0.425 |
Energy balance (kJ/kg BW0.70/day) | |||||||
RE total 4 | 671.18 | 459.83 | 530.70 | 468.46 | 532.54 | 39.273 | 0.202 |
as protein 4 | 315.44 b | 382.41 a | 388.92 a | 399.07 a | 371.46 | 11.560 | 0.031 |
as fat 4 | 355.74 a | 77.42 b | 141.78 ab | 69.39 b | 161.08 | 26.920 | 0.049 |
RQ 5 | 1.01 | 0.99 | 0.99 | 1.00 | 1.00 | 0.005 | 0.522 |
HP 6 | 1019.0 | 1015.2 | 1008.2 | 993.1 | 1008.9 | 14.73 | 0.939 |
HI 7 | 569.00 | 565.15 | 558.20 | 543.13 | 558.87 | 14.731 | 0.939 |
Treatment | Energy Values (MJ/kg) 2 | Energy Utilization | |||||
---|---|---|---|---|---|---|---|
AME | AMEn | NE | AME/GE | AMEn/GE | NE/AME | NE/AMEn | |
Age × ESBM | |||||||
ESBM1 (day 14 to 16) | 10.77 | 9.26 | 6.73 | 0.56 | 0.48 | 0.62 | 0.73 |
ESBM2 (day 14 to 16) | 10.88 | 9.29 | 7.29 | 0.55 | 0.47 | 0.67 | 0.78 |
ESBM3 (day 14 to 16) | 9.79 | 8.24 | 6.61 | 0.50 | 0.42 | 0.68 | 0.80 |
ESBM1 (day 28 to 30) | 11.33 | 9.88 | 6.62 | 0.58 | 0.51 | 0.58 | 0.67 |
ESBM2 (day 28 to 30) | 11.56 | 10.01 | 5.89 | 0.59 | 0.51 | 0.51 | 0.59 |
ESBM3 (day 28 to 30) | 12.84 | 11.36 | 6.77 | 0.66 | 0.58 | 0.53 | 0.60 |
Pooled SEM | 0.392 | 0.359 | 0.459 | 0.020 | 0.018 | 0.042 | 0.050 |
Age effect | |||||||
day 14 to 16 | 10.48 | 8.93 b | 6.88 | 0.54 | 0.46 | 0.66 a | 0.77 |
day 28 to 30 | 11.91 | 10.42 a | 6.43 | 0.61 | 0.53 | 0.54 b | 0.62 |
ESBM effect | |||||||
ESBM1 | 11.05 | 9.57 | 6.68 | 0.57 | 0.50 | 0.60 | 0.70 |
ESBM2 | 11.22 | 9.65 | 6.59 | 0.57 | 0.49 | 0.59 | 0.69 |
ESBM3 | 11.32 | 9.80 | 6.69 | 0.58 | 0.50 | 0.61 | 0.70 |
p-value | |||||||
Age | 0.095 | 0.046 | 0.062 | 0.092 | 0.052 | 0.022 | 0.084 |
ESBM | 0.962 | 0.960 | 0.993 | 0.978 | 0.977 | 0.829 | 0.762 |
Age × ESBM | 0.397 | 0.278 | 0.365 | 0.396 | 0.269 | 0.350 | 0.342 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Q.; Liu, Y.; Ban, Z.; Zhang, B. Broiler Age Differently Affects Apparent Metabolizable Energy and Net Energy of Expanded Soybean Meal. Animals 2024, 14, 1198. https://doi.org/10.3390/ani14081198
Jiang Q, Liu Y, Ban Z, Zhang B. Broiler Age Differently Affects Apparent Metabolizable Energy and Net Energy of Expanded Soybean Meal. Animals. 2024; 14(8):1198. https://doi.org/10.3390/ani14081198
Chicago/Turabian StyleJiang, Qiuyu, Yongfa Liu, Zhibin Ban, and Bingkun Zhang. 2024. "Broiler Age Differently Affects Apparent Metabolizable Energy and Net Energy of Expanded Soybean Meal" Animals 14, no. 8: 1198. https://doi.org/10.3390/ani14081198
APA StyleJiang, Q., Liu, Y., Ban, Z., & Zhang, B. (2024). Broiler Age Differently Affects Apparent Metabolizable Energy and Net Energy of Expanded Soybean Meal. Animals, 14(8), 1198. https://doi.org/10.3390/ani14081198