Proteomic Insights into Seminal Plasma and Spermatozoa Proteins of Small-Spotted Catsharks, Scyliorhinus canicula: Implications for Reproductive Conservation in Aquariums
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Semen Origin
2.3. Sperm Quality Assessment
2.4. Comparative Proteomic Analysis: Sampling, Protein Extraction, and Quantification
2.5. Complete Proteome: Spectral Library Building by In-Gel Digestion and LC-MS/MS—Data-Dependent Acquisition Analysis
2.5.1. Spectral Library Acquisition
2.5.2. SWATH-MS
2.6. Protein Identification, Validation and Quantification
2.7. Proteome Statistical Analysis and Functional Annotation of the Differentially Abundant Proteins
2.8. Statistical Analysis
3. Results
3.1. Sperm Quality Assessment
3.2. Comprehensive Proteomic Analysis of Seminal Plasma and Spermatozoa
3.3. Seminal Plasma Differentially Abundant Proteins and Functional Annotation Analysis
3.4. Spermatozoa Differentially Abundant Proteins and Functional Annotation Analysis
3.5. Establishment of PPI Networks and Module Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Janse, M.; Zimmerman, B.; Geerlings, L.; Brown, C.; Nagelkerke, L.A.J. Sustainable Species Management of the Elasmobranch Populations within European Aquariums: A Conservation Challenge. J. Zoo Aquar. Res. 2017, 5, 172–181. [Google Scholar] [CrossRef]
- Luer, C.A.; Walsh, C.J.; Bodine, A.B.; Wyffels, J.T. Normal Embryonic Development in the Clearnose Skate, Raja eglanteria, with Experimental Observations on Artificial Insemination. Environ. Biol. Fishes 2007, 80, 239–255. [Google Scholar] [CrossRef]
- Penfold, L.M.; Wyffels, J.T. Reproductive Science in Sharks and Rays. In Reproductive Sciences in Animal Conservation; Comizzoli, P., Brown, J.L., Holt, W.V., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 465–488. [Google Scholar]
- Wyffels, J.; Coco, C.; Schreiber, C.; Palmer, D.; Clauss, T.; Bulman, F.; George, R.; Pelton, C.; Feldheim, K.; Handsel, T. Natural Environmental Conditions and Collaborative Efforts Provide the Secret to Success for Sand Tiger Shark, Carcharias taurus Reproduction in Aquaria. Zoo Biol. 2020, 39, 355–363. [Google Scholar] [CrossRef]
- Daly, J.; Jones, R. The Use of Reproductive Technologies in Breeding Programs for Elasmobranchs in Aquaria. In The Elasmobranch Husbandry Manual II: Recent Advances in the Care of Sharks, Rays and their Relatives; Smith, M., Warmolts, D., Thoney, D., Hueter, R., Murray, M., Ezcurra, J., Eds.; Ohio Biological Survey: Columbus, OH, USA, 2017; pp. 363–374. [Google Scholar]
- Padilha, F.L.A.; Colbachini, H.; Ramos, S.D.; Reisfeld, L.C.; Henrique, P.C.; Leite, R.F.; Losano, J.D.A.; Nichi, M.; Sousa, R.G.B.; Gutierrez, R.C.; et al. Validation of Manual Semen Collection Methods and Sperm Evaluation in Living Freshwater Stingrays (Potamotrygon falkneri) Kept in Ex Situ Conditions. Environ. Biol. Fishes 2021, 104, 463–469. [Google Scholar] [CrossRef]
- Muñoz-Baquero, M.; Marco-Jiménez, F.; García-Domínguez, X.; Ros-Santaella, J.L.; Pintus, E.; Jiménez-Movilla, M.; García-Párraga, D.; García-Vazquez, F.A. Comparative Study of Semen Parameters and Hormone Profile in Small-Spotted Catshark (Scyliorhinus canicula): Aquarium-Housed vs. Wild-Captured. Animals 2021, 11, 2884. [Google Scholar] [CrossRef]
- Masuda, M.; Izawa, Y.; Kametsuta, S.; Ikuta, H.; Isogai, T. Artificial Insemination of the White-Spotted Bamboo Shark, Chiloscyllium plagiosum. J. Jpn. Assoc. Zoos Aquar. 2005, 46, 91–96. [Google Scholar]
- Wyffels, J.T.; Adams, L.M.; Bulman, F.; Fustukjian, A.; Hyatt, M.W.; Feldheim, K.A.; Penfold, L.M. Artificial Insemination and Parthenogenesis in the Whitespotted Bamboo Shark Chiloscyllium plagiosum. Sci. Rep. 2021, 11, 9966. [Google Scholar] [CrossRef]
- Dzyuba, V.; Ninhaus-Silveira, A.; Veríssimo-Silveira, R.; Rodina, M.; Dzyuba, B. Sperm Antioxidant System in Ocellate River Stingray Potamotrygon motoro at Transition from Seminal Vesicle to Cloaca. Fish Physiol. Biochem. 2020, 46, 1975–1980. [Google Scholar] [CrossRef]
- Dzyuba, V.; Ninhaus-Silveira, A.; Kahanec, M.; Veríssimo-Silveira, R.; Rodina, M.; Holt, W.V.; Dzyuba, B. Sperm Motility in Ocellate River Stingrays: Evidence for Post-Testicular Sperm Maturation and Capacitation in Chondrichthyes. J. Zool. 2019, 307, 9–16. [Google Scholar] [CrossRef]
- Dzyuba, V.; Sampels, S.; Ninhaus-Silveira, A.; Kahanec, M.; Veríssimo-Silveira, R.; Rodina, M.; Cosson, J.; Boryshpolets, S.; Selinger, M.; Sterba, J.; et al. Sperm Motility and Lipid Composition in Internally Fertilizing Ocellate River Stingray Potamotrygon motoro. Theriogenology 2019, 130, 26–35. [Google Scholar] [CrossRef] [PubMed]
- García-Salinas, P.; Gallego, V.; Asturiano, J.F. Reproductive Anatomy of Chondrichthyans: Notes on Specimen Handling and Sperm Extraction. I. Rays and Skates. Animals 2021, 11, 1888. [Google Scholar] [CrossRef]
- Johnson, A.; Bassham, B.; Lipshultz, L.I.; Lamb, D.J. Handbook of the Laboratory Diagnosis and Treatment of Infertility. En Methodology for the optimized sperm penetration assay. In Handbook of the Laboratory Diagnosis and Treatment of Infertility; CRC Press: Boca Raton, FL, USA, 1990; pp. 135–147. [Google Scholar]
- Petrunkina, A.M.; Waberski, D.; Günzel-Apel, A.R.; Töpfer-Petersen, E. Determinants of Sperm Quality and Fertility in Domestic Species. Reprod. Camb. Engl. 2007, 134, 3–17. [Google Scholar] [CrossRef]
- Panner Selvam, M.K.; Agarwal, A.; Pushparaj, P.N.; Baskaran, S.; Bendou, H. Sperm Proteome Analysis and Identification of Fertility-Associated Biomarkers in Unexplained Male Infertility. Genes 2019, 10, 522. [Google Scholar] [CrossRef]
- Dietrich, M.A.; Nynca, J.; Ciereszko, A. Proteomic and Metabolomic Insights into the Functions of the Male Reproductive System in Fishes. Theriogenology 2019, 132, 182–200. [Google Scholar] [CrossRef]
- Jodar, M.; Soler-Ventura, A.; Oliva, R. Molecular Biology of Reproduction and Development Research Group Semen Proteomics and Male Infertility. J. Proteom. 2017, 162, 125–134. [Google Scholar] [CrossRef]
- Panner Selvam, M.K.; Agarwal, A. Update on the Proteomics of Male Infertility: A Systematic Review. Arab J. Urol. 2018, 16, 103–112. [Google Scholar] [CrossRef]
- Bakke, F.K.; Monte, M.M.; Stead, D.A.; Causey, D.R.; Douglas, A.; Macqueen, D.J.; Dooley, H. Plasma Proteome Responses in Salmonid Fish Following Immunization. Front. Immunol. 2020, 11, 581070. [Google Scholar] [CrossRef]
- Boccaletto, P.; Siddique, M.A.M.; Cosson, J. Proteomics: A Valuable Approach to Elucidate Spermatozoa Post-Testicular Maturation in the Endangered Acipenseridae Family. Anim. Reprod. Sci. 2018, 192, 18–27. [Google Scholar] [CrossRef]
- Dietrich, M.A.; Judycka, S.; Żarski, D.; Malinowska, A.; Świderska, B.; Palińska-Żarska, K.; Błażejewski, M.; Ciereszko, A. Proteomic Analysis of Pikeperch Seminal Plasma Provides Novel Insight into the Testicular Development of Domesticated Fish Stocks. Animal 2021, 15, 100279. [Google Scholar] [CrossRef]
- Dietrich, M.A.; Ciereszko, A. Proteomic Characterization of Fresh Spermatozoa and Supernatant after Cryopreservation in Relation to Freezability of Carp (Cyprinus carpio L) Semen. PLoS ONE 2018, 13, e0192972. [Google Scholar] [CrossRef]
- Forne, I.; Abian, J.; Cerda, J. Fish Proteome Analysis: Model Organisms and Non-Sequenced Species. Proteomics 2010, 10, 858–872. [Google Scholar] [CrossRef] [PubMed]
- Fuentes-Albero, M.C.; Gonzalez-Brusi, L.; Cots, P.; Luongo, C.; Abril-Sanchez, S.; Ros-Santaella, J.L.; Pintus, E.; Ruiz-Diaz, S.; Barros-Garcia, C.; Sanchez-Calabuig, M.J.; et al. Protein Identification of Spermatozoa and Seminal Plasma in Bottlenose Dolphin (Tursiops truncatus). Front. Cell Dev. Biol. 2021, 9, 673961. [Google Scholar] [CrossRef] [PubMed]
- Jeanne, F.; Bernay, B.; Sourdaine, P. Comparative Proteome Analysis of Four Stages of Spermatogenesis in the Small-Spotted Catshark (Scyliorhinus canicula), Using High-Resolution NanoLC-ESI-MS/MS. J. Proteome Res. 2023, 22, 2477–2492. [Google Scholar] [CrossRef] [PubMed]
- Loppion, G.; Lavigne, R.; Pineau, C.; Auvray, P.; Sourdaine, P. Proteomic Analysis of the Spermatogonial Stem Cell Compartment in Dogfish Scyliorhinus canicula L. Comp. Biochem. Physiol. Part D Genom. Proteom. 2010, 5, 157–164. [Google Scholar] [CrossRef]
- Saperas, N.; Chiva, M.; Pfeiffer, D.C.; Kasinsky, H.E.; Ausio, J. Sperm Nuclear Basic Proteins (SNBPs) of Agnathans and Chondrichthyans: Variability and Evolution of Sperm Proteins in Fish. J. Mol. Evol. 1997, 44, 422–431. [Google Scholar] [CrossRef] [PubMed]
- Kousteni, V.; Kontopoulou, M.; Megalofonou, P. Sexual Maturity and Fecundity of Scyliorhinus canicula (Linnaeus, 1758) in the Aegean Sea. Mar. Biol. Res. 2010, 6, 390–398. [Google Scholar] [CrossRef]
- Mylniczenko, N.; Clauss, T. Pharmacology of Elasmobranchs: Updates and Techniques. In The Elasmobranch Husbandry Manual II: Recent Advances in the Care of Sharks, Rays and Their Relatives; Ohio Biological Survey: Columbus, OH, USA, 2017; pp. 289–302. [Google Scholar]
- Garcia-Dominguez, X.; Marco-Jimenez, F.; Penaranda, D.S.; Diretto, G.; Garcia-Carpintero, V.; Canizares, J.; Vicente, J.S. Long-Term and Transgenerational Phenotypic, Transcriptional and Metabolic Effects in Rabbit Males Born Following Vitrified Embryo Transfer. Sci. Rep. 2020, 10, 11313. [Google Scholar] [CrossRef]
- Shilov, I.V.; Seymour, S.L.; Patel, A.A.; Loboda, A.; Tang, W.H.; Keating, S.P.; Hunter, C.L.; Nuwaysir, L.M.; Schaeffer, D.A. The Paragon Algorithm, a Next Generation Search Engine That Uses Sequence Temperature Values and Feature Probabilities to Identify Peptides from Tandem Mass Spectra. Mol. Cell Proteom. 2007, 6, 1638–1655. [Google Scholar] [CrossRef]
- Blasco, A. Bayesian Data Analysis for Animal Scientists: The Basics; Springer International: Berlin/Heidelberg, Germany, 2017; pp. 1–275. [Google Scholar] [CrossRef]
- Mull, C.G.; Lowe, C.G.; Young, K.A. Photoperiod and Water Temperature Regulation of Seasonal Reproduction in Male Round Stingrays (Urobatis halleri). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2008, 151, 717–725. [Google Scholar] [CrossRef]
- Bromage, N.; Porter, M.; Randall, C. The Environmental Regulation of Maturation in Farmed Finfish with Special Reference to the Role of Photoperiod and Melatonin. Aquaculture 2001, 197, 63–98. [Google Scholar] [CrossRef]
- Alavi, S.; Cosson, J. Sperm Motility in Fishes. I. Effects of Temperature and pH: A Review. Cell Biol. Int. 2005, 29, 101–110. [Google Scholar] [CrossRef]
- Butts, I.A.E.; Johnson, K.; Wilson, C.C.; Pitcher, T.E. Ovarian Fluid Enhances Sperm Velocity Based on Relatedness in Lake Trout, Salvelinus namaycush. Theriogenology 2012, 78, 2105–2109.e1. [Google Scholar] [CrossRef] [PubMed]
- Chemineau, P.; Guillaume, D.; Migaud, M.; Thiery, J.C.; Pellicer-Rubio, M.T.; Malpaux, B. Seasonality of Reproduction in Mammals: Intimate Regulatory Mechanisms and Practical Implications. Reprod. Domest. Anim. Zuchthyg. 2008, 43, 40–47. [Google Scholar] [CrossRef]
- Mousa, S.A.; Mousa, M.A. Involvement of Corticotropin-Releasing Factor and Adrenocorticotropic Hormone in the Ovarian Maturation, Seawater Acclimation, and Induced Spawning of Liza ramada. Gen. Comp. Endocrinol. 2006, 146, 167–179. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.-J.; Kwon, W.-S.; Oh, S.-A.; Pang, M.-G. Fertility-Related Proteomic Profiling Bull Spermatozoa Separated by Percoll. J. Proteome Res. 2012, 11, 4162–4168. [Google Scholar] [CrossRef] [PubMed]
- Barth, A.D. Review: The Use of Bull Breeding Soundness Evaluation to Identify Subfertile and Infertile Bulls. Anim. Int. J. Anim. Biosci. 2018, 12, s158–s164. [Google Scholar] [CrossRef] [PubMed]
- Kwon, W.-S.; Oh, S.-A.; Kim, Y.-J.; Rahman, M.S.; Park, Y.-J.; Pang, M.-G. Proteomic Approaches for Profiling Negative Fertility Markers in Inferior Boar Spermatozoa. Sci. Rep. 2015, 5, 13821. [Google Scholar] [CrossRef]
- Kwon, W.-S.; Rahman, M.S.; Lee, J.-S.; Kim, J.; Yoon, S.-J.; Park, Y.-J.; You, Y.-A.; Hwang, S.; Pang, M.-G. A Comprehensive Proteomic Approach to Identifying Capacitation Related Proteins in Boar Spermatozoa. BMC Genom. 2014, 15, 897. [Google Scholar] [CrossRef] [PubMed]
- van Tilburg, M.F.; Rodrigues, M.A.M.; Moreira, R.A.; Moreno, F.B.; Monteiro-Moreira, A.C.O.; Cândido, M.J.D.; Moura, A.A. Membrane-Associated Proteins of Ejaculated Sperm from Morada Nova Rams. Theriogenology 2013, 79, 1247–1261. [Google Scholar] [CrossRef]
- Boe-Hansen, G.B.; Rego, J.P.A.; Crisp, J.M.; Moura, A.A.; Nouwens, A.S.; Li, Y.; Venus, B.; Burns, B.M.; McGowan, M.R. Seminal Plasma Proteins and Their Relationship with Percentage of Morphologically Normal Sperm in 2-Year-Old Brahman (Bos indicus) Bulls. Anim. Reprod. Sci. 2015, 162, 20–30. [Google Scholar] [CrossRef]
- Silva, H.V.R.; Rodriguez-Villamil, P.; de Magalhães, F.F.; Nunes, T.G.P.; de Freitas, L.A.; Ribeiro, L.R.; Silva, A.R.; Moura, A.A.; da Silva, L.D.M. Seminal Plasma and Sperm Proteome of Ring-Tailed Coatis (Nasua nasua, Linnaeus, 1766). Theriogenology 2018, 111, 34–42. [Google Scholar] [CrossRef]
- Rahikainen, M.; Alegre, S.; Trotta, A.; Pascual, J.; Kangasjärvi, S. Trans-Methylation Reactions in Plants: Focus on the Activated Methyl Cycle. Physiol. Plant 2018, 162, 162–176. [Google Scholar] [CrossRef] [PubMed]
- Brzezinski, K. S-Adenosyl-l-Homocysteine Hydrolase: A Structural Perspective on the Enzyme with Two Rossmann-Fold Domains. Biomolecules 2020, 10, 1682. [Google Scholar] [CrossRef] [PubMed]
- Ducker, G.S.; Rabinowitz, J.D. One-Carbon Metabolism in Health and Disease. Cell Metab. 2017, 25, 27–42. [Google Scholar] [CrossRef] [PubMed]
- Kusakabe, Y.; Ishihara, M.; Umeda, T.; Kuroda, D.; Nakanishi, M.; Kitade, Y.; Gouda, H.; Nakamura, K.T.; Tanaka, N. Structural Insights into the Reaction Mechanism of S-Adenosyl-L-Homocysteine Hydrolase. Sci. Rep. 2015, 5, 16641. [Google Scholar] [CrossRef] [PubMed]
- Turner, M.A.; Dole, K.; Yuan, C.S.; Hershfield, M.S.; Borchardt, R.T.; Howell, P.L. Crystallization and Preliminary X-Ray Analysis of Human Placental S-Adenosylhomocysteine Hydrolase. Acta Crystallogr. Sect. D 1997, 53, 339–341. [Google Scholar] [CrossRef]
- Li, P.; Hulak, M.; Koubek, P.; Sulc, M.; Dzyuba, B.; Boryshpolets, S.; Rodina, M.; Gela, D.; Manaskova-Postlerova, P.; Peknicova, J.; et al. Ice-Age Endurance: The Effects of Cryopreservation on Proteins of Sperm of Common Carp, Cyprinus carpio L. Theriogenology 2010, 74, 413–423. [Google Scholar] [CrossRef]
- Nynca, J.; Arnold, G.J.; Fröhlich, T.; Ciereszko, A. Cryopreservation-Induced Alterations in Protein Composition of Rainbow Trout Semen. Proteomics 2015, 15, 2643–2654. [Google Scholar] [CrossRef]
- Lahnsteiner, F.; Patzner, R.A.; Weismann, T. Energy Resources of Spermatozoa of the Rainbow Trout Oncorhynchus mykiss (Pisces, Teleostei). Reprod. Nutr. Dev. 1993, 33, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Lahnsteiner, F.; Mansour, N.; Caberlotto, S. Composition and Metabolism of Carbohydrates and Lipids in Sparus aurata Semen and Its Relation to Viability Expressed as Sperm Motility When Activated. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2010, 157, 39–45. [Google Scholar] [CrossRef]
- Musrati, R.A.; Kollárová, M.; Mernik, N.; Mikulásová, D. Malate Dehydrogenase: Distribution, Function and Properties. Gen. Physiol. Biophys. 1998, 17, 193–210. [Google Scholar]
- Lahnsteiner, F.; Berger, B.; Weismann, T.; Patzner, R.A. Determination of Semen Quality of the Rainbow Trout, Oncorhynchus mykiss, by Sperm Motility, Seminal Plasma Parameters, and Spermatozoal Metabolism. Aquaculture 1998, 163, 163–181. [Google Scholar] [CrossRef]
- Li, P.; Guo, W.; Yue, H.; Li, C.; Du, H.; Qiao, X.; Liu, Z.; Zhou, Q.; Wei, Q. Variability in the Protein Profiles in Spermatozoa of Two Sturgeon Species. PLoS ONE 2017, 12, e0186003. [Google Scholar] [CrossRef]
- Zilli, L.; Beirão, J.; Schiavone, R.; Herraez, M.P.; Gnoni, A.; Vilella, S. Comparative Proteome Analysis of Cryopreserved Flagella and Head Plasma Membrane Proteins from Sea Bream Spermatozoa: Effect of Antifreeze Proteins. PLoS ONE 2014, 9, e99992. [Google Scholar] [CrossRef]
- Smith, T.B.; Baker, M.A.; Connaughton, H.S.; Habenicht, U.; Aitken, R.J. Functional Deletion of Txndc2 and Txndc3 Increases the Susceptibility of Spermatozoa to Age-Related Oxidative Stress. Free Radic. Biol. Med. 2013, 65, 872–881. [Google Scholar] [CrossRef]
- Kopeika, J.; Thornhill, A.; Khalaf, Y. The Effect of Cryopreservation on the Genome of Gametes and Embryos: Principles of Cryobiology and Critical Appraisal of the Evidence. Hum. Reprod. Update 2015, 21, 209–227. [Google Scholar] [CrossRef]
- Buffone, M.G.; Calamera, J.C.; Brugo-Olmedo, S.; De Vincentiis, S.; Calamera, M.M.; Storey, B.T.; Doncel, G.F.; Alvarez, J.G. Superoxide Dismutase Content in Sperm Correlates with Motility Recovery after Thawing of Cryopreserved Human Spermatozoa. Fertil. Steril. 2012, 97, 293–298. [Google Scholar] [CrossRef]
- Kobayashi, T.; Miyazaki, T.; Natori, M.; Nozawa, S. Protective Role of Superoxide Dismutase in Human Sperm Motility: Superoxide Dismutase Activity and Lipid Peroxide in Human Seminal Plasma and Spermatozoa. Hum. Reprod. Oxf. Engl. 1991, 6, 987–991. [Google Scholar] [CrossRef]
- Otasevic, V.; Korac, A.; Vucetic, M.; Macanovic, B.; Garalejic, E.; Ivanovic-Burmazovic, I.; Filipovic, M.R.; Buzadzic, B.; Stancic, A.; Jankovic, A.; et al. Is Manganese (II) Pentaazamacrocyclic Superoxide Dismutase Mimic Beneficial for Human Sperm Mitochondria Function and Motility? Antioxid. Redox. Signal 2013, 18, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Kota, V.; Rai, P.; Weitzel, J.M.; Middendorff, R.; Bhande, S.S.; Shivaji, S. Role of Glycerol-3-Phosphate Dehydrogenase 2 in Mouse Sperm Capacitation. Mol. Reprod. Dev. 2010, 77, 773–783. [Google Scholar] [CrossRef] [PubMed]
- Miki, K.; Qu, W.; Goulding, E.H.; Willis, W.D.; Bunch, D.O.; Strader, L.F.; Perreault, S.D.; Eddy, E.M.; O’Brien, D.A. Glyceraldehyde 3-Phosphate Dehydrogenase-S, a Sperm-Specific Glycolytic Enzyme, Is Required for Sperm Motility and Male Fertility. Proc. Natl. Acad. Sci. USA 2004, 101, 16501–16506. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Sharma, R.; Samanta, L.; Durairajanayagam, D.; Sabanegh, E. Proteomic Signatures of Infertile Men with Clinical Varicocele and Their Validation Studies Reveal Mitochondrial Dysfunction Leading to Infertility. Asian J. Androl. 2016, 18, 282–291. [Google Scholar] [CrossRef] [PubMed]
- Moscatelli, N.; Lunetti, P.; Braccia, C.; Armirotti, A.; Pisanello, F.; De Vittorio, M.; Zara, V.; Ferramosca, A. Comparative Proteomic Analysis of Proteins Involved in Bioenergetics Pathways Associated with Human Sperm Motility. Int. J. Mol. Sci. 2019, 20, 3000. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.-J.; Pang, M.-G. Mitochondrial Functionality in Male Fertility: From Spermatogenesis to Fertilization. Antioxidants 2021, 10, 98. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Huang, J.; Xu, R.; Wang, Y.; Wan, Y.; McNeel, R.; Parker, E.; Kolson, D.; Yam, M.; Webb, B.; et al. Isocitrate Dehydrogenase 3b Is Required for Spermiogenesis but Dispensable for Retinal Viability. J. Biol. Chem. 2022, 298, 102387. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, G.; Jena, S.R.; Nayak, J.; Kar, S.; Samanta, L. Proteomic Signatures in Spermatozoa Reveal the Role of Paternal Factors in Recurrent Pregnancy Loss. World J. Mens. Health. 2020, 38, 103–114. [Google Scholar] [CrossRef]
- Thapliyal, A.; Tomar, A.K.; Chandra, K.B.; Naglot, S.; Dhiman, S.; Singh, N.; Sharma, J.B.; Yadav, S. Differential Sperm Proteomics Reveals the Significance of Fatty Acid Synthase and Clusterin in Idiopathic Recurrent Pregnancy Loss. Reprod. Sci. 2023, 30, 3456–3468. [Google Scholar] [CrossRef] [PubMed]
- Bell, M.V.; Dick, J.R.; Buda, C.S. Molecular Speciation of Fish Sperm Phospholipids: Large Amounts of Dipolyunsaturated Phosphatidylserine. Lipids 1997, 32, 1085–1091. [Google Scholar] [CrossRef]
- Blesbois, E.; Lessire, M.; Grasseau, I.; Hallouis, J.M.; Hermier, D. Effect of Dietary Fat on the Fatty Acid Composition and Fertilizing Ability of Fowl Semen. Biol. Reprod. 1997, 56, 1216–1220. [Google Scholar] [CrossRef]
- Yuan, C.; Wang, J.; Lu, W. Regulation of Semen Quality by Fatty Acids in Diets, Extender, and Semen. Front. Vet. Sci. 2023, 10, 1119153. [Google Scholar] [CrossRef]
- Mehdinejad, N.; Taghizadeh, V.; Imanpour, M.R. The Correlation between Semen Fatty Acids with Spermatological Parameters in Iranian Sturgeon (Acipenser persicus) Brood Stocks. Glob. Vet. 2013, 11, 23–29. [Google Scholar]
- Aquino-Cortez, A.; Pinheiro, B.Q.; Lima, D.B.C.; Silva, H.V.R.; Mota-Filho, A.C.; Martins, J.A.M.; Rodriguez-Villamil, P.; Moura, A.A.; Silva, L.D.M. Proteomic Characterization of Canine Seminal Plasma. Theriogenology 2017, 95, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Rego, J.P.A.; Martins, J.A.M.; Wolf, C.A.; van Tilburg, M.; Moreno, F.B.; Monteiro-Moreira, A.C.O.; Moreira, R.A.; Santos, D.O.; Moura, A.A. Proteomic Analysis of Seminal Plasma and Sperm Cells and Their Associations with Semen Freezability in Guzerat Bulls. J. Anim. Sci. 2016, 94, 5308–5320. [Google Scholar] [CrossRef] [PubMed]
- González-Cadavid, V.; Martins, J.A.M.; Moreno, F.B.; Andrade, T.S.; Santos, A.C.L.; Monteiro-Moreira, A.C.O.; Moreira, R.A.; Moura, A.A. Seminal Plasma Proteins of Adult Boars and Correlations with Sperm Parameters. Theriogenology 2014, 82, 697–707. [Google Scholar] [CrossRef] [PubMed]
- Souza, C.E.A.; Rego, J.P.A.; Lobo, C.H.; Oliveira, J.T.A.; Nogueira, F.C.S.; Domont, G.B.; Fioramonte, M.; Gozzo, F.C.; Moreno, F.B.; Monteiro-Moreira, A.C.O.; et al. Proteomic Analysis of the Reproductive Tract Fluids from Tropically-Adapted Santa Ines Rams. J. Proteom. 2012, 75, 4436–4456. [Google Scholar] [CrossRef] [PubMed]
- Santos, E.A.A.; Sousa, P.C.; Martins, J.A.M.; Moreira, R.A.; Monteiro-Moreira, A.C.O.; Moreno, F.B.M.B.; Oliveira, M.F.; Moura, A.A.; Silva, A.R. Protein Profile of the Seminal Plasma of Collared Peccaries (Pecari tajacu Linnaeus, 1758). Reprod. Camb. Engl. 2014, 147, 753–764. [Google Scholar] [CrossRef] [PubMed]
- Waheed, M.M.; Ghoneim, I.M.; Alhaider, A.K. Seminal Plasma and Serum Fertility Biomarkers in Dromedary Camels (Camelus dromedarius). Theriogenology 2015, 83, 650–654. [Google Scholar] [CrossRef] [PubMed]
- Janiszewska, E.; Kratz, E.M. Could the Glycosylation Analysis of Seminal Plasma Clusterin Become a Novel Male Infertility Biomarker? Mol. Reprod. Dev. 2020, 87, 515–524. [Google Scholar] [CrossRef] [PubMed]
- Sabatte, J.; Faigle, W.; Ceballos, A.; Morelle, W.; Rodríguez Rodrígues, C.; Remes Lenicov, F.; Thépaut, M.; Fieschi, F.; Malchiodi, E.; Fernández, M.; et al. Semen Clusterin Is a Novel DC-SIGN Ligand. J. Immunol. 2011, 187, 5299–5309. [Google Scholar] [CrossRef]
- Trougakos, I.P. The Molecular Chaperone Apolipoprotein J/Clusterin as a Sensor of Oxidative Stress: Implications in Therapeutic Approaches—A Mini-Review. Gerontology 2013, 59, 514–523. [Google Scholar] [CrossRef]
- Zhang, H.; Kim, J.K.; Edwards, C.A.; Xu, Z.; Taichman, R.; Wang, C.Y. Clusterin Inhibits Apoptosis by Interacting with Activated Bax. Nat. Cell Biol. 2005, 7, 909–915. [Google Scholar] [CrossRef] [PubMed]
Traits | DW-A | HPD95 | P0 |
---|---|---|---|
Sperm concentration (106/mL) | 39.13 | −20.8, 104.2 | 0.90 |
Motility (%) | −35.88 | −78.2, 8.2 | 0.95 |
Viability (%) | −12.60 | −46.5, 22.1 | 0.79 |
Mitochondrial membrane high potential (%) | −8.17 | −20.5, 4.2 | 0.91 |
No. | Protein Name | Accesion Number | Gene ID | FC A/W | p-Value |
---|---|---|---|---|---|
1 | 26S proteasome non-ATPase regulatory subunit 2 | A0A401NY41 | scyTo_0010006 | 1.2 | 0.002 |
2 | Aconitate hydratase, mitochondrial | A0A401P1B5 | scyTo_0012070 | −1.5 | 0.04 |
3 | Acylamino-acid-releasing enzyme | A0A401P232 | scyTo_0000684 | −2.2 | 0.022 |
4 | ADP/ATP translocase (ADP, ATP carrier protein) | A0A401P5V9 | scyTo_0015226 | −2.6 | 0.011 |
5 | Alcohol dehydrogenase-like N-terminal domain-containing protein | A0A401QCT0 | scyTo_0023980 | −3.0 | 0.021 |
6 | Amidohydrolase-related domain-containing protein | A0A401NWA4 | scyTo_0000388 | 3.0 | 0.014 |
7 | ATP synthase subunit beta | A0A401PKK7 | scyTo_0002730 | 2.4 | 0.033 |
8 | Axonemal dynein light intermediate polypeptide 1 | A0A401NUF3 | scyTo_0011760 | 1.8 | 0.042 |
9 | Band 7 domain-containing protein | A0A401NLA5 | scyTo_0009381 | 3.7 | 0.023 |
10 | Band 7 domain-containing protein | A0A401PXL5 | scyTo_0018525 | 2.5 | 0.012 |
11 | Band 7 domain-containing protein | A0A401PUL5 | scyTo_0016611 | 1.1 | 0.035 |
12 | Calponin-homology (CH) domain-containing protein | A0A401NWG0 | scyTo_0014862 | −1.9 | 0.000 |
13 | Carboxylic ester hydrolase | A0A401NZH9 | scyTo_0004938 | −3.8 | 0.009 |
14 | Clusterin | A0A401PF86 | scyTo_0008927 | 1.1 | 0.003 |
15 | CN hydrolase domain-containing protein | A0A401Q4C5 | scyTo_0018904 | 2.0 | 0.023 |
16 | CUB domain-containing protein | A0A401PXA0 | scyTo_0019320 | 0.8 | 0.033 |
17 | EF-hand domain-containing protein | A0A401PGM8 | scyTo_0001911 | −2.4 | 0.036 |
18 | Endoplasmic reticulum resident protein 29 | A0A401P7T0 | scyTo_0013931 | 2.7 | 0.004 |
19 | Enoyl reductase (ER) domain-containing protein | A0A401P5Y1 | scyTo_0008243 | −2.1 | 0.018 |
20 | Enoyl-CoA hydratase | A0A401NRL5 | scyTo_0014639 | 1.2 | 0.039 |
21 | Fatty acid synthase | A0A401P5R6 | scyTo_0008230 | 3.0 | 0.033 |
22 | Fumarate hydratase, mitochondrial | A0A401PXE9 | scyTo_0016750 | −1.5 | 0.006 |
23 | Glutathione transferase | A0A401PDJ7 | scyTo_0008784 | 1.8 | 0.002 |
24 | Glutathione transferase | A0A401P1T3 | scyTo_0005075 | −3.6 | 0.028 |
25 | Glycerol kinase | A0A401PKW0 | scyTo_0002802 | −1.8 | 0.043 |
26 | Glycerol-3-phosphate dehydrogenase [NAD(+)] | A0A401NP72 | scyTo_0004280 | 1.8 | 0.048 |
27 | Guanylin | A0A401P9P1 | scyTo_0010653 | −1.2 | 0.002 |
28 | Heat shock protein 90 | A0A401QGJ4 | scyTo_0025076 | −2.3 | 0.001 |
29 | Hydroxyacyl-coenzyme A dehydrogenase, mitochondrial | A0A401NV38 | scyTo_0007579 | −2.3 | 0.002 |
30 | IgGFc-binding protein N-terminal domain-containing protein | A0A401PYX0 | scyTo_0020091 | 2.1 | 0.011 |
31 | Importin N-terminal domain-containing protein | A0A401NW55 | scyTo_0009924 | −2.6 | 0.019 |
32 | Inositol 1,4,5-trisphosphate receptor | A0A401PCL8 | scyTo_0005792 | 1.7 | 0.029 |
33 | Isopropylmalate dehydrogenase-like domain-containing protein | A0A401P3W7 | scyTo_0010306 | 1.0 | 0.035 |
34 | Malate dehydrogenase | A0A401NWX3 | scyTo_0013452 | −2.0 | 0.002 |
35 | MARVEL domain-containing protein | A0A401P8H4 | scyTo_0010555 | −3.6 | 0.047 |
36 | Medium-chain specific acyl-CoA dehydrogenase, mitochondrial | A0A401NPH1 | scyTo_0013116 | −1.3 | 0.048 |
37 | Mesothelin-like protein | A0A401PMK1 | scyTo_0003439 | −2.0 | 0.035 |
38 | Methyltransferase small domain-containing protein | A0A401PVU9 | scyTo_0017576 | 4.6 | 0.036 |
39 | Mucin-like protein | A0A401P6M2 | scyTo_0010452 | −1.3 | 0.014 |
40 | NADH dehydrogenase [ubiquinone] flavoprotein 2, mitochondrial | A0A401PKP4 | scyTo_0002777 | 3.7 | 0.039 |
41 | Outer dynein arm-docking complex subunit 4 (Tetratricopeptide repeat protein 25) | A0A401PDC6 | scyTo_0005847 | −2.9 | 0.039 |
42 | Phosphoglycerate kinase | A0A401PLW3 | scyTo_0003196 | −3.3 | 0.008 |
43 | protein disulfide-isomeras | A0A401PA50 | scyTo_0001161 | 1.9 | 0.025 |
44 | Protein odr-4 homolog | A0A401P2P7 | scyTo_0008039 | −1.5 | 0.017 |
45 | Renin receptor | A0A401NH33 | scyTo_0011071 | −1.3 | 0.024 |
46 | Rieske domain-containing protein | A0A401PHR0 | scyTo_0002123 | −1.9 | 0.021 |
47 | S-adenosyl-L-homocysteine hydrolase NAD binding domain-containing protein | A0A401PRC8 | scyTo_0020386 | −1.7 | 0.032 |
48 | S-formylglutathione hydrolase | A0A401P7J0 | scyTo_0008328 | −1.6 | 0.001 |
49 | Short chain dehydrogenase/reductase family 16C member 5 | A0A401NWJ4 | scyTo_0004737 | 3.6 | 0.011 |
50 | SMP-LTD domain-containing protein | A0A401PFX2 | scyTo_0009006 | 2.1 | 0.000 |
51 | Sulfhydryl oxidase | A0A401P2B9 | scyTo_0015102 | −2.3 | 0.000 |
52 | Superoxide dismutase | A0A401PG28 | scyTo_0006156 | −4.3 | 0.005 |
53 | Synaptogyrin | A0A401NHV2 | scyTo_0012741 | −1.8 | 0.014 |
54 | Thiolase N-terminal domain-containing protein | A0A401PAQ5 | scyTo_0010720 | −2.1 | 0.024 |
55 | Thiolase N-terminal domain-containing protein | A0A401NLX1 | scyTo_0009415 | −2.0 | 0.003 |
56 | Thioredoxin domain-containing protein | A0A401PCP3 | scyTo_0001399 | −3.8 | 0.035 |
57 | Triokinase/FMN cyclase | A0A401NQV8 | scyTo_0004389 | −3.3 | 0.000 |
58 | VWFA domain-containing protein | A0A401NYA7 | scyTo_0013511 | −2.3 | 0.026 |
59 | ZP domain-containing protein | A0A401Q018 | scyTo_0020138 | −1.6 | 0.026 |
Category | Term Name | Count | FDR |
---|---|---|---|
Biological process | |||
GO:0009987 | Cellular process | 53 | 0.0374 |
GO:0044281 | Small molecule metabolic process | 17 | 0.00020 |
GO:0019752 | Carboxylic acid metabolic process | 9 | 0.0474 |
GO:0006091 | Generation of precursor metabolites and energy | 8 | 0.00078 |
GO:0015980 | Energy derivation by oxidation of organic compounds | 7 | 0.00078 |
GO:0009060 | Aerobic respiration | 6 | 0.00078 |
GO:0006099 | Tricarboxylic acid cycle | 4 | 0.0026 |
GO:0006081 | Cellular aldehyde metabolic process | 3 | 0.0481 |
GO:0019563 | Glycerol catabolic process | 2 | 0.0475 |
Molecular Function | |||
GO:0003824 | Catalytic activity | 33 | 0.00038 |
GO:0016491 | Oxidoreductase activity | 16 | 8.74 × 10−8 |
GO:0042802 | Identical protein binding | 11 | 0.0486 |
GO:0016616 | Oxidoreductase activity, acting on the CH-OH group of donors, NAD or NADP as acceptor | 7 | 2.44 × 10−5 |
GO:0051287 | NAD binding | 5 | 0.00038 |
GO:0016836 | Hydro-lyase activity | 4 | 0.0065 |
GO:0003857 | 3-hydroxyacyl-CoA dehydrogenase activity | 2 | 0.0150 |
Kegg Pathway | |||
map01100 | Metabolic pathways | 30 | 5.00 × 10−10 |
map01200 | Carbon metabolism | 10 | 3.80 × 10−9 |
map01212 | Fatty acid metabolism | 6 | 4.31 × 10−6 |
map00071 | Fatty acid degradation | 5 | 1.85 × 10−5 |
map00280 | Valine, leucine and isoleucine degradation | 5 | 3.62 × 10−5 |
map00310 | Lysine degradation | 6 | 3.62 × 10−5 |
map00650 | Butanoate metabolism | 4 | 3.62 × 10−5 |
map00020 | Citrate cycle (TCA cycle) | 4 | 0.00028 |
map00380 | Tryptophan metabolism | 4 | 0.00040 |
map00630 | Glyoxylate and dicarboxylate metabolism | 4 | 0.00040 |
map00620 | Pyruvate metabolism | 4 | 0.0012 |
map00640 | Propanoate metabolism | 3 | 0.0052 |
map00072 | Synthesis and degradation of ketone bodies | 2 | 0.0080 |
map01210 | 2-Oxocarboxylic acid metabolism | 2 | 0.0198 |
map00980 | Metabolism of xenobiotics by cytochrome P450 | 2 | 0.0393 |
map00982 | Drug metabolism—cytochrome P450 | 2 | 0.0430 |
map01230 | Biosynthesis of amino acids | 3 | 0.0430 |
map00062 | Fatty acid elongation | 2 | 0.0457 |
map00900 | Terpenoid backbone biosynthesis | 2 | 0.0457 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz-Baquero, M.; Lorenzo-Rebenaque, L.; García-Domínguez, X.; Valdés-Hernández, J.; García-Párraga, D.; Marin, C.; García-Vázquez, F.A.; Marco-Jiménez, F. Proteomic Insights into Seminal Plasma and Spermatozoa Proteins of Small-Spotted Catsharks, Scyliorhinus canicula: Implications for Reproductive Conservation in Aquariums. Animals 2024, 14, 1281. https://doi.org/10.3390/ani14091281
Muñoz-Baquero M, Lorenzo-Rebenaque L, García-Domínguez X, Valdés-Hernández J, García-Párraga D, Marin C, García-Vázquez FA, Marco-Jiménez F. Proteomic Insights into Seminal Plasma and Spermatozoa Proteins of Small-Spotted Catsharks, Scyliorhinus canicula: Implications for Reproductive Conservation in Aquariums. Animals. 2024; 14(9):1281. https://doi.org/10.3390/ani14091281
Chicago/Turabian StyleMuñoz-Baquero, Marta, Laura Lorenzo-Rebenaque, Ximo García-Domínguez, Jesús Valdés-Hernández, Daniel García-Párraga, Clara Marin, Francisco Alberto García-Vázquez, and Francisco Marco-Jiménez. 2024. "Proteomic Insights into Seminal Plasma and Spermatozoa Proteins of Small-Spotted Catsharks, Scyliorhinus canicula: Implications for Reproductive Conservation in Aquariums" Animals 14, no. 9: 1281. https://doi.org/10.3390/ani14091281
APA StyleMuñoz-Baquero, M., Lorenzo-Rebenaque, L., García-Domínguez, X., Valdés-Hernández, J., García-Párraga, D., Marin, C., García-Vázquez, F. A., & Marco-Jiménez, F. (2024). Proteomic Insights into Seminal Plasma and Spermatozoa Proteins of Small-Spotted Catsharks, Scyliorhinus canicula: Implications for Reproductive Conservation in Aquariums. Animals, 14(9), 1281. https://doi.org/10.3390/ani14091281