Potentiation of the Antimicrobial Effect of Oxytetracycline Combined with Cinnamon, Clove, Oregano, and Red Thyme Essential Oils against MDR Salmonella enterica Strains
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Isolates
2.2. Antimicrobial Agents
2.3. Susceptibility Test of OT and EOs
2.4. Antimicrobial Interaction Test
Antimicrobial Dilution with Respect to MICI (µg/mL) | ||||||||||||
4× | 2× | 1× | 0.5× | 0.25× | 0.125× | 0.0625× | 0.03125× | 0.0078125× | 0.0039× | |||
C+ | ||||||||||||
Natural product dilution with respect to MICI (µg/mL) | 4× | |||||||||||
2× | ||||||||||||
1× | ||||||||||||
0.5× | ||||||||||||
0.25× | ||||||||||||
0.125× | ||||||||||||
0.0625× |
3. Results
3.1. Susceptibility Test
3.2. Antimicrobial Interaction Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hasan, M.; Wang, J.; Ahn, J. Ciprofloxacin and Tetracycline Resistance Cause Collateral Sensitivity to Aminoglycosides in Salmonella Typhimurium. Antibiotics 2023, 12, 1335. [Google Scholar] [CrossRef] [PubMed]
- Uddin, T.M.; Chakraborty, A.J.; Khusro, A.; Zidan, B.R.M.; Mitra, S.; Emran, T.B.; Dhama, K.; Ripon, M.K.H.; Gajdács, M.; Sahibzada, M.U.K.; et al. Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. J. Infect. Public Health 2021, 14, 1750–1766. [Google Scholar] [CrossRef] [PubMed]
- Dawan, J.; Ahn, J. Assessment of cooperative antibiotic resistance of Salmonella Typhimurium within heterogeneous population. Microb. Pathog. 2021, 157, 104973. [Google Scholar] [CrossRef]
- EFSA Journal, 2023. The European Union Summary Report on Antimicrobial Resistance in Zoonotic and Indicator Bacteria from Humans, Animals and Food in 2020/2021. Available online: https://efsa.onlinelibrary.wiley.com/doi/10.2903/j.efsa.2023.7867#:~:text=Resistancewasfrequentlyfoundto,coliinsome countries (accessed on 2 February 2024).
- Roope, L.S.J.; Smith, R.D.; Pouwels, K.B.; Buchanan, J.; Abel, L.; Eibich, P.; Butler, C.C.; Tan, P.S.; Sarah Walker, A.; Robotham, J.V.; et al. The challenge of antimicrobial resistance: What economics can contribute. Science 2019, 364, eaau4679. [Google Scholar] [CrossRef]
- Murugaiyan, J.; Anand Kumar, P.; Rao, G.S.; Iskandar, K.; Hawser, S.; Hays, J.P.; Mohsen, Y.; Adukkadukkam, S.; Awuah, W.A.; Jose, R.A.M.; et al. Progress in Alternative Strategies to Combat Antimicrobial Resistance: Focus on Antibiotics. Antibiotics 2022, 11, 200. [Google Scholar] [CrossRef] [PubMed]
- Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial Activity of Some Essential Oils—Present Status and Future Perspectives. Medicines 2017, 4, 58. [Google Scholar] [CrossRef] [PubMed]
- Fadli, M.; Chevalier, J.; Saad, A.; Mezrioui, N.E.; Hassani, L.; Pages, J.M. Essential oils from Moroccan plants as potential chemosensitisers restoring antibiotic activity in resistant Gram-negative bacteria. Int. J. Antimicrob. Agents 2011, 38, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Kon, K.V.; Rai, M.K. Plant essential oils and their constituents in coping with multidrug-resistant bacteria. Expert Rev. Anti. Infect. Ther. 2012, 10, 775–790. [Google Scholar] [CrossRef] [PubMed]
- Yap, P.S.X.; Yiap, B.C.; Ping, H.C.; Lim, S.H.E. Essential Oils, A New Horizon in Combating Bacterial Antibiotic Resistance. Open Microbiol. J. 2014, 8, 6–14. [Google Scholar] [CrossRef]
- Solarte, A.L.; Astorga, R.J.; Aguiar, F.; Galán-Relaño, Á.; Maldonado, A.; Huerta, B. Combination of Antimicrobials and Essential Oils as an Alternative for the Control of Salmonella enterica Multiresistant Strains Related to Foodborne Disease. Foodborne Pathog. Dis. 2017, 14, 558–563. [Google Scholar] [CrossRef]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods-A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils-A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Carson, C.F.; Hammer, K.A. Chemistry and Bioactivity of Essential Oils. In Lipids and Essential Oils as Antimicrobial Agents; Thormar, H., Ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2011; pp. 203–238. ISBN 9780470741788. [Google Scholar]
- Diaz-Sanchez, S.; D’Souza, D.; Biswas, D.; Hanning, I. Botanical alternatives to antibiotics for use in organic poultry production. Poult. Sci. 2015, 94, 1419–1430. [Google Scholar] [CrossRef] [PubMed]
- Dušan, F.; Marián, S.; Katarína, D.; Dobroslava, B. Essential oils-their antimicrobial activity against Escherichia coli and effect on intestinal cell viability. Toxicol. Vitr. 2006, 20, 1435–1445. [Google Scholar] [CrossRef] [PubMed]
- Penalver, P.; Huerta, B.; Borge, C.; Astorga, R.; Romero, R.; Perea, A. Antimicrobial activity of five essential oils against origin strains of the Enterobacteriaceae family. Apmis 2005, 113, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Solarte, A.L.; Astorga, R.J.; De Aguiar, F.C.; De Frutos, C.; Barrero-Domínguez, B.; Huerta, B. Susceptibility Distribution to Essential Oils of Salmonella enterica Strains Involved in Animal and Public Health and Comparison of the Typhimurium and Enteritidis Serotypes. J. Med. Food 2018, 21, 946–950. [Google Scholar] [CrossRef] [PubMed]
- Nazzaro, F.; Fratianni, F.; De Martino, L.; Coppola, R.; De Feo, V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals 2013, 6, 1451–1474. [Google Scholar] [CrossRef]
- Langeveld, W.T.; Veldhuizen, E.J.A.; Burt, S.A. Synergy between essential oil components and antibiotics: A review. Crit. Rev. Microbiol. 2014, 40, 76–94. [Google Scholar] [CrossRef] [PubMed]
- Monte, D.F.M.; Tavares, A.G.; Albuquerque, A.R.; Sampaio, F.C.; Oliveira, T.C.R.M.; Franco, O.L.; Souza, E.L.; Magnani, M. Tolerance response of multidrug-resistant Salmonella enterica strains to habituation to Origanum vulgare L. essential oil. Front. Microbiol. 2014, 5, 721. [Google Scholar] [CrossRef]
- Lu, F.; Ding, Y.C.; Ye, X.Q.; Ding, Y.T. Antibacterial effect of cinnamon oil combined with thyme or clove oil. Agric. Sci. China 2011, 10, 1482–1487. [Google Scholar] [CrossRef]
- CLSI 2024; Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 6th Edition. CLSI: Wayne, PA, USA, 2024.
- Si, H.; Hu, J.; Liu, Z.; Zeng, Z.L. Antibacterial effect of oregano essential oil alone and in combination with antibiotics against extended-spectrum β-lactamase-producing Escherichia coli. FEMS Immunol. Med. Microbiol. 2008, 53, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Knezevic, P.; Aleksic, V.; Simin, N.; Svircev, E.; Petrovic, A.; Mimica-Dukic, N. Antimicrobial activity of Eucalyptus camaldulensis essential oils and their interactions with conventional antimicrobial agents against multi-drug resistant Acinetobacter baumannii. J. Ethnopharmacol. 2016, 178, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Fratini, F.; Mancini, S.; Turchi, B.; Friscia, E.; Pistelli, L.; Giusti, G.; Cerri, D. A novel interpretation of the Fractional Inhibitory Concentration Index: The case Origanum vulgare L. and Leptospermum scoparium J. R. et G. Forst essential oils against Staphylococcus aureus strains. Microbiol. Res. 2017, 195, 11–17. [Google Scholar] [CrossRef] [PubMed]
- EUCAST Terminology relating to methods for the determination of susceptibility of bacteria to antimicrobial agents. Clin. Microbiol. Infect. 2000, 6, 503–508. [CrossRef]
- Johny, A.K.; Hoagland, T.; Venkitanarayanan, K. Effect of subinhibitory concentrations of plant-derived molecules in increasing the sensitivity of multidrug-resistant Salmonella enterica serovar Typhimurium DT104 to antibiotics. Foodborne Pathog. Dis. 2010, 7, 1165–1170. [Google Scholar] [CrossRef]
- Palaniappan, K.; Holley, R.A. Use of natural antimicrobials to increase antibiotic susceptibility of drug resistant bacteria. Int. J. Food Microbiol. 2010, 140, 164–168. [Google Scholar] [CrossRef] [PubMed]
- Darwish, R.M.; Aburjai, T.; Al-Khalil, S.; Mahafzah, A. Screening of antibiotic resistant inhibitors from local plant materials against two different strains of Staphylococcus aureus. J. Ethnopharmacol. 2002, 79, 359–364. [Google Scholar] [CrossRef]
- Aburjai, T.; Darwish, R.M.; Al-Khalil, S.; Mahafzah, A.; Al-Abbadi, A. Screening of antibiotic resistant inhibitors from local plant materials against two different strains of Pseudomonas aeruginosa. J. Ethnopharmacol. 2001, 76, 39–44. [Google Scholar] [CrossRef]
- Hemaiswarya, S.; Kruthiventi, A.K.; Doble, M. Synergism between natural products and antibiotics against infectious diseases. Phytomedicine 2008, 15, 639–652. [Google Scholar] [CrossRef]
- Lauteri, C.; Maggio, F.; Serio, A.; Festino, A.R.; Paparella, A.; Vergara, A. Overcoming Multidrug Resistance in Salmonella spp. Isolates Obtained from the Swine Food Chain by Using Essential Oils: An in vitro Study. Front. Microbiol. 2022, 12, 808286. [Google Scholar] [CrossRef]
- Santoyo, S.; Cavero, S.; Jaime, L.; Ibañez, E.; Señoráns, F.J.; Reglero, G. Supercritical carbon dioxide extraction of compounds with antimicrobial activity from Origanum vulgare L.: Determination of optimal extraction parameters. J. Food Prot. 2006, 69, 369–375. [Google Scholar] [CrossRef] [PubMed]
- Fabio, A.; Cermelli, C.; Fabio, G.; Nicoletti, P.; Quaglio, P. Screening of the antibacterial effects of a variety of essential oils on microorganisms responsible for respiratory infections. Phyther. Res. 2007, 21, 374–377. [Google Scholar] [CrossRef] [PubMed]
- Radha Krishnan, K.; Babuskin, S.; Azhagu Saravana Babu, P.; Sasikala, M.; Sabina, K.; Archana, G.; Sivarajan, M.; Sukumar, M. Antimicrobial and antioxidant effects of spice extracts on the shelf life extension of raw chicken meat. Int. J. Food Microbiol. 2014, 171, 32–40. [Google Scholar] [CrossRef]
- Slameňová, D.; Horváthová, E.; Wsólová, L.; Šramková, M.; Navarová, J. Investigation of anti-oxidative, cytotoxic, DNA-damaging and DNA-protective effects of plant volatiles eugenol and borneol in human-derived HepG2, Caco-2 and VH10 cell lines. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2009, 677, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Llana-Ruiz-Cabello, M.; Maisanaba, S.; Puerto, M.; Prieto, A.I.; Pichardo, S.; Moyano, R.; González-Pérez, J.A.; Cameán, A.M. Genotoxicity evaluation of carvacrol in rats using a combined micronucleus and comet assay. Food Chem. Toxicol. 2016, 98, 240–250. [Google Scholar] [CrossRef] [PubMed]
- Llana-Ruiz-Cabello, M.; Maisanaba, S.; Puerto, M.; Pichardo, S.; Jos, A.; Moyano, R.; Cameán, A.M. A subchronic 90-day oral toxicity study of Origanum vulgare essential oil in rats. Food Chem. Toxicol. 2017, 101, 36–47. [Google Scholar] [CrossRef]
- Rojas-Armas, J.; Arroyo-Acevedo, J.; Ortiz-Sánchez, M.; Palomino-Pacheco, M.; Castro-Luna, A.; Ramos-Cevallos, N.; Justil-Guerrero, H.; Hilario-Vargas, J.; Herrera-Calderón, O. Acute and repeated 28-day oral dose toxicity studies of Thymus vulgaris L. essential oil in rats. Toxicol. Res. 2019, 35, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Sharififar, F.; Moshafi, M.H.; Dehghan-Nudehe, G.; Ameri, A.; Alishahi, F.; Pourhemati, A. Bioassay screening of the essential oil and various extracts from 4 spices medicinal plants. Pak. J. Pharm. Sci. 2009, 22, 317–322. [Google Scholar]
- Bampidis, V.; Azimonti, G.; Bastos, M.D.L.; Christensen, H.; Dusemund, B.; Kouba, M.; Kos Durjava, M.; López-Alonso, M.; López Puente, S.; Marcon, F.; et al. Safety of an essential oil from Origanum vulgare subsp. hirtum letsw. var. Vulkan when used as a sensory additive in feed for all animal species. EFSA J. 2019, 17, e05794. [Google Scholar] [CrossRef]
Strain Ref. | Serotype | Phage Type | Origin | Related Pathology | Antibiogram |
---|---|---|---|---|---|
1 | S. Typhimurium | 204 | Partridge | Digestive syndrome | A C S Su OT Cf |
2 | S. Typhimurium | U302 | Swine | Septicaemia | A C S SxT OT Cf |
3 | S. Typhimurium | 193 | Partridge | Acute death | A C S SxT OT G Enr |
4 | S. London | - | Turkey | Carrier animal | A OT Cip Sxt Enr |
5 | S. Enteritidis | - | Laying hens | Carrier animal | OT Cip Nx Sxt Enr |
Essential Oil | Common Name | Origin | Main Components |
---|---|---|---|
Cinnamomum zeylanicum | Cinnamon | Bark | Cinnamaldehyde (69.18%), linalool (3.19%), eugenol (3.03%) |
Eugenia caryophyllata | Clove | Bud | Eugenol (85–90%), eugenyl acetate (5–10%), β-caryophyllene (0–5%) |
Origanum vulgare | Oregano | Flowersand stems | Carvacrol (63.01%), thymol (10.56%), γ-terpinene (8.11%) |
Thymus zygis | Red thyme | Air part | Thymol (46.9%), p-cymene (21.72%), γ-terpinene (9.32%), linalool (4.8%) |
S. Typhimurium 1 | S. Typhimurium 2 | S. Typhimurium 3 | S. Enteritidis 5 | S. London 4 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Interaction | MICI | MICC | FICindex FIC | MICI | MICC | FICindex FIC | MICI | MICC | FICindex FIC | MICI | MICC | FICindex FIC | MICI | MICC | FICindex FIC |
OT + Cin | 0.625 | 0.5 | 1 | 0.625 | 0.625 | ||||||||||
OT | 1024 | 512 | 0.5 | 512 | 0.5 | 0 | 512 | 256 | 0.5 | 512 | 64 | 0.125 | 512 | 64 | 0.125 |
Cinnamon | 312.5 | 39.062 | 0.125 | 625 | 312.5 | 0.5 | 312.5 | 156.25 | 0.5 | 1250 | 625 | 0.5 | 1250 | 625 | 0.5 |
OT + Clove | 0.625 | 0.75 | 1 | 1 | 0.625 | ||||||||||
OT | 512 | 64 | 0.125 | 512 | 256 | 0.5 | 256 | 128 | 0.5 | 256 | 128 | 0.5 | 512 | 64 | 0.125 |
Clove | 1250 | 625 | 0.5 | 1250 | 312.5 | 0.25 | 1250 | 625 | 0.5 | 2500 | 1250 | 0.5 | 2500 | 1250 | 0.5 |
OT + Ore | 0.562 | 0.75 | 0.75 | 1.001 | 1 | ||||||||||
OT | 512 | 32 | 0.062 | 512 | 128 | 0.25 | 512 | 128 | 0.25 | 256 | 0.5 | 0.001 | 256 | 128 | 0.5 |
Oregano | 625 | 312.5 | 0.5 | 625 | 312.5 | 0.5 | 625 | 312.5 | 0.5 | 625 | 625 | 1 | 625 | 312.5 | 0.5 |
OT + Red th | 1 | 1 | 0.75 | 0.75 | 1 | ||||||||||
OT | 512 | 256 | 0.5 | 512 | 256 | 0.5 | 512 | 256 | 0.5 | 512 | 128 | 0.25 | 256 | 128 | 0.5 |
Red thyme | 625 | 312.5 | 0.5 | 625 | 312.5 | 0.5 | 1250 | 312.5 | 0.25 | 625 | 312.5 | 0.5 | 1250 | 625 | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huerta Lorenzo, B.; Galán-Relaño, Á.; Barba-Sánchez, E.; Romero-Salmoral, A.; Solarte Portilla, A.L.; Gómez-Gascón, L.; Astorga Márquez, R.J. Potentiation of the Antimicrobial Effect of Oxytetracycline Combined with Cinnamon, Clove, Oregano, and Red Thyme Essential Oils against MDR Salmonella enterica Strains. Animals 2024, 14, 1347. https://doi.org/10.3390/ani14091347
Huerta Lorenzo B, Galán-Relaño Á, Barba-Sánchez E, Romero-Salmoral A, Solarte Portilla AL, Gómez-Gascón L, Astorga Márquez RJ. Potentiation of the Antimicrobial Effect of Oxytetracycline Combined with Cinnamon, Clove, Oregano, and Red Thyme Essential Oils against MDR Salmonella enterica Strains. Animals. 2024; 14(9):1347. https://doi.org/10.3390/ani14091347
Chicago/Turabian StyleHuerta Lorenzo, Belén, Ángela Galán-Relaño, Emilio Barba-Sánchez, Antonio Romero-Salmoral, Ana L. Solarte Portilla, Lidia Gómez-Gascón, and Rafael J. Astorga Márquez. 2024. "Potentiation of the Antimicrobial Effect of Oxytetracycline Combined with Cinnamon, Clove, Oregano, and Red Thyme Essential Oils against MDR Salmonella enterica Strains" Animals 14, no. 9: 1347. https://doi.org/10.3390/ani14091347
APA StyleHuerta Lorenzo, B., Galán-Relaño, Á., Barba-Sánchez, E., Romero-Salmoral, A., Solarte Portilla, A. L., Gómez-Gascón, L., & Astorga Márquez, R. J. (2024). Potentiation of the Antimicrobial Effect of Oxytetracycline Combined with Cinnamon, Clove, Oregano, and Red Thyme Essential Oils against MDR Salmonella enterica Strains. Animals, 14(9), 1347. https://doi.org/10.3390/ani14091347