Use of Infrared Thermography and Heart Rate Variability to Evaluate Autonomic Activity in Domestic Animals
Abstract
:Simple Summary
Abstract
1. Introduction
2. Importance of Evaluating the Activity of the Sympathetic/Parasympathetic Pathways
3. Heart Rate Variability and Its Association with Autonomic Activity
4. Stress-Mediated Thermal Response and Its Assessment through Infrared Thermography
5. Perspectives about Thermal Imagining
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gaidica, M.; Dantzer, B. Quantifying the Autonomic Response to Stressors—One Way to Expand the Definition of “Stress” in Animals. Integr. Comp. Biol. 2020, 60, 113–125. [Google Scholar] [CrossRef]
- Stewart, M.; Verkerk, G.A.A.; Stafford, K.J.J.; Schaefer, A.L.L.; Webster, J.R.R. Noninvasive Assessment of Autonomic Activity for Evaluation of Pain in Calves, Using Surgical Castration as a Model. J. Dairy Sci. 2010, 93, 3602–3609. [Google Scholar] [CrossRef] [PubMed]
- Mueller, B.; Figueroa, A.; Robinson-Papp, J. Structural and Functional Connections between the Autonomic Nervous System, Hypothalamic–Pituitary–Adrenal Axis, and the Immune System: A Context and Time Dependent Stress Response Network. Neurol. Sci. 2022, 43, 951–960. [Google Scholar] [CrossRef] [PubMed]
- Karaer, M.C.; Čebulj-Kadunc, N.; Snoj, T. Stress in Wildlife: Comparison of the Stress Response among Domestic, Captive, and Free-Ranging Animals. Front. Vet. Sci. 2023, 10, 1167016. [Google Scholar] [CrossRef] [PubMed]
- Muller, M.D.; Sauder, C.L.; Ray, C.A. Mental Stress Elicits Sustained and Reproducible Increases in Skin Sympathetic Nerve Activity. Physiol. Rep. 2013, 1, e00002. [Google Scholar] [CrossRef] [PubMed]
- Metzler-Wilson, K.; Toma, K.; Sammons, D.L.; Mann, S.; Jurovcik, A.J.; Demidova, O.; Wilson, T.E. Augmented Supraorbital Skin Sympathetic Nerve Activity Responses to Symptom Trigger Events in Rosacea Patients. J. Neurophysiol. 2015, 114, 1530–1537. [Google Scholar] [CrossRef] [PubMed]
- Luzi, F.; Mitchell, M.; Nanni Costa, L.; Radaelli, V. Thermography: Current Status and Advances in Livestock Animals and in Veterinary Medicine; Fondazione Iniziative Zooprofilattiche e Zootecniche: Brescia, Italy, 2013. [Google Scholar]
- Mota-Rojas, D.; Martínez-Burnes, J.; Casas-Alvarado, A.; Gómez-Prado, J.; Hernández-Ávalos, I.; Domínguez-Oliva, A.; Lezama-García, K.; Jacome-Romero, J.; Rodríguez-González, D.; Pereira, A.M.F. Clinical Usefulness of Infrared Thermography to Detect Sick Animals: Frequent and Current Cases. CABI Rev. 2022, 2022, 1–27. [Google Scholar] [CrossRef]
- Mota-Rojas, D.; Ogi, A.; Villanueva-García, D.; Hernández-Ávalos, I.; Casas-Alvarado, A.; Domínguez-Oliva, A.; Lendez, P.; Ghezzi, M. Thermal Imaging as a Method to Indirectly Assess Peripheral Vascular Integrity and Tissue Viability in Veterinary Medicine: Animal Models and Clinical Applications. Animals 2023, 14, 142. [Google Scholar] [CrossRef] [PubMed]
- Ziemssen, T.; Siepmann, T. The Investigation of the Cardiovascular and Sudomotor Autonomic Nervous System—A Review. Front. Neurol. 2019, 10, 53. [Google Scholar] [CrossRef]
- Mota-Rojas, D.; Miranda-Córtes, A.; Casas-Alvarado, A.; Mora-Medina, P.; Boscato, L.; Hernández-Ávalos, I. Neurobiology and Modulation of Stress-Induced Hyperthermia and Fever in Animals. Abanico Vet. 2021, 11, 1–17. [Google Scholar]
- Mota-Rojas, D.; Wang, D.; Titto, C.G.; Gómez-Prado, J.; Carvajal-de la Fuente, V.; Ghezzi, M.; Boscato-Funes, L.; Barrios-García, H.; Torres-Bernal, F.; Casas-Alvarado, A.; et al. Pathophysiology of Fever and Application of Infrared Thermography (IRT) in the Detection of Sick Domestic Animals: Recent Advances. Animals 2021, 11, 2316. [Google Scholar] [CrossRef]
- Childs, C. Body Temperature and Clinical Thermometry. Handb. Clin. Neurol. 2018, 157, 467–482. [Google Scholar] [CrossRef]
- Romanovsky, A.A. Skin Temperature: Its Role in Thermoregulation. Acta Physiol. 2014, 210, 498–507. [Google Scholar] [CrossRef]
- Casas-Alvarado, A.; Mota-Rojas, D.; Hernández-Ávalos, I.; Mora-Medina, P.; Olmos-Hernández, A.; Verduzco-Mendoza, A.; Reyes-Sotelo, B.; Martínez-Burnes, J. Advances in Infrared Thermography: Surgical Aspects, Vascular Changes, and Pain Monitoring in Veterinary Medicine. J. Therm. Biol. 2020, 92, 102664. [Google Scholar] [CrossRef] [PubMed]
- Casas-Alvarado, A.; Martínez-Burnes, J.; Mora-Medina, P.; Hernández-Avalos, I.; Domínguez-Oliva, A.; Lezama-García, K.; Gómez-Prado, J.; Mota-Rojas, D. Thermal and Circulatory Changes in Diverse Body Regions in Dogs and Cats Evaluated by Infrared Thermography. Animals 2022, 12, 789. [Google Scholar] [CrossRef] [PubMed]
- Koolhaas, J.M.; Bartolomucci, A.; Buwalda, B.; de Boer, S.F.; Flügge, G.; Korte, S.M.; Meerlo, P.; Murison, R.; Olivier, B.; Palanza, P.; et al. Stress Revisited: A Critical Evaluation of the Stress Concept. Neurosci. Biobehav. Rev. 2011, 35, 1291–1301. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, H.; Okabe, M. Evolutionary Origin of Autonomic Regulation of Physiological Activities in Vertebrate Phyla. J. Comp. Physiol. A 2007, 193, 1013–1019. [Google Scholar] [CrossRef]
- Murison, R. The Neurobiology of Stress. In Neuroscience of Pain, Stress, and Emotion; Al’Absi, M., Flaten, M.A., Eds.; Academic Press: London, UK, 2016; pp. 29–49. [Google Scholar]
- Oyama, M.A. Mechanisms of Heart Failure. In Small Animal Critical Care Medicine; Silverstein, D.C., Hopper, K., Eds.; Elsevier: Maryland Heights, MO, USA, 2023; pp. 238–242. [Google Scholar]
- Hernández-Avalos, I.; Mota-Rojas, D.; Mendoza-Flores, J.E.; Casas-Alvarado, A.; Flores-Padilla, K.; Miranda-Cortes, A.E.; Torres-Bernal, F.; Gómez-Prado, J.; Mora-Medina, P. Nociceptive Pain and Anxiety in Equines: Physiological and Behavioral Alterations. Vet. World 2021, 14, 2984–2995. [Google Scholar] [CrossRef] [PubMed]
- José-Pérez, N.; Mota-Rojas, D.; Ghezzi, M.D.; Rosmini, M.R.; Mora-Medina, P.; Bertoni, A.; Rodríguez-González, D.; Domínguez-Oliva, A.; Guerrero-Legarreta, I. Effects of Transport on Water Buffaloes (Bubalus bubalis): Factors Associated with the Frequency of Skin Injuries and Meat Quality. J. Anim. Behav. Biometeorol. 2022, 10, e2216. [Google Scholar] [CrossRef]
- Mota-Rojas, D.; Lezama-García, K.; Domínguez-Oliva, A.; Olmos-Hernández, A.; Verduzco-Mendoza, A.; Casas-Alvarado, A.; Torres-Bernal, F.; Martínez-Burnes, J. Neurobiology of Emotions in Animal Relationships: Facial Expressions and Their Biological Functions in Mammals. J. Anim. Behav. Biometeorol. 2023, 11, e2023ss01. [Google Scholar] [CrossRef]
- Kenney, M.J. Animal Aging and Regulation of Sympathetic Nerve Discharge. J. Appl. Physiol. 2010, 109, 951–958. [Google Scholar] [CrossRef] [PubMed]
- Pacak, K.; Palkovits, M.; Kopin, I.J.; Goldstein, D.S. Stress-Induced Norepinephrine Release in the Hypothalamic Paraventricular Nucleus and Pituitary-Adrenocortical and Sympathoadrenal Activity: In Vivo Microdialysis Studies. Front. Neuroendocrinol. 1995, 16, 89–150. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, K.T.; Makhijani, V.H.; Boyt, K.M.; Cogan, E.S.; Pati, D.; Pina, M.M.; Bravo, I.M.; Locke, J.L.; Jones, S.R.; Besheer, J.; et al. Stress-Induced Alterations of Norepinephrine Release in the Bed Nucleus of the Stria Terminalis of Mice. ACS Chem. Neurosci. 2019, 10, 1908–1914. [Google Scholar] [CrossRef] [PubMed]
- Bozzo, G.; Padalino, B.; Bonerba, E.; Barrasso, R.; Tufarelli, V.; Zappaterra, M.; Ceci, E. Pilot Study of the Relationship between Deck Level and Journey Duration on Plasma Cortisol, Epinephrine and Norepinephrine Levels in Italian Heavy Pigs. Animals 2020, 10, 1578. [Google Scholar] [CrossRef]
- Rodríguez, A.R.; Herzberg, D.E.; Werner, M.P.; Müller, H.Y.; Bustamante, H.A. Plasma Concentration of Norepinephrine, β-Endorphin, and Substance P in Lame Dairy Cows. J. Vet. Res. 2018, 62, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Fujii, A.M.; Vatneer, S.F. Autonomic Mechanisms Regulating Myocardial Contractility in Conscious Animals. Pharmacol. Ther. 1985, 29, 221–238. [Google Scholar] [CrossRef] [PubMed]
- Jänig, W. Autonomic Nervous System. In Human Physiology; Springer: Berlin/Heidelberg, Germany, 1989; pp. 333–370. [Google Scholar]
- Khan, M.G. Beta-Blockers. In Encyclopedia of Heart Diseases; Khan, G., Ed.; Academic Press: Burlington, VT, USA, 2006; pp. 159–167. [Google Scholar]
- Motiejunaite, J.; Amar, L.; Vidal-Petiot, E. Adrenergic Receptors and Cardiovascular Effects of Catecholamines. Ann. Endocrinol. 2021, 82, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Lefman, S.H.; Prittie, J.E. Psychogenic Stress in Hospitalized Veterinary Patients: Causation, Implications, and Therapies. J. Vet. Emerg. Crit. Care 2019, 29, 107–120. [Google Scholar] [CrossRef] [PubMed]
- Edwards, P.T.; Smith, B.P.; McArthur, M.L.; Hazel, S.J. At the Heart of a Dog’s Veterinary Experience: Heart Rate Responses in Dogs Vary across a Standard Physical Examination. J. Vet. Behav. 2022, 51, 23–34. [Google Scholar] [CrossRef]
- Marques, J.I.; Lopes Neto, J.P.; do Nascimento, J.W.B.; Talieri, I.C.; de Medeiros, G.R.; Furtado, D.A. Pupillary Dilation as a Thermal Stress Indicator in Boer Crossbred Goats Maintained in a Climate Chamber. Small Rumin. Res. 2018, 158, 26–29. [Google Scholar] [CrossRef]
- Kovács, L.; Kézér, F.L.; Ruff, F.; Jurkovich, V.; Szenci, O. Heart Rate, Cardiac Vagal Tone, Respiratory Rate, and Rectal Temperature in Dairy Calves Exposed to Heat Stress in a Continental Region. Int. J. Biometeorol. 2018, 62, 1791–1797. [Google Scholar] [CrossRef] [PubMed]
- Franklin, S.H.; Van Erck-Westergren, E.; Bayly, W.M. Respiratory Responses to Exercise in the Horse. Equine Vet. J. 2012, 44, 726–732. [Google Scholar] [CrossRef] [PubMed]
- Rovira, S.; Munoz, A.; Benito, M. Effect of Exercise on Physiological, Blood and Endocrine Parameters in Search and Rescue-Trained Dogs. Vet. Med. 2008, 53, 333–346. [Google Scholar] [CrossRef]
- Martins-Pinge, M.C. Cardiovascular and Autonomic Modulation by the Central Nervous System after Aerobic Exercise Training. Braz. J. Med. Biol. Res. 2011, 44, 848–854. [Google Scholar] [CrossRef]
- Mathôt, S. Pupillometry: Psychology, Physiology, and Function. J. Cogn. 2018, 1, 16. [Google Scholar] [CrossRef] [PubMed]
- Hall, C.A.; Chilcott, R.P. Eyeing up the Future of the Pupillary Light Reflex in Neurodiagnostics. Diagnostics 2018, 8, 19. [Google Scholar] [CrossRef] [PubMed]
- Larsen, R.S.; Waters, J. Neuromodulatory Correlates of Pupil Dilation. Front. Neural Circuits 2018, 12, 21. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-H.; Dan, Y. Neuromodulation of Brain States. Neuron 2012, 76, 209–222. [Google Scholar] [CrossRef] [PubMed]
- Larson, M.D.; Behrends, M. Portable Infrared Pupillometry. Anesth. Analg. 2015, 120, 1242–1253. [Google Scholar] [CrossRef] [PubMed]
- Zele, A.J.; Gamlin, P.D. Editorial: The Pupil: Behavior, Anatomy, Physiology and Clinical Biomarkers. Front. Neurol. 2020, 11, 211. [Google Scholar] [CrossRef] [PubMed]
- Larson, M.D.; Tayefeh, F.; Sessler, D.I.; Daniel, M.; Noorani, M. Sympathetic Nervous System Does Not Mediate Reflex Pupillary Dilation during Desflurane Anesthesia. Anesthesiology 1996, 85, 748–754. [Google Scholar] [CrossRef] [PubMed]
- Payen, J.-F.; Isnardon, S.; Lavolaine, J.; Bouzat, P.; Vinclair, M.; Francony, G. La Pupillométrie En Anesthésie-Réanimation. Ann. Françaises d’Anesthésie Réanim. 2012, 31, e155–e159. [Google Scholar] [CrossRef] [PubMed]
- Machado, N.A.F.; Barbosa-Filho, J.A.D.; Souza-Junior, J.B.F.; Ramalho, G.L.B.; Parente, M.d.O.M. Use of Pupillometry in the Diagnosis of Stress in Piglets Transported in a Tropical Climate. Eng. Agrícola 2021, 41, 402–408. [Google Scholar] [CrossRef]
- Moody, C.M.; Picketts, V.A.; Mason, G.J.; Dewey, C.E.; Niel, L. Can You Handle It? Validating Negative Responses to Restraint in Cats. Appl. Anim. Behav. Sci. 2018, 204, 94–100. [Google Scholar] [CrossRef]
- Tsigos, C.; Kyrou, I.; Kassi, E.; Chrousos, G.P. Stress, Endocrine Physiology and Pathophysiology; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Noushad, S.; Ahmed, S.; Ansari, B.; Mustafa, U.-H.; Saleem, Y.; Hazrat, H. Physiological Biomarkers of Chronic Stress: A Systematic Review. Int. J. Health Sci. 2021, 15, 46–59. [Google Scholar]
- Kim, W.S.; Lee, J.-S.; Jeon, S.W.; Peng, D.Q.; Kim, Y.S.; Bae, M.H.; Jo, Y.H.; Lee, H.G. Correlation between Blood, Physiological and Behavioral Parameters in Beef Calves under Heat Stress. Asian-Australas. J. Anim. Sci. 2018, 31, 919–925. [Google Scholar] [CrossRef]
- Olvera-Maneu, S.; Carbajal, A.; Serres-Corral, P.; López-Béjar, M. Cortisol Variations to Estimate the Physiological Stress Response in Horses at a Traditional Equestrian Event. Animals 2023, 13, 396. [Google Scholar] [CrossRef] [PubMed]
- Michael, S.; Graham, K.S.; Davis, G.M. Cardiac Autonomic Responses during Exercise and Post-Exercise Recovery Using Heart Rate Variability and Systolic Time Intervals—A Review. Front. Physiol. 2017, 8, 301. [Google Scholar] [CrossRef] [PubMed]
- von Borell, E.; Langbein, J.; Després, G.; Hansen, S.; Leterrier, C.; Marchant-Forde, J.; Marchant-Forde, R.; Minero, M.; Mohr, E.; Prunier, A.; et al. Heart Rate Variability as a Measure of Autonomic Regulation of Cardiac Activity for Assessing Stress and Welfare in Farm Animals—A Review. Physiol. Behav. 2007, 92, 293–316. [Google Scholar] [CrossRef] [PubMed]
- Gormally, B.M.G.; Romero, L.M. What Are You Actually Measuring? A Review of Techniques That Integrate the Stress Response on Distinct Time-Scales. Funct. Ecol. 2020, 34, 2030–2044. [Google Scholar] [CrossRef]
- Stucke, D.; Große Ruse, M.; Lebelt, D. Measuring Heart Rate Variability in Horses to Investigate the Autonomic Nervous System Activity—Pros and Cons of Different Methods. Appl. Anim. Behav. Sci. 2015, 166, 1–10. [Google Scholar] [CrossRef]
- Stauss, H.M. Heart Rate Variability. Am. J. Physiol. Integr. Comp. Physiol. 2003, 285, R927–R931. [Google Scholar] [CrossRef] [PubMed]
- Ille, N.; von Lewinski, M.; Erber, R.; Wulf, M.; Aurich, J.; Möstl, E.; Aurich, C. Effects of the Level of Experience of Horses and Their Riders on Cortisol Release, Heart Rate and Heart-Rate Variability during a Jumping Course. Anim. Welf. 2013, 22, 457–465. [Google Scholar] [CrossRef]
- Turini, L.; Bonelli, F.; Lanatà, A.; Vitale, V.; Nocera, I.; Sgorbini, M.; Mele, M. Validation of a New Smart Textiles Biotechnology for Heart Rate Variability Monitoring in Sheep. Front. Vet. Sci. 2022, 9, 1018213. [Google Scholar] [CrossRef] [PubMed]
- Ledowski, T. Objective Monitoring of Nociception: A Review of Current Commercial Solutions. Br. J. Anaesth. 2019, 123, e312–e321. [Google Scholar] [CrossRef] [PubMed]
- Ledowski, T.; Bein, B.; Hanss, R.; Paris, A.; Fudickar, W.; Scholz, J.; Tonner, P.H. Neuroendocrine Stress Response and Heart Rate Variability: A Comparison of Total Intravenous Versus Balanced Anesthesia. Anesth. Analg. 2005, 101, 1700–1705. [Google Scholar] [CrossRef] [PubMed]
- Jeanne, M.; Logier, R.; De Jonckheere, J.; Tavernier, B. Validation of a Graphic Measurement of Heart Rate Variability to Assess Analgesia/Nociception Balance during General Anesthesia. In Proceedings of the 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, USA, 2–6 September 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 1840–1843. [Google Scholar]
- Ruíz-López, P.; Domínguez, J.M.; Granados, M.d.M. Intraoperative Nociception-Antinociception Monitors: A Review from the Veterinary Perspective. Vet. Anaesth. Analg. 2020, 47, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Avalos, I.; Mota-Rojas, D.; Mora-Medina, P.; Martínez-Burnes, J.; Casas Alvarado, A.; Verduzco-Mendoza, A.; Lezama-García, K.; Olmos-Hernandez, A. Review of Different Methods Used for Clinical Recognition and Assessment of Pain in Dogs and Cats. Int. J. Vet. Sci. Med. 2019, 7, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Logier, R.; Jeanne, M.; De Jonckheere, J.; Dassonneville, A.; Delecroix, M.; Tavernier, B. PhysioDoloris: A Monitoring Device for Analgesia/Nociception Balance Evaluation Using Heart Rate Variability Analysis. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 31 August–4 September 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 1194–1197. [Google Scholar]
- Mansour, C.; Merlin, T.; Bonnet-Garin, J.-M.; Chaaya, R.; Mocci, R.; Ruiz, C.C.; Allaouchiche, B.; Boselli, E.; Junot, S. Evaluation of the Parasympathetic Tone Activity (PTA) Index to Assess the Analgesia/Nociception Balance in Anaesthetised Dogs. Res. Vet. Sci. 2017, 115, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Mansour, C.; Mocci, R.; Santangelo, B.; Sredensek, J.; Chaaya, R.; Allaouchiche, B.; Bonnet-Garin, J.-M.; Boselli, E.; Junot, S. Performance of the Parasympathetic Tone Activity (PTA) Index to Predict Changes in Mean Arterial Pressure in Anaesthetized Horses with Different Health Conditions. Res. Vet. Sci. 2021, 139, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, K.; Obara, S.; Inoue, S. Analgesia Nociception Index and High Frequency Variability Index: Promising Indicators of Relative Parasympathetic Tone. J. Anesth. 2023, 37, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Ruíz-López, P.; Morgaz, J.; Quirós-Carmona, S.; Navarrete-Calvo, R.; Domínguez, J.M.; Gómez-Villamandos, R.J.; Granados, M.M. Parasympathetic Tone Changes in Anesthetized Horses after Surgical Stimulation, and Morphine, Ketamine, and Dobutamine Administration. Animals 2022, 12, 1038. [Google Scholar] [CrossRef] [PubMed]
- Leitão, C.J.; Lima-Rodríguez, J.R.; Ferreira, F.; Avelino, C.; Sánchez-Margallo, F.M.; Antunes, L. Parasympathetic Tone Activity Evaluation to Discriminate Ketorolac and Ketorolac/Tramadol Analgesia Level in Swine. Anesth. Analg. 2019, 129, 882–889. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Avalos, I.; Valverde, A.; Antonio Ibancovichi-Camarillo, J.; Sánchez-Aparicio, P.; Recillas-Morales, S.; Rodríguez-Velázquez, D.; Osorio-Avalos, J.; Armando Magdaleno-Torres, L.; Chavez-Monteagudo, J.; Manuel Acevedo-Arcique, C. Clinical Use of the Parasympathetic Tone Activity Index as a Measurement of Postoperative Analgaesia in Dogs Undergoing Ovariohysterectomy. J. Vet. Res. 2021, 65, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Aguado, D.; Bustamante, R.; García-Sanz, V.; González-Blanco, P.; Gómez de Segura, I.A. Efficacy of the Parasympathetic Tone Activity Monitor to Assess Nociception in Healthy Dogs Anaesthetized with Propofol and Sevoflurane. Vet. Anaesth. Analg. 2020, 47, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Mansour, C.; El Hachem, N.; Jamous, P.; Saade, G.; Boselli, E.; Allaouchiche, B.; Bonnet, J.-M.; Junot, S.; Chaaya, R. Performance of the Parasympathetic Tone Activity (PTA) Index to Assess the Intraoperative Nociception Using Different Premedication Drugs in Anaesthetised Dogs. Int. J. Vet. Sci. Med. 2020, 8, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Ruíz-López, P.; Domínguez, J.M.; Morgaz, J.; Quirós-Carmona, S.; Navarrete-Calvo, R.; Gómez-Villamandos, R.J.; Fernández-Sarmiento, J.A.; Granados, M.M. Evaluation of the Averaged Parasympathetic Tone Activity and Its Dynamic Variation to Assess Intraoperative Nociception in Relation to Hemodynamic Changes in Dogs. Vet. Q. 2023, 43, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Lima, L.; Dos-Santos, J.D.; Ribeiro, L.; Cabral, P.; Colaço, B.; Martins, J. The Performance of Using the Parasympathetic Tone Activity (PTA) Index to Assess Intraoperative Nociception in Cats. Vet. Sci. 2024, 11, 121. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Oliva, A.; Hernández-Avalos, I.; Olmos-Hernández, A.; Verduzco-Mendoza, A.; Mota-Rojas, D. Thermal Response of Laboratory Rats (Rattus norvegicus) during the Application of Six Methods of Euthanasia Assessed by Infrared Thermography. Animals 2023, 13, 2820. [Google Scholar] [CrossRef] [PubMed]
- Oka, T. Stress-Induced Hyperthermia and Hypothermia. In Thermoregulation: From Basic Neuroscience to Clinical Neurology, Part II; Romanovsky, A., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 157, pp. 599–621. ISBN 9780444640741. [Google Scholar]
- Mota-Rojas, D.; Olmos-Hernández, A.; Verduzco-Mendoza, A.; Lecona-Butrón, H.; Martínez-Burnes, J.; Mora-Medina, P.; Gómez-Prado, J.; Orihuela, A. Infrared Thermal Imaging Associated with Pain in Laboratory Animals. Exp. Anim. 2021, 70, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Avalos, I.; Flores-Gasca, E.; Mota-Rojas, D.; Casas-Alvarado, A.; Miranda-Cortés, A.E.; Domínguez-Oliva, A. Neurobiology of Anesthetic-Surgical Stress and Induced Behavioral Changes in Dogs and Cats: A Review. Vet. World 2021, 14, 393–404. [Google Scholar] [CrossRef] [PubMed]
- Travain, T.; Valsecchi, P. Infrared Thermography in the Study of Animals’ Emotional Responses: A Critical Review. Animals 2021, 11, 2510. [Google Scholar] [CrossRef] [PubMed]
- Blenkuš, U.; Gerós, A.F.; Carpinteiro, C.; de Castro Aguiar, P.; Olsson, I.A.S.; Franco, N.H. Non-Invasive Assessment of Mild Stress-Induced Hyperthermia by Infrared Thermography in Laboratory Mice. Animals 2022, 12, 177. [Google Scholar] [CrossRef] [PubMed]
- Kohlhause, S.; Hoffmann, K.; Schlumbohm, C.; Fuchs, E.; Flügge, G. Nocturnal Hyperthermia Induced by Social Stress in Male Tree Shrews: Relation to Low Testosterone and Effects of Age. Physiol. Behav. 2011, 104, 786–795. [Google Scholar] [CrossRef] [PubMed]
- Verduzco-Mendoza, A.; Bueno-Nava, A.; Wang, D.; Martínez-Burnes, J.; Olmos-Hernández, A.; Casas, A.; Domínguez, A.; Mota-Rojas, D. Experimental Applications and Factors Involved in Validating Thermal Windows Using Infrared Thermography to Assess the Health and Thermostability of Laboratory Animals. Animals 2021, 11, 3448. [Google Scholar] [CrossRef] [PubMed]
- Bienboire-Frosini, C.; Wang, D.; Marcet-Rius, M.; Villanueva-García, D.; Gazzano, A.; Domínguez-Oliva, A.; Olmos-Hernández, A.; Hernández-Avalos, I.; Lezama-García, K.; Verduzco-Mendoza, A.; et al. The Role of Brown Adipose Tissue and Energy Metabolism in Mammalian Thermoregulation during the Perinatal Period. Animals 2023, 13, 2176. [Google Scholar] [CrossRef] [PubMed]
- Andrade, D.V. Thermal Windows and Heat Exchange. Temperature 2015, 2, 451. [Google Scholar] [CrossRef] [PubMed]
- Mota-Rojas, D.; Pereira, M.F.A.; Wang, D.; Martínez-Burnes, J.; Ghezzi, M.; Hernández-Ávalos, I.; Lendez, P.; Mora-Medina, P.; Casas, A.; Olmos-Hernández, A.; et al. Clinical Applications and Factors Involved in Validating Thermal Windows in Large Rumiants to Assess Health and Productivity. Animals 2021, 11, 2247. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Prado, J.; Pereira, A.M.F.; Wang, D.; Villanueva-García, D.; Domínguez-Oliva, A.; Mora-Medina, P.; Hernández-Avalos, I.; Martínez-Burnes, J.; Casas-Alvarado, A.; Olmos-Hernández, A.; et al. Thermoregulation Mechanisms and Perspectives for Validating Thermal Windows in Pigs with Hypothermia and Hyperthermia: An Overview. Front. Vet. Sci. 2022, 9, 1023294. [Google Scholar] [CrossRef]
- Soroko, M.; Howell, K.; Zwyrzykowska, A.; Dudek, K.; Zielińska, P.; Kupczyński, R. Maximum Eye Temperature in the Assessment of Training in Racehorses: Correlations with Salivary Cortisol Concentration, Rectal Temperature, and Heart Rate. J. Equine Vet. Sci. 2016, 45, 39–45. [Google Scholar] [CrossRef]
- Shu, H.; Li, Y.; Fang, T.; Xing, M.; Sun, F.; Chen, X.; Bindelle, J.; Wang, W.; Guo, L. Evaluation of the Best Region for Measuring Eye Temperature in Dairy Cows Exposed to Heat Stress. Front. Vet. Sci. 2022, 9, 857777. [Google Scholar] [CrossRef] [PubMed]
- Ghezzi, M.D.; Napolitano, F.; Casas-Alvarado, A.; Hernández-Ávalos, I.; Domínguez-Oliva, A.; Olmos-Hernández, A.; Pereira, A.M.F. Utilization of Infrared Thermography in Assessing Thermal Responses of Farm Animals under Heat Stress. Animals 2024, 14, 616. [Google Scholar] [CrossRef] [PubMed]
- Idris, M.; Uddin, J.; Sullivan, M.; McNeill, D.M.; Phillips, C.J.C. Non-Invasive Physiological Indicators of Heat Stress in Cattle. Animals 2021, 11, 71. [Google Scholar] [CrossRef] [PubMed]
- Arfuso, F.; Acri, G.; Piccione, G.; Sansotta, C.; Fazio, F.; Giudice, E.; Giannetto, C. Eye Surface Infrared Thermography Usefulness as a Noninvasive Method of Measuring Stress Response in Sheep during Shearing: Correlations with Serum Cortisol and Rectal Temperature Values. Physiol. Behav. 2022, 250, 113781. [Google Scholar] [CrossRef] [PubMed]
- Stewart, M.; Stafford, K.J.; Dowling, S.K.; Schaefer, A.; Webster, J. Eye Temperature and Heart Rate Variability of Calves Disbudded with or without Local Anaesthetic. Physiol. Behav. 2008, 93, 789–797. [Google Scholar] [CrossRef] [PubMed]
- Chikkagoudara, K.P.; Pawan, S.D.; Deepandita, B.; Surender, S.L.; Ninad, B. Eye Temperature, an Indicator for Stress Levels in Young Buffalo Bulls—A Case Study of Micro-Environment Modification. J. Agrometeorol. 2021, 22, 266–273. [Google Scholar] [CrossRef]
- Sutherland, M.A.; Worth, G.M.; Dowling, S.K.; Lowe, G.L.; Cave, V.M.; Stewart, M. Evaluation of Infrared Thermography as a Non-Invasive Method of Measuring the Autonomic Nervous Response in Sheep. PLoS ONE 2020, 15, e0233558. [Google Scholar] [CrossRef] [PubMed]
- Casas-Alvarado, A.; Mota-Rojas, D.; Hernández-Ávalos, I.; Martínez-Burnes, J.; Rosas, M.E.; Miranda-Cortés, A.; Domínguez-Oliva, A.; Mora-Medina, P. Assessment of Thermal Response, Cardiorespiratory Parameters and Post-Operative Analgesia in Dogs Undergoing Ovariohysterectomy with Different Combinations of Epidural Analgesia and Isoflurane. J. Anim. Behav. Biometeorol. 2023, 11, e2023009. [Google Scholar] [CrossRef]
- Bergamasco, L.; Edwards-Callaway, L.N.; Bello, N.M.; Mijares, S.H.; Cull, C.A.; Rugan, S.; Mosher, R.A.; Gehring, R.; Coetzee, J.F. Unmitigated Surgical Castration in Calves of Different Ages: Cortisol Concentrations, Heart Rate Variability, and Infrared Thermography Findings. Animals 2021, 11, 2719. [Google Scholar] [CrossRef] [PubMed]
- Luck, J.C.; Kunselman, A.R.; Herr, M.D.; Blaha, C.A.; Sinoway, L.I.; Cui, J. Multiple Laser Doppler Flowmetry Probes Increase the Reproducibility of Skin Blood Flow Measurements. Front. Physiol. 2022, 13, 876633. [Google Scholar] [CrossRef]
- Zherebtsov, E.A.; Zherebtsova, A.I.; Doronin, A.; Dunaev, A.V.; Podmasteryev, K.V.; Bykov, A.; Meglinski, I. Combined Use of Laser Doppler Flowmetry and Skin Thermometry for Functional Diagnostics of Intradermal Finger Vessels. J. Biomed. Opt. 2017, 22, 040502. [Google Scholar] [CrossRef] [PubMed]
- Merla, A.; Di Donato, L.; Romani, G.L.; Proietti, M.; Salsano, F. Comparison of Thermal Infrared and Laser Doppler Imaging in the Assessment of Cutaneous Tissue Perfusion in Scleroderma Patients and Healthy Controls. Int. J. Immunopathol. Pharmacol. 2008, 21, 679–686. [Google Scholar] [CrossRef] [PubMed]
- Galen, R.S.; Gambino, S.R. Beyond Normality: The Predictive Value and Efficiency of Medical Diagnoses; Wiley: New York, NY, USA, 1975. [Google Scholar]
- Kesztyüs, D.; Brucher, S.; Wilson, C.; Kesztyüs, T. Use of Infrared Thermography in Medical Diagnosis, Screening, and Disease Monitoring: A Scoping Review. Medicina 2023, 59, 2139. [Google Scholar] [CrossRef] [PubMed]
- Berckmans, D. Advances in Precision Livestock Farming, 1st ed.; Burleigh Dodds Science Publishing: London, UK, 2022. [Google Scholar]
- Fuentes, S.; Gonzalez Viejo, C.; Chauhan, S.S.; Joy, A.; Tongson, E.; Dunshea, F.R. Non-Invasive Sheep Biometrics Obtained by Computer Vision Algorithms and Machine Learning Modeling Using Integrated Visible/Infrared Thermal Cameras. Sensors 2020, 20, 6334. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghezzi, M.D.; Ceriani, M.C.; Domínguez-Oliva, A.; Lendez, P.A.; Olmos-Hernández, A.; Casas-Alvarado, A.; Hernández-Avalos, I. Use of Infrared Thermography and Heart Rate Variability to Evaluate Autonomic Activity in Domestic Animals. Animals 2024, 14, 1366. https://doi.org/10.3390/ani14091366
Ghezzi MD, Ceriani MC, Domínguez-Oliva A, Lendez PA, Olmos-Hernández A, Casas-Alvarado A, Hernández-Avalos I. Use of Infrared Thermography and Heart Rate Variability to Evaluate Autonomic Activity in Domestic Animals. Animals. 2024; 14(9):1366. https://doi.org/10.3390/ani14091366
Chicago/Turabian StyleGhezzi, Marcelo Daniel, María Carolina Ceriani, Adriana Domínguez-Oliva, Pamela Anahí Lendez, Adriana Olmos-Hernández, Alejandro Casas-Alvarado, and Ismael Hernández-Avalos. 2024. "Use of Infrared Thermography and Heart Rate Variability to Evaluate Autonomic Activity in Domestic Animals" Animals 14, no. 9: 1366. https://doi.org/10.3390/ani14091366
APA StyleGhezzi, M. D., Ceriani, M. C., Domínguez-Oliva, A., Lendez, P. A., Olmos-Hernández, A., Casas-Alvarado, A., & Hernández-Avalos, I. (2024). Use of Infrared Thermography and Heart Rate Variability to Evaluate Autonomic Activity in Domestic Animals. Animals, 14(9), 1366. https://doi.org/10.3390/ani14091366