Prediction of Potential Suitable Distribution Areas for an Endangered Salamander in China
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Species Occurrence Data
2.3. Environmental Variables
2.4. Parameter Optimization and Model Construction
2.5. Parameter Optimization and Model Construction
3. Results
3.1. Model Optimization and Accuracy Evaluation
3.2. The Importance of Environmental Variables
3.3. Current Potential Suitable Habitats for L. shihi
3.4. Future Distribution Patterns of the Suitable Habitats for L. shihi
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marzin, A.; Archaimbault, V.; Belliard, J.; Chauvin, C.; Delmas, F.; Pont, D. Ecological assessment of running waters: Do macrophytes, macroinvertebrates, diatoms and fish show similar responses to human pressures? Ecol. Indic. 2012, 23, 56–65. [Google Scholar] [CrossRef]
- Pacifici, M.; Foden, W.B.; Visconti, P.; Watson, J.E.M.; Butchart, S.H.M.; Kovacs, K.M.; Scheffers, B.R.; Hole, D.G.; Martin, T.G.; Akcakaya, H.R.; et al. Assessing species vulnerability to climate change. Nat. Clim. Change 2015, 5, 215–225. [Google Scholar] [CrossRef]
- Luedtke, J.A.; Chanson, J.; Neam, K.; Hobin, L.; Maciel, A.O.; Catenazzi, A.; Borzee, A.; Hamidy, A.; Aowphol, A.; Jean, A.; et al. Ongoing declines for the world’s amphibians in the face of emerging threats. Nature 2023, 622, 308. [Google Scholar] [CrossRef] [PubMed]
- Lemes, P.; Melo, A.S.; Loyola, R.D. Climate change threatens protected areas of the Atlantic Forest. Biodivers. Conserv. 2014, 23, 357–368. [Google Scholar] [CrossRef]
- Banks, B.; Beebee, T.; Cooke, A.S. Conservation of the natterjack toad Bufo-calamita in britain over the period 1970–1990 in relation to site protection and other factors. Biol. Conserv. 1994, 67, 111–118. [Google Scholar] [CrossRef]
- Loyola, R.D.; Lemes, P.; Brum, F.T.; Provete, D.B.; Duarte, L.D.S. Clade-specific consequences of climate change to amphibians in Atlantic Forest protected areas. Ecography 2014, 37, 65–72. [Google Scholar] [CrossRef]
- Basham, E.W.; Scheffers, B.R. Vertical stratification collapses under seasonal shifts in climate. J. Biogeogr. 2020, 47, 1888–1898. [Google Scholar] [CrossRef]
- Nottingham, S.; Pelletier, T.A. The impact of climate change on western Plethodon salamanders’ distribution. Ecol. Evol. 2021, 11, 9370–9384. [Google Scholar] [CrossRef] [PubMed]
- Duan, R.; Kong, X.; Huang, M.; Varela, S.; Ji, X. The potential effects of climate change on amphibian distribution, range fragmentation and turnover in China. Peerj 2016, 4, e2185. [Google Scholar] [CrossRef]
- Baskiera, S.; Gvozdik, L. Thermal independence of energy management in a tailed amphibian. J. Vertebr. Biol. 2020, 69, 20057.1-10. [Google Scholar] [CrossRef]
- Barrett, K.; Guyer, C. Differential responses of amphibians and reptiles in riparian and stream habitats to land use disturbances in western Georgia, USA. Biol. Conserv. 2008, 141, 2290–2300. [Google Scholar] [CrossRef]
- Ashrafzadeh, M.R.; Naghipour, A.A.; Haidarian, M.; Kusza, S.; Pilliod, D.S. Effects of climate change on habitat and connectivity for populations of a vulnerable, endemic salamander in Iran. Glob. Ecol. Conserv. 2019, 19, e00637. [Google Scholar] [CrossRef]
- Zhang, P.; Dong, X.; Grenouillet, G.; Lek, S.; Zheng, Y.; Chang, J. Species range shifts in response to climate change and human pressure for the world’s largest amphibian. Sci. Total Environ. 2020, 735, 139543. [Google Scholar] [CrossRef]
- IUCN Red List of Threatened Species. Available online: https://www.iucnredlist.org/en (accessed on 21 June 2019).
- Redlist of China’s Biodiversity. Available online: https://www.mee.gov.cn/xxgk2018/xxgk/xxgk01/202305/W020230522536559098623.pdf (accessed on 16 July 2023).
- McDonough, K. Amphibian Species of the World: An Online Reference (Version 6). Ref. Rev. 2014, 28, 32. [Google Scholar] [CrossRef]
- Fei, L.; Ye, C.; Jiang, J. Colorful Illustrations of Amphibians in China, 1st ed.; Sichuan Publishing Group Sichuan Science and Technology Press: Chengdu, China, 2010; pp. 66–67. (In Chinese) [Google Scholar]
- Ma, Q.; Wan, L.; Shi, S.; Wang, Z. Impact of Climate Change on the Distribution of Three Rare Salamanders (Liua shihi, Pseudohynobius jinfo, and Tylototriton wenxianensis) in Chongqing, China, and Their Conservation Implications. Animals 2024, 14, 672. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Garcia, D.; Peterson, A.T. Climate change impact on endangered cloud forest tree species in Mexico. Rev. Mex. Biodivers. 2019, 90, e902781. [Google Scholar] [CrossRef]
- Li, G.; Liu, C.; Liu, Y.; Yang, J.; Zhang, X.; Guo, K. Progress in theoretical research of species distribution models. Acta Ecol. Sin. 2013, 33, 4827–4835, (In Chinese with English Abstract). [Google Scholar]
- Gama, M.; Crespo, D.; Dolbeth, M.; Anastacio, P. Predicting global habitat suitability for Corbicula fluminea using species distribution models: The importance of different environmental datasets. Ecol. Model. 2016, 319, 163–169. [Google Scholar] [CrossRef]
- Padalia, I.; Srivastava, V.; Kushwaha, S.P.S. Modeling potential invasion range of alien invasive species, Hyptis suaveolens (L.) Poit. in India: Comparison of MaxEnt and GARP. Ecol. Inform. 2014, 22, 36–43. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudik, M. Modeling of species distributions with Maxent:: New extensions and a comprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Zhao, T.; Zhang, W.; Zhou, J.; Zhao, C.; Liu, X.; Liu, Z.; Shu, G.; Wang, S.; Li, C.; Xie, F.; et al. Niche divergence of evolutionarily significant units with implications for repopulation programs of the world’s largest amphibians. Sci. Total Environ. 2020, 738, 140269. [Google Scholar] [CrossRef] [PubMed]
- Zank, C.; Becker, F.G.; Abadie, M.; Baldo, D.; Maneyro, R.; Borges-Martins, M. Climate Change and the Distribution of Neotropical RedBellied Toads (Melanophryniscus, Anura, Amphibia): How to Prioritize Species and Populations? PLoS ONE 2014, 9, e94625. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Qiao, H. Effect of the Maxent model’s complexity on the prediction of species potential distributions. Biodivers. Sci. 2016, 24, 1189–1196, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Wu, J. The hazard and unsureness of reducing habitat ranges in response to climate warming for 91 amphibian species in China. Acta Oecol 2020, 108, 103640. [Google Scholar] [CrossRef]
- Zhang, Z.; Mammola, S.; Liang, Z.; Capinha, C.; Wei, Q.; Wu, Y.; Zhou, J.; Wang, C. Future climate change will severely reduce habitat suitability of the Critically Endangered Chinese giant salamander. Freshwater Biol. 2020, 65, 971–980. [Google Scholar] [CrossRef]
- Brown, J.L.; Bennett, J.R.; French, C.M. SDMtoolbox 2.0: The next generation Python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Peerj 2017, 5, e4095. [Google Scholar] [CrossRef]
- Yang, S.; Wang, X.; Hu, J. Mountain frog species losing out to climate change around the Sichuan Basin. Sci. Total Environ. 2022, 806, 150605. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Zhao, X.; Lopez-Pujol, J.; Wang, Z.; Qu, Y.; Zhang, Y.; Zhang, T.; Li, D.; Jiang, K.; Wang, B.; et al. Effects of climate change and anthropogenic activity on ranges of vertebrate species endemic to the Qinghai-Tibet Plateau over 40 years. Conserv. Biol. 2023, 37, e14069. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Harisena, N.V.; Groen, T.A.; Toxopeus, A.G.; Naimi, B. When is variable importance estimation in species distribution modelling affected by spatial correlation? Ecography 2021, 44, 778–788. [Google Scholar] [CrossRef]
- Aslam, M. Analysing Gray Cast Iron Data using a New Shapiro-Wilks test for Normality under Indeterminacy. Int. J. Cast. Metal. Res. 2021, 34, 1–5. [Google Scholar] [CrossRef]
- Rovetta, A. Raiders of the Lost Correlation: A Guide on Using Pearson and Spearman Coefficients to Detect Hidden Correlations in Medical Sciences. Cureus J. Med. Sci. 2020, 12, e11794. [Google Scholar] [CrossRef] [PubMed]
- Hosni, E.M.; Nasser, M.G.; Al-Ashaal, S.A.; Rady, M.H.; Kenawy, M.A. Modeling current and future global distribution of Chrysomya bezziana under changing climate. Sci. Rep. 2020, 10, 4947. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Kushwaha, S.P.S.; Saran, S.; Xu, J.; Roy, P.S. Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills. Ecol. Eng. 2013, 51, 83–87. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Jiang, C.; Zhang, X.; Xie, W.; Wang, R.; Feng, C.; Ma, L.; Li, Q.; Yang, Q.; Wang, H. Predicting the potential distribution of the fall armyworm Spodoptera frugiperda (JE Smith) under climate change in China. Glob. Ecol. Conserv. 2022, 33, e01994. [Google Scholar] [CrossRef]
- Riahi, K.; van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’Neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O.; et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environ. Chang. 2017, 42, 153–168. [Google Scholar] [CrossRef]
- Muscarella, R.; Galante, P.J.; Soley-Guardia, M.; Boria, R.A.; Kass, J.M.; Uriarte, M.; Anderson, R.P. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for MAXENT ecological niche models. Methods Ecol. Evol. 2014, 5, 1198–1205. [Google Scholar] [CrossRef]
- Fu, A.; Gao, E.; Tang, X.; Liu, Z.; Hu, F.; Zhan, Z.; Wang, J.; Luan, X. MaxEnt Modeling for Predicting the Potential Wintering Distribution of Eurasian Spoonbill (Platalea leucorodia leucorodia) under Climate Change in China. Animals-Basel 2023, 13, 856. [Google Scholar] [CrossRef]
- Zhang, Y.; Hughes, A.C.; Zhao, Z.; Li, Z.; Qin, Y. Including climate change to predict the global suitable area of an invasive pest: Bactrocera correcta (Diptera: Tephritidae). Glob. Ecol. Conserv. 2022, 34, e02021. [Google Scholar] [CrossRef]
- Sutton, W.B.; Barrett, K.; Moody, A.T.; Loftin, C.S.; DeMaynadier, P.G.; Nanjappa, P. Predicted Changes in Climatic Niche and Climate Refugia of Conservation Priority Salamander Species in the Northeastern United States. Forests 2015, 6, 1–26. [Google Scholar] [CrossRef]
- Bartlow, A.W.; Giermakowski, J.T.; Painter, C.W.; Neville, P.; Schultz-Fellenz, E.S.; Crawford, B.M.; Lavadie-Bulnes, A.F.; Thompson, B.E.; Hathcock, C.D. Modeling the distribution of the endangered Jemez Mountains salamander (Plethodon neomexicanus) in relation to geology, topography, and climate. Ecol. Evol. 2022, 12, e9161. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Xu, M.; Wong, M.H.G.; Qiu, S.; Li, X.; Ehrenfeld, D.; Li, D. Climate change threatens giant panda protection in the 21st century. Biol. Conserv. 2015, 182, 93–101. [Google Scholar] [CrossRef]
- Stickley, S.F.; Fraterrigo, J.M. Microclimate species distribution models estimate lower levels of climate-related habitat loss for salamanders. J. Nat. Conserv. 2023, 72, 126333. [Google Scholar] [CrossRef]
- Karuppaiah, V.; Maruthadurai, R.; Das, B.; Soumia, P.S.; Gadge, A.S.; Thangasamy, A.; Ramesh, S.V.; Shirsat, D.V.; Mahajan, V.; Krishna, H.; et al. Predicting the potential geographical distribution of onion thrips, Thrips tabaci in India based on climate change projections using MaxEnt. Sci. Rep. 2023, 13, 7934. [Google Scholar] [CrossRef] [PubMed]
- Connette, G.M.; Osbourn, M.S.; Peterman, W.E. The Distribution of a Stream-breeding Salamander, Desmognathus ocoee, in Terrestrial Habitat Suggests the Ecological Importance of Low-order Streams. Copeia 2016, 104, 149–156. [Google Scholar] [CrossRef]
- Lesser, M.P.; Turtle, S.L.; Farrell, J.H.; Walker, C.W. Exposure to ultraviolet radiation (290-400 nm) causes oxidative stress, DNA damage, and expression of p53/p73 in laboratory experiments on embryos of the spotted salamander, Ambystoma maculatum. Physiol. Biochem. Zool. 2001, 74, 733–741. [Google Scholar] [CrossRef] [PubMed]
- Blaustein, A.R.; Edmond, B.; Kiesecker, J.M.; Beatty, J.J.; Hokit, D.G. Ambient ultraviolet-radiation causes mortality in salamander eggs. Ecol. Appl. 1995, 5, 740–743. [Google Scholar] [CrossRef]
- Xu, R.; Li, Y.; Teuling, A.J.; Zhao, L.; Spracklen, D.V.; Garcia-Carreras, L.; Meier, R.; Chen, L.; Zheng, Y.; Lin, H.; et al. Contrasting impacts of forests on cloud cover based on satellite observations. Nat. Commun. 2022, 13, 670. [Google Scholar] [CrossRef]
- Huang, H.; Bu, R.; Xie, H.; Hou, S.; Wu, Z. Habitat selection by Hynobius maoershanensis during its breeding period. Acta Ecol. Sin. 2019, 39, 6443–6451, (In Chinese with English Abstract). [Google Scholar]
- Zhang, Q.; Fang, R.; Deng, C.; Zhao, H.; Shen, M.H.; Wang, Q. Slope aspect effects on plant community characteristics and soil properties of alpine meadows on Eastern Qinghai-Tibetan plateau. Ecol. Indic. 2022, 143, 109400. [Google Scholar] [CrossRef]
- Siemens, A.L.; Bogart, J.P.; Linton, J.E.; Norris, D.R. Predicting the occurrence of an endangered salamander in a highly urbanized landscape. Endanger. Species Res. 2023, 52, 81–95. [Google Scholar] [CrossRef]
- Bakare, A.G.; Kour, G.; Akter, M.; Iji, P.A. Impact of climate change on sustainable livestock production and existence of wildlife and marine species in the South Pacific island countries: A review. Int. J. Biometeorol. 2020, 64, 1409–1421. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.; Cao, J. Incorporating ecosystem services into functional zoning and adaptive management of natural protected areas as case study of the Shennongjia region in China. Sci. Rep. 2023, 13, 18870. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Hu, Y.; Kou, Z.; Zhang, B. Spatial patterns of Pinus tabulaeformis and Pinus massoniana forests in Qinling-Daba Mountains and the boundary of subtropical and warm temperate zones. J. Geogr. Sci. 2020, 30, 1523–1533. [Google Scholar] [CrossRef]
- Widmer, B.W.; Gehring, T.M.; Heumann, B.W.; Nicholson, K.E. Climate change and range restriction of common salamanders in eastern Canada and the United States. J. Wildlife Manage 2022, 86, e22235. [Google Scholar] [CrossRef]
- Parra-Olea, G.; Martínez-Meyer, E.; de León, G. Forecasting climate change effects on salamander distribution in the highlands of central Mexico. Biotropica 2005, 37, 202–208. [Google Scholar] [CrossRef]
Code | Envirnonmental Variable | Percentage Contribution (%) | Permutation Importance (%) |
---|---|---|---|
Bio14 | Precipitation of driest month | 29.7 | 6.9 |
Mseason | Cloud cover seasonal concentration | 28.6 | 6.6 |
Veg | Vegetation type | 15.8 | 0.5 |
UVB4 | Mean UV-B of lowest month | 5.6 | 13.2 |
Slope | Slope | 5 | 5 |
Bio2 | Mean diurnal range | 3.5 | 0.6 |
Mspatial | Cloud cover spatial variability | 3.5 | 1.6 |
Bio9 | Mean temperature of driest quarter | 3.1 | 14 |
Bio15 | Precipitation seasonality | 1.6 | 22 |
Bio4 | Temperature seasonality | 1.4 | 2.5 |
UVB3 | Mean UV-B of highest month | 1.2 | 25.6 |
Pdensity | Density of population | 0.4 | 1.5 |
UVB1 | Annual mean UV-B | 0.4 | 0 |
Asp | Aspect | 0 | 0.1 |
Plantcover | Density of trees on the ground | 0 | 0 |
Grade | Current | 2021–2040 | 2041–2060 | 2061–2080 | |||
---|---|---|---|---|---|---|---|
SSP126 | SSP585 | SSP126 | SSP585 | SSP126 | SSP585 | ||
Low | 29.306 | 29.281 (−0.025) | 26.800 (−2.506) | 36.037 (6.731) | 28.774 (−0.532) | 30.802 (1.496) | 35.229 (5.923) |
Moderate | 9.774 | 16.646 (6.872) | 20.535 (10.761) | 17.336 (7.562) | 16.262 (6.488) | 9.889 (0.115) | 19.076 (9.302) |
High | 6.526 | 8.887 (2.361) | 8.162 (1.636) | 8.931 (−2.405) | 8.457 (1.931) | 8.137 (1.611) | 9.307 (2.781) |
Total | 45.609 | 54.814 (9.205) | 55.497 (9.888) | 62.306 (16.697) | 53.493 (7.884) | 48.828 (3.219) | 63.613 (18.004) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, J.; Hu, Y.; Jiang, J.; Yang, W.; Zhao, T.; Su, S. Prediction of Potential Suitable Distribution Areas for an Endangered Salamander in China. Animals 2024, 14, 1390. https://doi.org/10.3390/ani14091390
Tao J, Hu Y, Jiang J, Yang W, Zhao T, Su S. Prediction of Potential Suitable Distribution Areas for an Endangered Salamander in China. Animals. 2024; 14(9):1390. https://doi.org/10.3390/ani14091390
Chicago/Turabian StyleTao, Jiacheng, Yifeng Hu, Jianping Jiang, Wanji Yang, Tian Zhao, and Shengqi Su. 2024. "Prediction of Potential Suitable Distribution Areas for an Endangered Salamander in China" Animals 14, no. 9: 1390. https://doi.org/10.3390/ani14091390
APA StyleTao, J., Hu, Y., Jiang, J., Yang, W., Zhao, T., & Su, S. (2024). Prediction of Potential Suitable Distribution Areas for an Endangered Salamander in China. Animals, 14(9), 1390. https://doi.org/10.3390/ani14091390