Coupling Artificial Intelligence with Proper Mathematical Algorithms to Gain Deeper Insights into the Biology of Birds’ Eggs
Simple Summary
Abstract
1. Introduction
2. Deep Learning in Eggs: The Current State of the Art
2.1. Egg Image Recognition by AI and DL–Initial Studies
2.2. Egg Cracks and Deeper Learning
2.3. The Contents of Hatching Eggs and the Determination of Freshness
2.4. Improvements in DL Algorithms in Egg Research That Are Needed
3. What Information Can Be Gleaned from Egg Shape?
3.1. Geometry of Egg Profile
3.1.1. Preston–Biggins Egg Model
3.1.2. Hügelschäffer’s Model
3.2. Universal Egg Models
3.3. Principles of Egg Universalism and Main Axiom
3.4. Making Smart Smarter
3.5. Improving Baker
3.6. How “Main” Is the Main Axiom?
- Maintaining accuracy and predictability. The geometry laws developed in ancient times have been tested in practice and provide accurate and predictable results. Compliance with these laws helps avoid errors and misunderstandings when solving problems, constructing theories and performing calculations.
- Universality and consistency. Classical geometric laws serve as the basis for many areas of mathematics and other disciplines, such as physics, engineering and architecture. A model that complies with these laws can be easily used in various fields where consistency with other mathematical and scientific concepts is important.
- Practical application. Geometry is widely used in real life—from the construction of buildings to drawing to technology development. Non-compliance with classical laws can lead to practical errors that can affect the strength of structures, the reliability of mechanisms and the accuracy of measurements.
- Comprehension and interpretation. Classical geometry laws are understood and familiar to a wide range of specialists, which facilitates the transfer of information, interpretation and comprehension. An inappropriate model would require additional training, e.g., in DL trials, and could cause confusion.
- Unification of mathematical knowledge. Classical geometry represents the fundamental knowledge that underlies more complex mathematical structures and theories. If a model violates these laws, it can affect further calculations and lead to errors in more complex mathematical theories.
4. AI and Egg Profiling
- Complex comprehension. Each model focuses on different aspects of the object, allowing for a more complete and multifaceted understanding of its properties.
- Validation. Different models allow one to compare results and identify potential errors. If several models give similar results, this increases confidence that they correctly describe the object.
- Adaptability. Different models may be useful in different conditions and for different purposes. For example, one model may work better for quick calculations, another for analysis over a longer period of time and a third for accurately accounting for individual nuances of the object being described.
- Overcoming limitations. Each model has its limitations and simplifications. By using several models, one can compensate for the weaknesses of one by using the strengths of another. This is especially important if the object is difficult to describe with one model without significant assumptions.
- Possibility of prediction and optimization. Different models can allow different predictions to be made about the behavior of an object when parameters change. This can help in the search for the optimal conditions or methods of controlling the object depending on the goals set.
5. Power of Indices
5.1. B/L, or Classical Shape Index
5.2. Other Indices
5.3. Three Pillars Among Indices: B/L, w/L and Dp/B
5.4. L/T Index and Emergency Geometrical Index
5.5. Index Importance, Variability and DL Implications
6. Egg Volume and Surface Area in Detail
6.1. How to Compute V and S
6.2. Deeper Computations of V and S
6.3. Beauties of S/V Index and DL Prospects
7. How Useful Is Air Cell Information?
7.1. Measuring Air Cell
7.2. Air Cell and DL Applications
7.2.1. Egg Storage
7.2.2. Egg Incubation
8. Three Key Parameters of an Egg
8.1. Weight, Volume and Surface Area
8.2. Three Indexed Derivates and Prospective DL Applications
9. Conclusions and Remarks
- Pre-incubation egg sorting. Why incubate eggs that will not hatch? Or eggs that will hatch, but are of the unwanted sex? It is much more effective to cull such eggs before putting them into the incubator, even if this is not at 100% efficiency. After all, even a partial reduction in the load on incubator stations promises considerable benefits.
- Optimization of egg storage periods. This is one more application area where some eggs can be stored longer than others. At the same time, there are many eggs whose use in the further technological chain is advisable to be earlier than planned in accordance with the existing regulations. Thus, separating eggs (before placing them in storage) into groups in accordance with the predicted permissible shelf life can be an effective technological method that allows for an increase in shelf life.
- Optimization of incubation regimes. Differences in the morphological parameters of eggs and unified incubation technology often lead to a decrease in hatchability. Owing to the separation of eggs into groups depending on shell thickness, yolk weight or the S/V ratio, and the corresponding choice of specific features of the incubation regime, this will increase the return on such technology.
- Index representation of the dimensional egg characteristics. This will contribute to DL efficiency, as it enables this process to become more narrowly focused, i.e., concentrated on sorting images depending on combinations of several parameters. In order to increase the index information content for the possible practical use of the experimental results, it is necessary to unify these indices. In the category of geometric ones, it is proposed to pay close attention to the indices shape (B/L), asymmetry or displacement (w/L) and conicity (Dp/B), as they can be prospective egg quality indicators for use in further research and practice. At the same time, it is advisable to not only study the relationship between the effectiveness of some technological operations with individual indices but also with their combinations, for example, the correlation of the EGI (“symbiosis” of the shape and conicity indices) with egg hatchability. As a complex index representation, one can use mathematical models describing the egg profile geometry, including all of the above indices. Herewith, in the process of analyzing the experimental results, it makes sense to compare the actual egg profile with a standard one. As such a standard, one can rely on a certain geometric object, e.g., a classical ovoid that is maximally close to the profile of an actual egg being evaluated, or on a certain known solid of revolution, e.g., an ellipsoid or a sphere. If a connection between the geometric features of an egg and the sex of the embryo really does exist, such an approach to assessing deviations in the egg profile can undoubtedly prove effective.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morris, S.S.; Beesabathuni, K.; Headey, D. An egg for everyone: Pathways to universal access to one of nature’s most nutritious foods. Matern. Child Nutr. 2018, 14, e12679. [Google Scholar] [CrossRef]
- Surai, P.F.; Sparks, N.H.C. Designer eggs: From improvement of egg composition to functional food. Trends Food Sci. Technol. 2001, 12, 7–16. [Google Scholar] [CrossRef]
- Mottet, A.; Tempio, G. Global poultry production: Current state and future outlook and challenges. Worlds Poult. Sci. J. 2017, 73, 245–256. [Google Scholar] [CrossRef]
- El-Sabrout, K.; Aggag, S.; Mishra, B. Advanced practical strategies to enhance table egg production. Scientifica 2022, 2022, 1393392. [Google Scholar] [CrossRef] [PubMed]
- Nmadu, J.N.; Ogidan, I.O.; Omolehin, R.A. Profitability and resource use efficiency of poultry egg production in Abuja, Nigeria. Kasetsart J. Soc. Sci. 2014, 35, 134–146. Available online: https://www.researchgate.net/publication/273845989 (accessed on 17 November 2024).
- Narushin, V.G.; Volkova, N.A.; Vetokh, A.N.; Sotnikov, D.A.; Volkova, L.A.; Griffin, D.K.; Romanov, M.N.; Zinovieva, N.A. ‘Eggology’ and mathematics of a quail egg: An innovative non-destructive technology for evaluating egg parameters in Japanese quail. Food Bioprod. Process. 2024, 146, 49–57. [Google Scholar] [CrossRef]
- Bondarenko, Y.V.; Tkachik, T.E.; Zakharchenko, O.P.; Ruda, S.V.; Katerinich, O.O.; Shekhovtsov, S.S.; Kutnyuk, P.I. Morphological quality traits of eggs of subpopulations of Birky meat-egg type chickens. Ptakhivnytstvo [Poult. Farming] 2007, 59, 29–36. Available online: https://scholar.google.com/citations?view_op=view_citation&hl=en&citation_for_view=c1PnDYEAAAAJ:Dip1O2bNi0gC (accessed on 17 November 2024). (In Ukrainian with English Summary).
- Moiseeva, I.G.; Tolokonnikova, E.V. The heritability of morphological and biochemical characters of hen’s eggs. Selskokhozyaistvennaya Biol. [Agric. Biol.] 1968, 3, 120–124. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/19690100999 (accessed on 17 November 2024). (In Russian with English Summary).
- Baydevlyatova, O.N.; Ogurtsova, N.S.; Shomina, N.V.; Tereshchenko, A.V. Morphological indicators of egg quality in a new chicken subpopulation of the meat-egg type of productivity. Ptakhivnytstvo [Poult. Farming] 2009, 64, 109–115. Available online: http://avianua.com/archiv/ptahivnictvo/64/15.pdf (accessed on 17 November 2024). (In Russian with English Summary).
- Moiseeva, I. Chemical composition of chicken eggs and their nutritional and biological significance for humans. Tr. Akad. Nauk. SSSR Inst. Genet. 1963, 30, 357–375. Available online: https://pubmed.ncbi.nlm.nih.gov/14105906/ (accessed on 17 November 2024). (In Russian).
- Moiseeva, I.G. The effect of inbreeding on the quality of fowl eggs. Genetika 1970, 6, 99–107. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/19700104311 (accessed on 17 November 2024). (In Russian with English Summary).
- Bondarenko, Y.V. Genetic Polymorphism of Egg White and Serum Proteins in Chickens with Relation to Selection Direction and Productivity Level. In Author’s Abstract of Candidate of Biological Sciences Thesis; Ukrainian Poultry Research Institute: Kharkov, Ukraine, 1976; Available online: https://scholar.google.com/citations?view_op=view_citation&hl=en&citation_for_view=c1PnDYEAAAAJ:W7OEmFMy1HYC (accessed on 17 November 2024). (In Russian)
- de Oliveira-Boreli, F.P.; Pereira, D.F.; Gonçalves, J.A.; da Silva, V.Z.; de Alencar Nääs, I. Non-destructive assessment of hens’ eggs quality using image analysis and machine learning. Smart Agric. Technol. 2023, 4, 100161. [Google Scholar] [CrossRef]
- Nakaguchi, V.M.; Ahamed, T. Fast and non-destructive quail egg freshness assessment using a thermal camera and deep learning-based air cell detection algorithms for the revalidation of the expiration date of eggs. Sensors 2022, 22, 7703. [Google Scholar] [CrossRef]
- Soltani, M.; Omid, M. Detection of poultry egg freshness by dielectric spectroscopy and machine learning techniques. LWT—Food Sci. Technol. 2015, 62, 1034–1042. [Google Scholar] [CrossRef]
- Lubich, J.; Thomas, K.; Engels, D.W. Identification and classification of poultry eggs: A case study utilizing computer vision and machine learning. SMU Data Sci. Rev. 2019, 2, 20. Available online: https://scholar.smu.edu/datasciencereview/vol2/iss1/20 (accessed on 17 November 2024).
- Çelik, A.; Tekin, E. Classification of hatchery eggs using a machine learning algorithm based on image processing methods: A comparative study. Braz. J. Poult. Sci. 2024, 26, eRBCA-2023. [Google Scholar] [CrossRef]
- Syduzzaman, M.; Khaliduzzaman, A.; Rahman, A.; Kashimori, A.; Suzuki, T.; Ogawa, Y.; Kondo, N. Non-invasive classification of single and double-yolk eggs using Vis-NIR spectroscopy and multivariate analysis. Br. Poult. Sci. 2023, 64, 195–203. [Google Scholar] [CrossRef]
- Ullah, Z.; Al-Turjman, F.; Mostarda, L.; Gagliardi, R. Applications of artificial intelligence and machine learning in smart cities. Comput. Commun. 2020, 154, 313–323. [Google Scholar] [CrossRef]
- Janiesch, C.; Zschech, P.; Heinrich, K. Machine learning and deep learning. Electron. Mark. 2021, 31, 685–695. [Google Scholar] [CrossRef]
- Sarker, I.H. Deep learning: A comprehensive overview on techniques, taxonomy, applications and research directions. SN Comput. Sci. 2021, 2, 420. [Google Scholar] [CrossRef]
- Lippmann, R.P. Pattern classification using neural networks. IEEE Commun. Mag. 1989, 27, 47–50. [Google Scholar] [CrossRef]
- Abiodun, O.I.; Jantan, A.; Omolara, A.E.; Dada, K.V.; Umar, A.M.; Linus, O.U.; Arshad, H.; Kazaure, A.A.; Gana, U.; Kiru, M.U. Comprehensive review of artificial neural network applications to pattern recognition. IEEE Access 2019, 7, 158820–158846. [Google Scholar] [CrossRef]
- Arya, A. Deep Learning Theory and Fundamentals; String Production: Roorkee, India, 2024; ISBN 978-93-6048-061-5. Available online: https://www.researchgate.net/publication/381990994 (accessed on 17 November 2024).
- Zhang, M. Research on optimization of image recognition algorithm based on deep learning. Int. J. Comput. Sci. Inf. Technol. 2024, 4, 218–226. [Google Scholar] [CrossRef]
- Rich, E.; Knight, K.; Nair, S.B. Artificial Intelligence, 3rd ed.; Tata McGraw Hill India: New Delhi, India, 2010; ISBN 978-0-0700-8770-5. [Google Scholar]
- Russell, S.J.; Norvig, P. Artificial Intelligence: A Modern Approach, 4th ed.; Pearson: Hoboken, NJ, USA, 2021; ISBN 978-0-1346-1099-3. [Google Scholar]
- Mitchell, T. Machine Learning; McGraw-Hill Education: New York, NY, USA, 1997; ISBN 978-0-07-042807-2. Available online: http://www.cs.cmu.edu/~tom/files/MachineLearningTomMitchell.pdf (accessed on 17 November 2024).
- Kohavi, R.; Provost, F. Glossary of terms. Mach. Learn. 1998, 30, 271–274. [Google Scholar] [CrossRef]
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef] [PubMed]
- Ferrie, C.; Kaiser, S. Neural Networks for Babies; Sourcebooks: Naperville, IL, USA, 2019; ISBN 978-1-4926-7120-6. [Google Scholar]
- Schulz, H.; Behnke, S. Deep learning. KI-Kunstl. Intell. 2012, 26, 357–363. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Şahin, H.A.; Önder, H. Application of some artificial intelligence optimization methods to determine the freshness of eggs. Turk. J. Vet. Anim. Sci. 2024, 48, 156–164. [Google Scholar] [CrossRef]
- Setiaji, P.; Adi, K.; Surarso, B. Development of classification method for determining chicken egg quality using GLCM-CNN method. Ing. Syst. Inf. 2024, 29, 397–407. [Google Scholar] [CrossRef]
- Iswanto, B.H.; Putri, D.S.D. Automated classification of egg freshness using acoustic signals and convolutional neural networks. J. Phys. Conf. Ser. 2024, 2866, 012052. [Google Scholar] [CrossRef]
- Febriani, A.; Wahyuni, R.; Mardeni, M.; Irawan, Y.; Melyanti, R. Improved hybrid machine and deep learning model for optimization of Smart Egg Incubator. J. Appl. Data Sci. 2024, 5, 1052–1068. [Google Scholar] [CrossRef]
- Xu, Z.; Fan, M.; Zhang, Y. Visual detection of eggs based on deep learning for egg picking robot. J. Phys. Conf. Ser. 2021, 1976, 012013. [Google Scholar] [CrossRef]
- Bumanis, N.; Arhipova, I.; Paura, L.; Vitols, G.; Jankovska, L. Data conceptual model for smart poultry farm management system. Procedia Comput. Sci. 2022, 200, 517–526. [Google Scholar] [CrossRef]
- Nakaguchi, V.M.; Ahamed, T. Development of an early embryo detection methodology for quail eggs using a thermal micro camera and the YOLO deep learning algorithm. Sensors 2022, 22, 5820. [Google Scholar] [CrossRef] [PubMed]
- Nakaguchi, V.M.; Abeyrathna, R.R.D.; Ahamed, T. Development of a new grading system for quail eggs using a deep learning-based machine vision system. Comput. Electron. Agric. 2024, 226, 109433. [Google Scholar] [CrossRef]
- Li, G.; Chesser, G.D.; Huang, Y.; Zhao, Y.; Purswell, J.L. Development and optimization of a deep-learning-based egg-collecting robot. Trans. ASABE 2021, 64, 1659–1669. [Google Scholar] [CrossRef]
- Shi, C.; Wang, Y.; Zhang, C.; Yuan, J.; Cheng, Y.; Jia, B.; Zhu, C. Nondestructive detection of microcracks in poultry eggs based on the electrical characteristics model. Agriculture 2022, 12, 1137. [Google Scholar] [CrossRef]
- Huang, Y.; Luo, Y.; Cao, Y.; Lin, X.; Wei, H.; Wu, M.; Yang, X.; Zhao, Z. Damage detection of unwashed eggs through video and deep learning. Foods 2023, 12, 2179. [Google Scholar] [CrossRef]
- Sánchez, J.M.P.; Moreno, L.A.O.; Rodríguez, J.L.R.; Corro, I.D.M. Poultry Egg Classification System Using Deep Learning. In Proceedings of the 5th International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), Istanbul, Turkey, 8–10 June 2023; IEEE Turkish Section: Istanbul, Turkey, 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Nasiri, A.; Omid, M.; Taheri-Garavand, A. An automatic sorting system for unwashed eggs using deep learning. J. Food Eng. 2020, 283, 110036. [Google Scholar] [CrossRef]
- Gayathri, V.P.; Midhuna, A.; Priyadharshini, M.; Thamizhini, K.A.; Preethi, R. Deep learning based egg size identification for poultry farming. In Intelligent Systems Design and Applications; Deep Learning, Volume 2 (ISDA 2023); Abraham, A., Bajaj, A., Hanne, T., Hong, T.P., Eds.; Lecture Notes in Networks and Systems; Springer: Cham, Switzerland, 2024; Volume 1047, pp. 255–267. [Google Scholar] [CrossRef]
- Geng, L.; Yan, T.; Xiao, Z.; Xi, J.; Li, Y. Hatching eggs classification based on deep learning. Multimed. Tools Appl. 2018, 77, 22071–22082. [Google Scholar] [CrossRef]
- Çevik, K.K.; Koçer, H.E.; Boǧa, M. Deep learning based egg fertility detection. Vet. Sci. 2022, 9, 574. [Google Scholar] [CrossRef] [PubMed]
- Şahin, H.A.; Önder, H. Use of deep learning to determine the freshness of egg. J. Inst. Sci. Technol. 2024, 14, 493–500. [Google Scholar] [CrossRef]
- Vargas, J.P.B.; de Paula, D.D.; Salvadeo, D.H.; Júnior, E.B. Generation of Simulated Dataset of Computed Tomography Images of Eggs and Extraction of Measurements Using Deep Learning. In Proceedings of the European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2024), Bruges, Belgium, and online event, 9–11 October 2024; i6doc, CIACO sc: Louvain-la-Neuve, Belgium, 2024; pp. 697–702, ISBN 978-2-87587-090-2. [Google Scholar] [CrossRef]
- Okinda, C.; Sun, Y.; Nyalala, I.; Korohou, T.; Opiyo, S.; Wang, J.; Shen, M. Egg volume estimation based on image processing and computer vision. J. Food Eng. 2020, 283, 110041. [Google Scholar] [CrossRef]
- Mota-Grajales, R.; Torres-Peña, J.C.; Camas-Anzueto, J.L.; Pérez-Patricio, M.; Coutiño, R.G.; López-Estrada, F.R.; Escobar-Gómez, E.N.; Guerra-Crespo, H. Defect detection in eggshell using a vision system to ensure the incubation in poultry production. Measurement 2019, 135, 39–46. [Google Scholar] [CrossRef]
- Adegbenjo, A.O.; Liu, L.; Ngadi, M.O. Non-destructive assessment of chicken egg fertility. Sensors 2020, 20, 5546. [Google Scholar] [CrossRef]
- Narushin, V.G.; Romanov, M.N.; Griffin, D.K. Egg and math: Introducing a universal formula for egg shape. Ann. N. Y. Acad. Sci. 2021, 1505, 169–177. [Google Scholar] [CrossRef]
- Narushin, V.G.; Orszulik, S.T.; Romanov, M.N.; Griffin, D.K. A novel approach to egg and math: Improved geometrical standardization of any avian egg profile. Ann. N. Y. Acad. Sci. 2023, 1529, 61–71. [Google Scholar] [CrossRef]
- Narushin, V.G.; Romanov, M.N.; Griffin, D.K. A novel model for eggs like pears: How to quantify them geometrically with two parameters? J. Biosci. 2023, 48, 35. [Google Scholar] [CrossRef]
- OpenArt Creative (2024, October 1). OpenArt: San Francisco, CA, USA, 2024.
- Algotsson, J. A Comparative Analysis of Text to Image Generation AI Versus Google Image Search Engine as Reference Tools Evaluating Future Applications in the Games Industry. Master’s Degree, University of Skövde, Skövde, Sweden, 2022. [Google Scholar]
- Abbas, G.; Jaffery, S.; Hashmi, A.H.; Tanveer, A.J.; Arshad, M.; Amin, Q.A.; Saeed, M.I.; Saleem, M.; Qureshi, R.A.M.; Khan, A.A.; et al. Prospects and challenges of adopting and implementing smart technologies in poultry production. Pak. J. Sci. 2022, 74, 108–127. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/20220489512 (accessed on 17 November 2024).
- Ahmed, M.W.; Hossainy, S.J.; Khaliduzzaman, A.; Emmert, J.L.; Kamruzzaman, M. Non-destructive optical sensing technologies for advancing the egg industry toward Industry 4.0: A review. Compr. Rev. Food Sci. Food Saf. 2023, 22, 4378–4403. [Google Scholar] [CrossRef]
- Musara, D.; Sarema, B.; Mashava, D.; Chinguwo, K.; Muhla, T.M. Design of an AI-based egg fertility detection system for incubators. Open Access Res. J. Sci. Technol. 2024, 12, 001–009. [Google Scholar] [CrossRef]
- Preston, F.W. The shapes of birds’ eggs. Auk 1953, 70, 160–182. [Google Scholar] [CrossRef]
- Carter, T.C. The hen’s egg: A mathematical model with three parameters. Br. Poult. Sci. 1968, 9, 165–171. [Google Scholar] [CrossRef]
- Smart, I.H.M. The method of transformed co-ordinates applied to the deformations produced by the walls of a tubular viscus on a contained body: The avian egg as a model system. J. Anat. 1969, 104, 507–518. [Google Scholar] [PubMed]
- Biggins, J.D.; Thompson, J.E.; Birkhead, T.R. Accurately quantifying the shape of birds’ eggs. Ecol. Evol. 2018, 19, 9728–9738. [Google Scholar] [CrossRef]
- Biggins, J.D.; Montgomerie, R.; Thompson, J.E.; Birkhead, T.R. Preston’s universal formula for avian egg shape. Ornithology 2022, 139, ukac028. [Google Scholar] [CrossRef]
- Petrović, M.; Obradović, M. The Complement of the Hugelschaffer’s Construction of the Egg Curve. In Proceedings of the 25th National and 2nd International Scientific Conference “Mongeometrija 2010”, Belgrade, Serbia, 24–27 June 2010; Nestorović, M., Ed.; Faculty of Architecture, University of Belgrade, Serbian Society for Geometry and Graphics: Belgrade, Serbia, 2010; pp. 520–531. Available online: https://grafar.grf.bg.ac.rs/handle/123456789/2050 (accessed on 17 November 2024).
- Petrović, M.; Obradović, M.; Mijailović, R. Suitability analysis of Hugelschaffer’s egg curve application in architectural and structures’ geometry. Bul. Inst. Politeh. Iaşi, Secţ. Constr. maş. 2011, 57, 115–122. Available online: https://www.researchgate.net/publication/258113014 (accessed on 17 November 2024).
- Obradović, M.; Malesević, B.; Petrović, M.; Đjukanović, G. generating curves of higher order using the generalisation of Hügelschäffer’s egg curve construction. Sci. Bull. Politeh. Univ. Timiş. Trans. Hydrotech. 2013, 58, 110–114. Available online: https://www.researchgate.net/publication/332530776 (accessed on 17 November 2024).
- Petrović, M.; Malešević, B. Hügelschäffer egg curve and surface. Appl. Anal. Discrete Math. 2022, 17, 179–196. [Google Scholar] [CrossRef]
- Ursinus, O. (Ed.) Kurvenkonstruktionen für den Flugzeugentwurf. Flugsport 1944, 36, Merkblätter 15–18. Available online: https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=“Kurvenkonstruktionen+für+den+Flugzeugentwurf” (accessed on 17 November 2024). (In German).
- Schmidbauer, H. Eine exakte Eierkurvenkonstruktion mit technischen Anwendungen. Elem. Math. 1948, 3, 67–68. Available online: https://scholar.google.com/scholar?hl=en&q=“Eine+exakte+Eierkurvenkonstruktion+mit+technischen+Anwendungen” (accessed on 17 November 2024). (In German).
- Narushin, V.G.; Romanov, M.N.; Lu, G.; Cugley, J.; Griffin, D.K. Digital imaging assisted geometry of chicken eggs using Hügelschäffer’s model. Biosyst. Eng. 2020, 197, 45–55. [Google Scholar] [CrossRef]
- Narushin, V.G.; Romanov, M.N.; Griffin, D.K. Delineating an ovoidal egg shape by length and breadth: A novel two-parametric mathematical model. Biosyst. Eng. 2022, 224, 336–345. [Google Scholar] [CrossRef]
- Baker, D.E. A geometric method for determining shape of bird eggs. Auk 2002, 119, 1179–1186. [Google Scholar] [CrossRef]
- Troscianko, J. A simple tool for calculating egg shape, volume and surface area from digital images. Ibis 2014, 156, 874–878. [Google Scholar] [CrossRef]
- Shi, P.; Gielis, J.; Niklas, K.J. Comparison of a universal (but complex) model for avian egg shape with a simpler model. Ann. N. Y. Acad. Sci. 2022, 1514, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Gielis, J. A generic geometric transformation that unifies a wide range of natural and abstract shapes. Am. J. Bot. 2003, 90, 333–338. [Google Scholar] [CrossRef]
- Smart, I.H.M. Egg-shape in birds. In Egg Incubation: Its Effects on Embryonic Development in Birds and Reptiles; Deeming, D.C., Ferguson, M.W.J., Eds.; Cambridge University Press: Cambridge, UK, 1991; pp. 101–116. [Google Scholar] [CrossRef]
- Todd, P.H.; Smart, I.H.M. The shape of birds’ eggs. J. Theor. Biol. 1984, 106, 239–243. [Google Scholar] [CrossRef]
- Narushin, V.G.; Volkova, N.A.; Dzhagaev, A.Y.; Griffin, D.K.; Romanov, M.N.; Zinovieva, N.A. Smart and smarter: Improving on a classic egg shape model. Theory Biosci. 2024. submitted. [Google Scholar]
- Narushin, V.G.; Romanov, M.N.; Griffin, D.K. Eggs from the Baker: Simplifying and improving on an under-appreciated oological model. J. Ornithol. 2024, submitted.
- Lazarus, A.; Florijn, H.C.B.; Reis, P.M. Geometry-induced rigidity in nonspherical pressurized elastic shells. Phys. Rev. Lett. 2012, 109, 144301. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhu, B.; Wang, F.; Tang, W.; Wang, W.; Zhang, M. Buckling of prolate egg-shaped domes under hydrostatic external pressure. Thin-Walled Struct. 2017, 119, 296–303. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, M.; Wang, W.; Tang, W.; Zhu, Y. Investigation on egg-shaped pressure hulls. Mar. Struct. 2017, 52, 50–66. [Google Scholar] [CrossRef]
- Zhang, J.; Tan, J.; Tang, W.; Zhao, X.; Zhu, Y. Experimental and numerical collapse properties of externally pressurized egg-shaped shells under local geometrical imperfections. Int. J. Press. Vessel. Pip. 2019, 175, 103893. [Google Scholar] [CrossRef]
- Zhang, J.; Dai, M.; Wang, F.; Tang, W.; Zhao, X. Buckling performance of egg-shaped shells fabricated through free hydroforming. Int. J. Press. Vessel. Pip. 2021, 193, 104435. [Google Scholar] [CrossRef]
- Guo, S.; Zhuang, H.; Tang, W.X.; Wu, W.L.; Liu, Q.; Wang, Y.Y. Design of a bionic spudcan and analysis of penetration and extraction performances for jack-up platform. China Ocean Eng. 2020, 34, 80–88. [Google Scholar] [CrossRef]
- Freiberger, M. Perfect buildings: The maths of modern architecture. Constructing Our Lives: The Mathematics of Engineering. In Plus Magazine; Millennium Mathematics Project, University of Cambridge: Cambridge, UK, 2007; Available online: https://plus.maths.org/content/perfect-buildings-maths-modern-architecture (accessed on 17 November 2024).
- Obradović, M.; Martinenko, A. A Method for Adjusting the Shape of Semi-oval Arches Using Hügelschäffer’s Construction. In Proceedings of the 9th International Scientific Conference on Geometry, Graphics and Design in the Digital Age “Mongeometrija 2023”, Novi Sad, Serbia, 7–10 June 2023; Bajšanski, I., Jovanović, M., Eds.; Faculty of Technical Sciences, University of Novi Sad, Serbian Society for Geometry and Graphics: Novi Sad, Serbia, 2023; pp. 205–215. Available online: https://grafar.grf.bg.ac.rs/handle/123456789/3354 (accessed on 17 November 2024).
- Maulana, A.R.A.; Yunus, M.; Sulistyaningrum, D.R. The constructions of egg-shaped surface equations using Hugelschaffer’s egg-shaped curve. Indones. J. Phys. 2015, 26, 26–30. [Google Scholar] [CrossRef]
- Juračka, D.; Katzer, J.; Kobaka, J.; Świca, I.; Seweryn, K. Concept of a 3D-printed Voronoi egg-shaped habitat for permanent lunar outpost. Appl. Sci. 2023, 13, 1153. [Google Scholar] [CrossRef]
- Katzer, J.; Kobaka, J. Regolith as raw material for the production of aggregates and concrete-like composites on the Moon. Arch. Civ. Eng. 2024, 70, 199–214. [Google Scholar] [CrossRef]
- Hou, J.; Chen, L.; Kong, C.; Guan, J.; Zhao, W.; Zhao, X. Development of laminated egg-shaped tsunami shelter structure made of steel-cushioning-steel. Int. J. Mech. Eng. Appl. 2024, 12, 118–128. [Google Scholar] [CrossRef]
- Songsheng, Y.Y.; Wang, J.M. Differential interferometric signatures of close binaries of supermassive black holes in active galactic nuclei. II. Merged broad-line regions. Astrophys. J. 2023, 945, 89. [Google Scholar] [CrossRef]
- Tlemissov, A.; Kovář, J. Egg-shaped sections of fluid structures around black holes. Eur. Phys. J. C 2024, 84, 1115. [Google Scholar] [CrossRef]
- Levine, B.M.; Kaplun, M.; Ribak, E.N. Asymmetric sparse telescope. Opt. Continuum 2022, 1, 1603–1612. [Google Scholar] [CrossRef]
- Silverman, M. Egg: Eggfun.io, Version 0.09. Silverware Games, Inc.: Grennville, DE, USA, 2020. Available online: https://eggfun.io (accessed on 17 November 2024).
- Gilbert, C. “The egg reopened” again. Art Bull. 1974, 56, 252–258. [Google Scholar] [CrossRef]
- Herz-Fischler, R. Dürer’s paradox or why an ellipse is not egg-shaped. Math. Mag. 1990, 63, 75–85. [Google Scholar] [CrossRef]
- Yilmaz-Dikmen, B.; Dikmen, S. A morphometric method of sexing white layer eggs. Braz. J. Poult. Sci. 2013, 15, 203–210. [Google Scholar] [CrossRef]
- Kayadan, M.; Uzun, Y. High accuracy gender determination using the egg shape index. Sci. Rep. 2023, 13, 504. [Google Scholar] [CrossRef]
- Horhoruw, W.M. The influence of egg shape on gender and abnormality of Kampung chicks. Adv. Soc. Sci. Res. 2024, 2, 849–855. [Google Scholar] [CrossRef]
- Rahman, A.; Syduzzaman, M.; Khaliduzzaman, A.; Fujitani, S.; Kashimori, A.; Suzuki, T.; Ogawa, Y.; Kondo, N. Nondestructive preincubation sex determination of broiler eggs using visible transmission spectroscopy combined with multivariate analysis. Eng. Agric. Environ. Food 2021, 14, 61–72. [Google Scholar] [CrossRef]
- Jia, N.; Li, B.; Zhu, J.; Wang, H.; Zhao, Y.; Zhao, W. A review of key techniques for in ovo sexing of chicken eggs. Agriculture 2023, 13, 677. [Google Scholar] [CrossRef]
- Aleynikov, A.F. Application of computer vision in food industry to predict sexual dimorphism in poultry eggs during incubation. IOP Conf. Ser. Earth Environ. Sci. 2022, 1112, 012057. [Google Scholar] [CrossRef]
- Aleynikov, A.; Osipenko, I.; Cheshkova, A. Development of a Spectral Setup for Determining the Sexual Dimorphism of the Bird Embryo. In Proceedings of the VIII International Conference on Advanced Agritechnologies, Environmental Engineering and Sustainable Development (AGRITECH-VIII 2023), E3S Web of Conferences, Krasnoyarsk, Russia, 29–31 March 2023; Volume 390, p. 02017. [Google Scholar] [CrossRef]
- Aleynikov, A.; Osipenko, I. Information technology for culling poultry eggs before incubation based on gender. In Proceedings of the VIII International Conference on Advanced Agritechnologies, Environmental Engineering and Sustainable Development (AGRITECH-VIII 2023), E3S Web of Conferences, Krasnoyarsk, Russia, 29–31 March 2023; Volume 390, p. 03005. [Google Scholar] [CrossRef]
- Hamilton, R.M.G. A comparison of the various equations published for the estimation of characteristics of hen’s eggs, the importance of reporting the compression rate for shell strength measurements, and distinction between egg specific gravity and density. Worlds Poult. Sci. J. 2022, 78, 447–466. [Google Scholar] [CrossRef]
- Dunn, L.C.; Schneider, M. An approximate method of calculating the surface area of eggs. Poult. Sci. 1923, 2, 90–92. [Google Scholar] [CrossRef]
- González Ariza, A.; Navas González, F.J.; Arando Arbulu, A.; León Jurado, J.M.; Delgado Bermejo, J.V.; Camacho Vallejo, M.E. Discriminant canonical analysis as a tool to determine traces of endangered native hen breed introgression through egg hatchability phenomics. Anim. Biosci. 2022. [Google Scholar] [CrossRef]
- Yonar, H.; Arslan, E.; Kırıkçı, K. Investigation of egg external quality characteristics of Linda geese with data mining methods. Manas J. Agric. Vet. Life Sci. 2022, 12, 115–121. [Google Scholar] [CrossRef]
- Isnaini, N.; Wenas, K.; Solihin, M.F.; Sulistyo, H.E.; Amertaningtyas, D.; Andri, F. Effect of egg weight and egg shape index on hatching performance and eggshell quality of white-nest swiftlets. J. Anim. Health Prod. 2023, 11, 20–24. [Google Scholar] [CrossRef]
- Tribudi, Y.A.; Ulfah, M.; Gusmalawati, D.; Sari, A.P.Z.N.L.; Hariyono, D.N.H.; Ibrahim, A.; Nurgiartiningsih, V.M.A. Revealing the correlation between hatching weight and egg characteristics in Tukong chickens. BIO Web Conf. 2023, 81, 00006. [Google Scholar] [CrossRef]
- Lotfi, A.; Shahryar, H.A.; Maheri-Sis, N.; Abedi, A.S.; Nahand, M.K. Hatching characterizes of Japanese quail (Coturnix coturnix japonica) eggs with different egg shape indexes. Amer. Eur. J. Agric. Environ. Sci. 2011, 10, 475–477. Available online: https://www.idosi.org/aejaes/jaes10(3)/27.pdf (accessed on 17 November 2024).
- Alasahan, S.; Copur, A.G. Hatching characteristics and growth performance of eggs with different egg shapes. Braz. J. Poult. Sci. 2016, 18, 1–7. [Google Scholar] [CrossRef]
- Jabbar, A.; Hameed, A.; Ditta, Y.A.; Riaz, A. Relationship between eggs shape index and embryonic mortality. Online J. Anim. Feed Res. 2018, 8, 164–168. Available online: https://www.ojafr.ir/main/attachments/article/137/OJAFR%208(6)%20164-168,%202018.pdf (accessed on 17 November 2024).
- Preston, F.W. The shapes of birds’ eggs: Mathematical aspects. Auk 1968, 85, 454–463. [Google Scholar] [CrossRef]
- Preston, F.W. Shapes of birds’ eggs: Extant North American families. Auk 1969, 86, 246–264. [Google Scholar] [CrossRef]
- Narushin, V.G. Shape geometry of the avian egg. J. Agric. Eng. Res. 2001, 79, 441–448. [Google Scholar] [CrossRef]
- Hays, I.R.; Hauber, M.E. How the egg rolls: A morphological analysis of avian egg shape in the context of displacement dynamics. J. Exp. Biol. 2018, 221, jeb178988. [Google Scholar] [CrossRef]
- Hays, I.R.; Ljubičić, I.; Hauber, M.E. The shape of avian eggs: Assessment of a novel metric for quantifying eggshell conicality. Auk 2020, 137, ukaa021. [Google Scholar] [CrossRef]
- Mänd, R.; Nigul, A.; Sein, E. Oomorphology: A new method. Auk 1986, 103, 613–617. [Google Scholar] [CrossRef]
- Mytiai, I.S.; Matsyura, A.V. Geometrical standards in shapes of avian eggs. Ukr. J. Ecol. 2017, 7, 264–282. [Google Scholar] [CrossRef]
- Montgomerie, R.; Hemmings, N.; Thompson, J.E.; Birkhead, T.R. The shapes of birds’ eggs: Evolutionary constraints and adaptations. Am. Nat. 2021, 198, E215–E231. [Google Scholar] [CrossRef]
- Brunson, C.C.; Godfrey, G.F. The relationship of egg shape, egg weight, specific gravity and 21-day incubation weight-loss to hatchability of Broad-Breasted Bronze turkey eggs. Poult. Sci. 1953, 32, 846–849. [Google Scholar] [CrossRef]
- Stoddard, M.C.; Yong, E.H.; Akkaynak, D.; Sheard, C.; Tobias, J.A.; Mahadevan, L. Avian egg shape: Form, function, and evolution. Science 2017, 356, 1249–1254. [Google Scholar] [CrossRef]
- Stoddard, M.C.; Sheard, C.; Akkaynak, D.; Yong, E.H.; Mahadevan, L.; Tobias, J.A. Evolution of avian egg shape: Underlying mechanisms and the importance of taxonomic scale. Ibis 2019, 161, 922–925. [Google Scholar] [CrossRef]
- Narushin, V.G.; Romanov, M.N.; Griffin, D.K. Pear-shaped eggs evolved to maximize the surface area-to-volume ratio, increase metabolism, and shorten incubation time in birds. Integr. Zool. 2024. [Google Scholar] [CrossRef] [PubMed]
- Narushin, V.G.; Griffin, A.W.; Romanov, M.N.; Griffin, D.K. Measurement of the neutral axis in avian eggshells reveals which species conform to the golden ratio. Ann. N. Y. Acad. Sci. 2022, 1517, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Wylie, C.R. Advanced Engineering Mathematics, 4th ed.; McGraw-Hill: New York, NY, USA, 1975. [Google Scholar]
- Aloupis, C.; Shenton, H.W., III; Chajes, M.J. Monitoring neutral axis position using monthly sample residuals as estimated from a data mining model. Front. Built Environ. 2021, 7, 625754. [Google Scholar] [CrossRef]
- Lou, T.; Peng, C.; Karavasilis, T.L.; Min, D.; Sun, W. Moment redistribution versus neutral axis depth in continuous PSC beams with external CFRP tendons. Eng. Struct. 2020, 209, 109927. [Google Scholar] [CrossRef]
- Sigurdardottir, D.H.; Glisic, B. Neutral axis as damage sensitive feature. Smart Mater. Struct. 2013, 22, 075030. [Google Scholar] [CrossRef]
- Mohammadhassani, M.; Jumaat, M.Z.B.; Chemrouk, M.; Maghsoudi, A.A.; Jameel, M.; Akib, S. An experimental investigation on bending stiffness and neutral axis depth. Nucl. Eng. Des. 2011, 241, 2060–2067. [Google Scholar] [CrossRef]
- Saqan, E.; Rasheed, H. Simplified nonlinear analysis to compute neutral axis depth in prestressed concrete rectangular beams. J. Frank. Inst. 2011, 348, 1588–1604. [Google Scholar] [CrossRef]
- Narushin, V.G.; Kent, J.P.; Salamon, A.; Romanov, M.N.; Griffin, D.K. A simulation-based insight into the interrelationships between density and other physical parameters of the egg. J. Food Eng. 2023, 358, 111679. [Google Scholar] [CrossRef]
- Narushin, V.G.; Romanov, M.N.; Gressier, L.; Jacob, E.; Salamon, A.; Kent, J.P. Predicting preincubation parameters in goose eggs to reduce their hatching waste. Biosyst. Eng. 2023, 236, 1–15. [Google Scholar] [CrossRef]
- Nedomová, Š.; Buchar, J. Ostrich eggs geometry. Acta Univ. Agric. Silvic. Mendel. Brun. 2013, 61, 735–742. [Google Scholar] [CrossRef]
- CornellLab. Ruby-throated Hummingbird. Life History; The Cornell Lab of Ornithology, Cornell University: Ithaca, NY, USA, 2024; Available online: https://www.allaboutbirds.org/guide/Ruby-throated_Hummingbird/lifehistory (accessed on 17 November 2024).
- Narushin, V.G.; Romanov, M.N.; Mishra, B.; Griffin, D.K. Mathematical progression of avian egg shape with associated area and volume determinations. Ann. N. Y. Acad. Sci. 2022, 1513, 65–78. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Zheng, W.; Zhao, C.; Shen, C.; Sun, G. Egg volume and surface area calculations based on machine vision. In Computer and Computing Technologies in Agriculture II, Volume 3, Proceedings of the Second IFIP International Conference on Computer and Computing Technologies in Agriculture (CCTA 2008), Beijing, China, 18–20 October 2008; IFIP Advances in Information and Communication Technology; Zhao, C., Li, D., Eds.; Springer: Boston, MA, USA, 2009; Volume 295, pp. 1647–1653. [Google Scholar] [CrossRef]
- Omid, M.; Soltani, M.; Dehrouyeh, M.H.; Mohtasebi, S.S.; Ahmadi, H. An expert egg grading system based on machine vision and artificial intelligence techniques. J. Food Eng. 2013, 118, 70–77. [Google Scholar] [CrossRef]
- Zlatev, Z.; Nikolova, M.; Yanev, P. Application of techniques for image analysis in assessing the external characteristics of eggs. Inovacii i predpriemačestvo [Innov. Entrep.] 2018, 6, 10–20. Available online: https://www.researchgate.net/publication/323628032 (accessed on 17 November 2024).
- Chan, T.O.; Lichti, D.D.; Jahraus, A.; Esfandiari, H.; Lahamy, H.; Steward, J.; Glanzer, M. An egg volume measurement system based on the Microsoft Kinect. Sensors 2018, 18, 2454. [Google Scholar] [CrossRef]
- Nyalala, I.; Okinda, C.; Kunjie, C.; Korohou, T.; Nyalala, L.; Chao, Q. Weight and volume estimation of poultry and products based on computer vision systems: A review. Poult. Sci. 2021, 100, 101072. [Google Scholar] [CrossRef]
- Siswantoro, J.; Hilman, M.Y.; Widiasri, M. Computer vision system for egg volume prediction using backpropagation neural network. IOP Conf. Ser. Mater. Sci. Eng. 2017, 273, 012002. [Google Scholar] [CrossRef]
- Romanoff, A.L.; Romanoff, A.J. The Avian Egg; John Wiley & Sons Inc.: New York, NY, USA, 1949. [Google Scholar]
- Paganelli, C.V.; Olszowka, A.; Ar, A. The avian egg: Surface area, volume and density. Condor 1974, 76, 319–325. [Google Scholar] [CrossRef]
- Shott, A.R.; Preston, F.W. The surface area of an egg. Condor 1975, 77, 103–104. [Google Scholar] [CrossRef]
- Tatum, J.B. Area-volume relationship for a bird’s egg. Condor 1977, 79, 129–131. [Google Scholar] [CrossRef]
- Hoyt, D.F. Practical methods of estimating volume and fresh weight of bird eggs. Auk 1979, 96, 73–77. [Google Scholar] [CrossRef]
- Narushin, V.G.; Romanov, M.N.; Griffin, D.K. Non-destructive measurement of chicken egg characteristics: Improved formulae for calculating egg volume and surface area. Biosyst. Eng. 2021, 201, 42–49. [Google Scholar] [CrossRef]
- Shi, P.; Chen, L.; Quinn, B.K.; Yu, K.; Miao, Q.; Guo, X.; Lian, M.; Gielis, J.; Niklas, K.J. A simple way to calculate the volume and surface area of avian eggs. Ann. N. Y. Acad. Sci. 2023, 1524, 118–131. [Google Scholar] [CrossRef] [PubMed]
- Weng, Y.-K.; Li, C.-H.; Lai, C.-C.; Cheng, C.-W. Equation for egg volume calculation based on Smart’s model. Mathematics 2022, 10, 1661. [Google Scholar] [CrossRef]
- Babinec, T.; Best, C.; Bliss, M.; Brendler, N.; Fu, E.; Fung, A.; Klein, T.; Larson, A.; Lee, T.; Madonna, J.; et al. Introduction to Topology. Lecture Notes. Renzo’s Math 490; Department of Mathematics, College of Natural Sciences, Colorado State University: Fort Collins, CO, USA, 2007; Available online: https://www.math.colostate.edu/~renzo/teaching/Topology10/Notes.pdf (accessed on 17 November 2024).
- Cohen, A.; Moreh, A.B.; Chayoth, R. Hands-on method for teaching the concept of the ratio between surface area & volume. Am. Biol. Teach. 1999, 61, 691–695. [Google Scholar] [CrossRef]
- Cragg, S.M. Chapter 2—Biology and ecology of scallop larvae. In Scallops: Biology, Ecology, Aquaculture, and Fisheries; Developments in Aquaculture and Fisheries Science; Shumway, S.E., Parsons, G.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; Volume 40, pp. 31–83. [Google Scholar] [CrossRef]
- Harris, L.K.; Theriot, J.A. Surface area to volume ratio: A natural variable for bacterial morphogenesis. Trends Microbiol. 2018, 26, 815–832. [Google Scholar] [CrossRef]
- Lewis, M. Chapter 6—Physical concepts. In Food Process Engineering Principles and Data; Lewis, M., Ed.; Woodhead Publishing: Sawston, UK, 2023; pp. 37–46. [Google Scholar] [CrossRef]
- Atanasov, A.T. Allometric Relationship between Volume to Surface Ratio and Incubation Days in Bird’s Eggs. In Proceedings of the International Conference of Computational Methods in Sciences and Engineering 2019 (ICCMSE-2019), Rhodes, Greece, 1–5 May 2019; AIP Conference Proceedings: Melville, NY, USA, 2019; Volume 2186, p. 110002. [Google Scholar] [CrossRef]
- Narushin, V.G.; Romanov, M.N.; Avni-Magen, N.; Griffin, D.K. Avian egg incubation period: Revisiting existing allometric relationships. Sci. Rep. 2024. submitted. [Google Scholar]
- Narushin, V.G.; Romanov, M.N.; Avni-Magen, N.; Griffin, D.K. Brood parasitism and host-parasite relationships: Cuckoos adapt to reduce the time of hatching ahead of host nestlings by increasing egg thickness. Int. J. Parasitol. Parasites Wildl. 2024, 25, 100979. [Google Scholar] [CrossRef]
- Egg Quality Testing. Stable Micro Systems, Godalming, UK, 2020. Available online: https://www.stablemicrosystems.com/EggQualityTesting.html (accessed on 17 November 2024).
- ORKA. Egg Shell Thickness Gauge; ORKA Food Technology Ltd.: West Bountiful, UT, USA, 2020; Available online: https://eggtester.com/eggshell-thickness-gauge (accessed on 17 November 2024).
- Hahn, E.N.; Sherman, V.R.; Pissarenko, A.; Rohrbach, S.D.; Fernandes, D.J.; Meyers, M.A. Nature’s technical ceramic: The avian eggshell. J. R. Soc. Interface 2017, 14, 20160804. [Google Scholar] [CrossRef]
- Juang, J.Y.; Chen, P.Y.; Yang, D.C.; Wu, S.P.; Yen, A.; Hsieh, H.I. The avian egg exhibits general allometric invariances in mechanical design. Sci. Rep. 2017, 7, 14205. [Google Scholar] [CrossRef]
- Nedomová, Š.; Kumbar, V.; Trnka, J.; Buchar, J. Effect of the loading rate on compressive properties of goose eggs. J. Biol. Phys. 2016, 42, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Trnka, J.; Nedomová, Š.; Kumbár, V.; Šustr, M.; Buchar, J. A new approach to analyze the dynamic strength of eggs. J. Biol. Phys. 2016, 42, 525–537. [Google Scholar] [CrossRef] [PubMed]
- Khaliduzzaman, A.; Konagaya, K.; Suzuki, T.; Kashimori, A.; Kondo, N.; Ogawa, Y. A nondestructive eggshell thickness measurement technique using terahertz waves. Sci. Rep. 2020, 10, 1052. [Google Scholar] [CrossRef] [PubMed]
- Shomina, N.V.; Tkachenko, S.M.; Tagirov, M.T.; Tereshchenko, O.V. Monitoring the quality of hatching eggs during storage. Ef. Ptakhivnytstvo [Eff. Poult. Farming] 2009, 11, 29–33. Available online: https://www.researchgate.net/publication/342788294 (accessed on 17 November 2024). (In Ukrainian).
- Narushin, V.G.; Romanov, M.N.; Salamon, A.; Kent, J.P. An innovative non-destructive technology for controlling the storage period of chicken eggs using egg parameters. Food Bioprocess Technol. 2023, 17, 2770–2781. [Google Scholar] [CrossRef]
- Narushin, V.G.; Romanov, M.N.; Griffin, D.K. Non-destructive evaluation of the volumes of egg shell and interior: Theoretical approach. J. Food Eng. 2021, 300, 110536. [Google Scholar] [CrossRef]
- Önler, E.; Çelen, I.H.; Gulhan, T.; Boynukara, B. A study regarding the fertility discrimination of eggs by using ultrasound. Indian J. Anim. Res. 2016, 51, 322–326. [Google Scholar] [CrossRef]
- Nabel. Egg Candling Machine. Nabel Co., Ltd.: Kyoto, Japan, 2022. Available online: https://nabel.com/products/evs/ (accessed on 17 November 2024).
- Pappenheimer, J. Hermann Rahn 1912—1990: A biographical memoir. Biogr. Mem. Natl. Acad. Sci. 1996, 69, 242–267. [Google Scholar] [CrossRef]
- Schönwetter, M. Handbuch der Oologie; Meise, W., Ed.; Akademie Verlag: Berlin, Germany, 1960–1992; Volumes 1–4. [Google Scholar] [CrossRef]
- Rahn, H.; Ar, A. The avian egg: Incubation time and water loss. Condor 1974, 76, 147–152. [Google Scholar] [CrossRef]
- Ar, A.; Rahn, H. Interdependence of gas conductance, incubation length, and weight of the avian egg. In Respiratory Function in Birds, Adult and Embryonic. Proceedings in Life Sciences; Piiper, J., Ed.; Springer: Berlin, Heidelberg, 1978; pp. 227–236. [Google Scholar] [CrossRef]
- Rahn, H.; Paganelli, C.V. The initial density of avian eggs derived from the tables of Schönwetter. J. Ornithol. 1989, 130, 207–215. [Google Scholar] [CrossRef]
- Narushin, V.G. Express Method for Determination of Egg Morphological Parameters. In Proceedings of the 9th European Poultry Conference: Plenary Papers and Contributed Papers, Glasgow, UK, 7–12 August 1994; Ministry of Agriculture, Fisheries and Food. World’s Poultry Science Association, UK Branch: Andover, UK, 1994; Volume 1, pp. 385–386. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/19942402671 (accessed on 17 November 2024).
- Narushin, V.G.; Yakupoglu, C.; Dvorska, J. Morphological Composition of Quail Eggs. In Proceedings of the IX European Symposium on the Quality of Eggs and Egg Products, Kuşadası, Turkey, 9–12 September 2001; Mulder, R.W.A.W., Bilgili, S.F., Eds.; WPSA Turkish Branch: Kuşadası, Turkey, 2001; pp. 387–392. Available online: https://scholar.google.com/citations?view_op=view_citation&hl=en&citation_for_view=nqYrX-cAAAAJ:dhFuZR0502QC (accessed on 17 November 2024).
- Tagirov, M.T.; Ogurtsova, N.S.; Tereshchenko, A.V. Analysis of hatchability problems for incubated eggs. Ptakhivnytstvo [Poult. Farming] 2009, 63, 199–215. Available online: http://avianua.com/archiv/ptahivnictvo/63/24.pdf (accessed on 17 November 2024). (In Russian with English Summary).
- Narushin, V.G. What Egg Parameters Predict Best Its Shell Strength? In Proceedings of the IX European Symposium on the Quality of Eggs and Egg Products, Kuşadası, Turkey, 9–12 September 2001; Mulder, R.W.A.W., Bilgili, S.F., Eds.; WPSA Turkish Branch: Kuşadası, Turkey, 2001; pp. 349–355. Available online: https://www.researchgate.net/publication/330289655 (accessed on 17 November 2024).
- Narushin, V.G.; Van Kempen, T.A.; Wineland, M.J.; Christensen, V.L. Comparing infrared spectroscopy and egg size measurements for predicting eggshell quality. Biosyst. Eng. 2004, 87, 101–107. [Google Scholar] [CrossRef]
- Narushin, V.G.; Romanov, M.N.; Gressier, L.; Jacob, E.; Salamon, A.; Klein, S.; Kent, J.P. Shell temperature: How shall we tell if a still gosling is under the eggshell? Theriogenology 2024, 226, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Narushin, V.G.; Volkova, N.A.; Dzhagaev, A.Y.; Gagieva, Z.V.; Volkova, L.A.; Griffin, D.K.; Romanov, M.N.; Zinovieva, N.A. What’s in a quail shell? That which we call an egg by any other means can be described. Food Biophys. 2024; submitted. [Google Scholar]
- Narushin, V.G.; Volkova, N.A.; Dzhagaev, A.Y.; Gagieva, Z.V.; Volkova, L.A.; Griffin, D.K.; Romanov, M.N.; Zinovieva, N.A. Shell quality parameters of quail eggs as estimated by non-destructive testing technology. J. Nondestruct. Eval. 2024; submitted. [Google Scholar]
Abbreviation | Terms and Definitions | References |
---|---|---|
AI | Artificial intelligence, referring to the intelligence displayed by machines, especially computer systems, is a branch of computer science that creates and examines tools and software that allow machines to sense their environment and use intelligence and learning to take actions that increase the likelihood that they will accomplish predetermined objectives. | [26,27] |
ML | Machine learning is a branch of AI that focuses on creating and analyzing statistical algorithms that can learn from data and extrapolate them to new data, completing tasks without direct guidance. | [28,29] |
NN | Neural network, also known as artificial neural network or neural net, is a model used in ML that is based on the architecture and operation of biological neural networks found in animal brains. | [30,31] |
DL | Deep learning is a sub-branch of ML that focuses on using NNs to carry out classification, regression, representation learning and tasks by learning from data. | [32,33] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Narushin, V.G.; Volkova, N.A.; Dzhagaev, A.Y.; Griffin, D.K.; Romanov, M.N.; Zinovieva, N.A. Coupling Artificial Intelligence with Proper Mathematical Algorithms to Gain Deeper Insights into the Biology of Birds’ Eggs. Animals 2025, 15, 292. https://doi.org/10.3390/ani15030292
Narushin VG, Volkova NA, Dzhagaev AY, Griffin DK, Romanov MN, Zinovieva NA. Coupling Artificial Intelligence with Proper Mathematical Algorithms to Gain Deeper Insights into the Biology of Birds’ Eggs. Animals. 2025; 15(3):292. https://doi.org/10.3390/ani15030292
Chicago/Turabian StyleNarushin, Valeriy G., Natalia A. Volkova, Alan Yu. Dzhagaev, Darren K. Griffin, Michael N. Romanov, and Natalia A. Zinovieva. 2025. "Coupling Artificial Intelligence with Proper Mathematical Algorithms to Gain Deeper Insights into the Biology of Birds’ Eggs" Animals 15, no. 3: 292. https://doi.org/10.3390/ani15030292
APA StyleNarushin, V. G., Volkova, N. A., Dzhagaev, A. Y., Griffin, D. K., Romanov, M. N., & Zinovieva, N. A. (2025). Coupling Artificial Intelligence with Proper Mathematical Algorithms to Gain Deeper Insights into the Biology of Birds’ Eggs. Animals, 15(3), 292. https://doi.org/10.3390/ani15030292