Effects of Lipids from Soybean Oil or Ground Soybeans on Energy Efficiency and Methane Production in Steers
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Experimental Design, and Diets
2.2. Feeding and Feed Intake
2.3. Feces and Urine Collection
2.4. Ruminal Methane Emission: Collection of Gases
2.5. Energy Calculations
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Valle, F.R.A.F.; Fontes, C.A.A.; Fernandes, A.M.; Oliveira, T.S.; Processi, E.F. Carcass traits and meat quality of Brangus × Zebu steers in grazing systems receiving supplementation. Sci. Agric. 2021, 78, e20190228. [Google Scholar] [CrossRef]
- Nunes, C.L.C.; Pflanzer, S.B.; Souza, J.H.R.; Chizzotti, M.L. Beef production and carcass evaluation in Brazil. Anim. Front. 2024, 14, 15–20. [Google Scholar] [CrossRef]
- Tufarelli, V.; Puvača, N.; Glamočić, D.; Pugliese, G.; Colonna, M.A. The most important metabolic diseases in dairy cattle during the transition period. Animals 2024, 14, 816. [Google Scholar] [CrossRef] [PubMed]
- McGrath, J.; Duval, S.M.; Tamassia, L.F.M.; Kindermann, M.; Stemmler, R.T.; Gouvea, V.N.; Acedo, T.S.; Immig, I.; Williams, S.N.; Celi, P. Nutritional strategies in ruminants: A lifetime approach. Res. Vet. Sci. 2018, 116, 28–39. [Google Scholar] [CrossRef] [PubMed]
- Ponnampalam, E.N.; Priyashantha, H.; Vidanarachchi, J.K.; Kiani, A.; Holman, B.W.B. Effects of nutritional factors on fat content, fatty acid composition, and sensorial properties of meat and milk from domesticated ruminants: An overview. Animals 2024, 14, 840–878. [Google Scholar] [CrossRef] [PubMed]
- Weiss, W.P.; Pinos-Rodriguez, J.M. Production responses of dairy cows when fed supplemental fat in low- and high-forage diets. J. Dairy Sci. 2009, 92, 6144–6155. [Google Scholar] [CrossRef]
- Grainger, C.; Beauchemin, K.A. Can enteric methane emissions from ruminants be lowered without lowering their production? Anim. Feed Sci. Technol. 2011, 166, 308–320. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Moraes, J.L.G.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, T.C. Lipid metabolism in the rumen. J. Dairy Sci. 1993, 76, 3851–3863. [Google Scholar] [CrossRef] [PubMed]
- Association of Official Analytical Chemist. Official Methods of Analysis Chemistry, 15th ed.; AOAC International: Arlington, VA, USA, 1990. [Google Scholar]
- Johnson, K.A.; Johnson, D.E. Methane emission from cattle. J. Anim. Sci. 1995, 73, 2483–2492. [Google Scholar] [CrossRef]
- Primavesi, O.; Frighetto, R.T.S.; Pedreira, M.A.; Lima, M.A.; Berchielli, T.T.; Demarchi, J.J.A.A.; Manella, M.Q.; Barbosa, P.F.; Johnson, K.A.; Westberg, H.H. Técnica do gás traçador SF6 para medição de campo do metano ruminal em bovinos: Adaptações para o Brasil. Doc. Embrapa 2004, 39, 1–76. (In Portuguese) [Google Scholar]
- National Research Council. Nutrient Requirements of Beef Cattle, 6th ed.; National Academies Press: Washington, DC, USA, 1996. [Google Scholar]
- National Academies of Sciences, Engineering, and Medicine. Nutrient Requirements of Beef Cattle, 8th ed.; National Academies Press: Washington, DC, USA, 2016. [Google Scholar]
- Holter, J.B.; Young, A.J. Methane Prediction in Dry and Lactating Holstein Cows. J. Dairy Sci. 1992, 75, 2165–2175. [Google Scholar] [CrossRef] [PubMed]
- Littell, R.C.; Miliken, G.A.; Stroup, W.W.; Wolfinger, R.D.; Schabenberger, O. SAS® for Mixed Models, 2nd ed.; SAS Publishing: Cary, NC, USA, 2006. [Google Scholar]
- Sugiura, N. Further analysis of the data by Akaike’s Information Criterion and the finite corrections. Commun. Stat. -Theory Methods 1978, 7, 13–26. [Google Scholar] [CrossRef]
- Burnham, K.P.; Anderson, D.R. Multimodel inference: Understanding AIC and BIC in model selection. Sociol. Methods Res. 2004, 33, 261–304. [Google Scholar] [CrossRef]
- Mertens, D.R. Creating a system for meeting the fiber requirements of dairy cows. J. Dairy Sci. 1997, 80, 1463–1481. [Google Scholar] [CrossRef] [PubMed]
- Allen, M.S.; Bradford, B.J.; Oba, M. The hepatic oxidation theory of the control of feed intake and its application to ruminants. J. Anim. Sci. 2009, 87, 3317–3334. [Google Scholar] [CrossRef] [PubMed]
- Allen, M.S. Control of feed intake by hepatic oxidation in ruminant animals: Integration of homeostasis and homeorhesis. Animal 2020, 14, s55–s64. [Google Scholar] [CrossRef] [PubMed]
- Hales, K.E.; Brown-Brandl, T.M.; Freetly, H.C. Effects of decreased dietary roughage concentration on energy metabolism and nutrient balance in finishing beef cattle. J. Anim. Sci. 2014, 92, 264–271. [Google Scholar] [CrossRef] [PubMed]
- Fuller, A.L.; Wickersham, T.A.; Sawyer, J.E.; Freetly, H.C.; Brown-Brandl, T.M.; Hales, K.E. The effects of the forage-to-concentrate ratio on the conversion of digestible energy to metabolizable energy in growing beef steers. J. Anim. Sci. 2020, 98, skaa231. [Google Scholar] [CrossRef] [PubMed]
- Dijkstra, J.; Oenema, O.; Van Groenigen, J.W.; Spek, J.W.; Van Vuuren, A.M.; Bannink, A. Diet effects on urine composition of cattle and N2 O emissions. Animal 2013, 7, 292–302. [Google Scholar] [CrossRef]
- Spek, J.W.; Dijkstra, J.; Van Duinkerken, G.; Bannink, A. A review of factors influencing milk urea concentration and its relationship with urinary urea excretion in lactating dairy cattle. J. Agric. Sci. 2013, 151, 407–423. [Google Scholar] [CrossRef]
- Blaxter, K.L.; Clapperton, J.L.; Martin, A.K. The heat of combustion of the urine of sheep and cattle in relation to its chemical composition and to diet. Br. J. Nutr. 1966, 20, 449–459. [Google Scholar] [CrossRef]
- Moss, A.R.; Jovany, J.; Newbold, J. Methane production by ruminants: Its contribution to global warming. Ann. Zootech. 2000, 49, 231–253. [Google Scholar] [CrossRef]
- Na, Y.; Hua, D.; Choi, Y.; Kim, K.H.; Lee, S.R. Effects of feeding level on nutrient digestibility and enteric methane production in growing goats (Capra hircus) and Sika deer (Cervus nippon hortulorum). Asian-Australas. J. Anim. Sci. 2018, 31, 1238–1243. [Google Scholar] [CrossRef] [PubMed]
- Maynard, L.A.; Loosti, J.K.; Huntz, H.F.; Wamer, R.G. Animal Nutrition, 7th ed.; McGraw-Hill: New York, NY, USA, 1979. [Google Scholar]
- National Research Council. Nutrient Requirements of Beef Cattle, 7th ed.; National Academies Press: Washington, DC, USA, 2000. [Google Scholar]
Ingredients | Lipid Sources | |||
---|---|---|---|---|
CS | W/O | SO | SS | |
Corn silage | 100.00 | 70.00 | 70.00 | 70.00 |
Soybean seeds | - | - | - | 16.43 |
Corn | - | 16.88 | 13.12 | 13.02 |
Soybean oil | - | - | 3.10 | - |
Limestone | - | 0.59 | 0.57 | 0.55 |
Soybean meal | - | 12.53 | 13.21 | - |
Composition | Treatments (g/kg DM) | |||
---|---|---|---|---|
CS | W/O | SO | SS | |
DM (g/kg of as-fed) | 316.5 | 390.4 | 389.6 | 385.0 |
OM | 917.4 | 930.5 | 927.2 | 930.0 |
CP | 54.0 | 116.5 | 114.0 | 113.0 |
EE | 15.2 | 18.4 | 47.8 | 48.4 |
Ashes | 82.6 | 69.5 | 72.94 | 70.0 |
NDF | 521.1 | 390.4 | 404.4 | 383.9 |
Variable | Treatments | p-Values | |||||
---|---|---|---|---|---|---|---|
CS | W/O | SO | SS | C1 | C2 | C3 | |
DMI | 7.29 ± 0.33 | 8.54 ± 0.33 | 8.44 ± 0.33 | 8.62 ± 0.33 | <0.001 | 0.958 | 0.331 |
GEI | 28.58 ± 1.34 | 32.98 ± 1.34 | 32.99 ± 1.34 | 33.89 ± 1.34 | 0.003 | 0.753 | 0.600 |
GEF | 9.78 ± 0.51 | 9.65 ± 0.51 | 9.19 ± 0.51 | 9.93 ± 0.51 | 0.504 | 0.850 | 0.169 |
GEF (%GEI) | 34.15 ± 1.78 | 29.56 ± 1.78 | 28.12 ± 1.78 | 29.39 ± 1.78 | 0.016 | 0.665 | 0.559 |
DEI | 18.78 ± 1.13 | 23.33 ± 1.13 | 23.80 ± 1.13 | 23.96 ± 1.13 | 0.002 | 0.705 | 0.924 |
UGE | 0.40 ± 0.06 | 0.67 ± 0.06 | 0.65 ± 0.06 | 0.56 ± 0.06 | 0.008 | 0.460 | 0.323 |
UGE (%GEI) | 1.39 ± 0.18 | 2.04 ± 0.18 | 1.97 ± 0.18 | 1.66 ± 0.18 | 0.003 | 0.892 | 0.074 |
UGE (%DEI) | 2.03 ± 0.25 | 2.68 ± 0.25 | 2.84 ± 0.25 | 2.40 ± 0.25 | 0.022 | 0.807 | 0.156 |
MGE | 1.81 ± 0.18 | 2.38 ± 0.18 | 1.87 ± 0.18 | 1.86 ± 0.18 | 0.261 | 0.025 | 0.985 |
MGE (%GEI) | 6.37 ± 0.67 | 7.08 ± 0.67 | 5.71 ± 0.67 | 5.67 ± 0.67 | 0.487 | 0.001 | 0.922 |
MGE (%DEI) | 9.69 ± 1.0 | 10.07 ± 1.0 | 7.95 ± 1.0 | 8.12 ± 1.0 | 0.317 | 0.027 | 0.935 |
MEI | 16.57 ± 1.07 | 20.27 ± 1.07 | 21.27 ± 1.07 | 21.54 ± 1.07 | 0.003 | 0.422 | 0.871 |
MEI (%GEI) | 58.02 ± 2.07 | 6136 ± 2.07 | 64.21 ± 2.07 | 63.26 ± 2.07 | 0.002 | 0.122 | 0.580 |
MEI (%DEI) | 88.25 ± 0.97 | 86.86 ± 0.97 | 89.12 ± 0.97 | 89.78 ± 0.97 | 0.587 | <0.001 | 0.395 |
Variable | Treatments | p-Values | |||||
---|---|---|---|---|---|---|---|
CS | W/O | SO | SS | C1 | C2 | C3 | |
CH4/day | 139.3 ± 8.65 | 160.2 ± 8.74 | 131.8 ± 8.64 | 143.3 ± 8.54 | 0.472 | 0.016 | 0.289 |
CH4/year | 50.9 ± 3.16 | 59.3 ± 3.19 | 48.0 ± 3.15 | 52.3 ± 3.12 | 0.461 | 0.014 | 0.274 |
CH4/MR | 1.6 ± 0.25 | 2.2 ± 0.25 | 1.8 ± 0.25 | 1.7 ± 0.24 | 0.027 | 0.001 | 0.925 |
CH4/DMI | 20.3 ± 2.52 | 19.7 ± 2.52 | 16.2 ± 2.52 | 16.2 ± 2.52 | 0.016 | 0.008 | 0.893 |
Variables | Treatments | p-Values | |||||
---|---|---|---|---|---|---|---|
CS | W/O | SO | SS | C1 | C2 | C3 | |
GE | 4.19 ± 0.03 | 4.19 ± 0.03 | 4.31 ± 0.03 | 4.39 ± 0.03 | 0.006 | <0.001 | 0.080 |
DE | 2.76 ± 0.09 | 2.96 ± 0.09 | 3.01 ± 0.09 | 3.01 ± 0.06 | <0.001 | 0.017 | 0.992 |
ME | 2.43 ± 0.06 | 2.58 ± 0.06 | 2.78 ± 0.06 | 2.78 ± 0.05 | <0.001 | 0.013 | 0.954 |
NEm | 1.42 ± 0.04 | 1.59 ± 0.04 | 1.65 ± 0.04 | 1.64 ± 0.04 | <0.001 | 0.253 | 0.927 |
NEg | 0.84 ± 0.04 | 0.98 ± 0.04 | 1.04 ± 0.04 | 1.03 ± 0.04 | <0.001 | 0.259 | 0.891 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Processi, E.F.; Rocha, T.C.; Bendia, L.C.R.; Silveira Filho, C.C.; Berndt, A.; Souza Aniceto, E.; Oliveira, T.S.d. Effects of Lipids from Soybean Oil or Ground Soybeans on Energy Efficiency and Methane Production in Steers. Animals 2025, 15, 321. https://doi.org/10.3390/ani15030321
Processi EF, Rocha TC, Bendia LCR, Silveira Filho CC, Berndt A, Souza Aniceto E, Oliveira TSd. Effects of Lipids from Soybean Oil or Ground Soybeans on Energy Efficiency and Methane Production in Steers. Animals. 2025; 15(3):321. https://doi.org/10.3390/ani15030321
Chicago/Turabian StyleProcessi, Elizabeth Fonsêca, Tiago Cunha Rocha, Laila Cecília Ramos Bendia, Clóvis Carlos Silveira Filho, Alexandre Berndt, Elon Souza Aniceto, and Tadeu Silva de Oliveira. 2025. "Effects of Lipids from Soybean Oil or Ground Soybeans on Energy Efficiency and Methane Production in Steers" Animals 15, no. 3: 321. https://doi.org/10.3390/ani15030321
APA StyleProcessi, E. F., Rocha, T. C., Bendia, L. C. R., Silveira Filho, C. C., Berndt, A., Souza Aniceto, E., & Oliveira, T. S. d. (2025). Effects of Lipids from Soybean Oil or Ground Soybeans on Energy Efficiency and Methane Production in Steers. Animals, 15(3), 321. https://doi.org/10.3390/ani15030321