A Review of the Monitoring Techniques Used to Detect Oestrus in Sows
Simple Summary
Abstract
1. Introduction
2. The Oestrous Cycle of Sows
2.1. Oestrus and Ovulation
2.2. Physical Changes
2.3. Behavioural Changes
3. Commercial Oestrus Detection Procedures
3.1. Standing Heat
3.2. Other Behaviours
3.3. Vulval Swelling
3.4. Ear Flicking
3.5. Decision-Making for Insemination Protocols
4. Alternative Oestrus Detection Tools
4.1. Saliva
4.2. Cervical Mucus
4.2.1. Composition
4.2.2. Volume
4.2.3. Crystallisation
4.3. Vaginal Electrical Resistance (ER)
4.3.1. Predicting Insemination Timing
4.3.2. Probe Location and Use
4.3.3. Parity
4.3.4. Operator Error
4.4. Oedema of the Vulva
4.5. Body Temperature
4.6. Quantification of Behaviour
4.6.1. Time-Lapse Video
4.6.2. Electronic Oestrus Detection Station
4.6.3. Pedometers
4.6.4. Accelerometers
Correct Prediction
Weight
Gait
Attachment Site
4.6.5. Auditory Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kendall, H.W.; Pimentel, D. Constraints on the expansion of the global food supply. Ambio 1994, 23, 198–205. [Google Scholar]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef]
- Babot, D.; Chavez, E.R.; Noguera, J.L. The effect of age at the first mating and herd size on the lifetime productivity of sows. Anim. Res. 2003, 52, 49–64. [Google Scholar] [CrossRef]
- Gardner, I.A.; Willeberg, P.; Mousing, J. Empirical and theoretical evidence for herd size as a risk factor for swine diseases. Anim. Health Res. Rev./Conf. Res. Work. Anim. Dis. 2002, 3, 43–55. [Google Scholar] [CrossRef] [PubMed]
- Kashiha, M.A.; Bahr, C.; Ott, S.; Moons, C.P.H.; Niewold, T.A.; Tuyttens, F.; Berckmans, D. Automatic monitoring of pig locomotion using image analysis. Livest. Sci. 2014, 159, 141–148. [Google Scholar] [CrossRef]
- Plà, L.M. Review of mathematical models for sow herd management. Livest. Sci. 2007, 106, 107–119. [Google Scholar] [CrossRef]
- Knox, R.V. Artificial insemination in pigs today. Theriogenology 2016, 85, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Weitze, K.F.; Wagner-Rietschel, H.; Waberski, D.; Richter, L.; Krieter, J. The Onset of Heat after Weaning, Heat Duration, and Ovulation as Major Factors in AI Timing in Sows. Reprod. Domest. Anim. 1994, 29, 433–443. [Google Scholar] [CrossRef]
- de Jonge, F.H.; Mekking, P.; Abbott, K.; Wiepkema, P.R. Proceptive and receptive aspects of oestrus behaviour in gilts. Behav. Process. 1994, 31, 157–166. [Google Scholar] [CrossRef]
- Cornou, C. Automated oestrus detection methods in group housed sows: Review of the current methods and perspectives for development. Livest. Sci. 2006, 105, 1–11. [Google Scholar] [CrossRef]
- Banhazi, T.M.; Black, J.L. Precision livestock farming: A suite of electronic systems to ensure the application of best practice management on livestock farms. Aust. J. Multi-Discip. Eng. 2009, 7, 1–14. [Google Scholar] [CrossRef]
- Edström, K. The Porcine Cervix: Morphological Changes and Infiltration of Immune Cells During Oestrus and Dioestrus in the Sow. Veterinary Medcine. Program Thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2009. [Google Scholar]
- Roca, J.; Vázquez, J.M.; Gil, M.A.; Cuello, C.; Parrilla, I.; Martínez, E.A. Challenges in pig artificial insemination. Reprod. Domest. Anim. 2006, 41, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Soede, N.M.; Langendijk, P.; Kemp, B. Reproductive cycles in pigs. Anim. Reprod. Sci. 2011, 124, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Knox, R.V. The current value of frozen-thawed boar semen for commercial companies. Reprod. Domest. Anim. 2011, 46, 4–6. [Google Scholar] [CrossRef]
- Şandru, O.; Petroman, I.; Sărăndan, H.; Furdui, I.; Heber, L. Possibilities of improving the swine breeding management. Agric. Manag. 2009, 11, 1–6. [Google Scholar]
- Soede, N.M.; Kemp, B. Expression of oestrus and timing of ovulation in pigs. J. Reprod. Fertility. Suppl. 1997, 52, 91–103. [Google Scholar]
- Pedersen, L.J. Sexual behaviour in female pigs. Horm. Behav. 2007, 52, 64–69. [Google Scholar] [CrossRef]
- Almeida, F.R.C.L.; Novak, S.; Foxcroft, G.R. The time of ovulation in relation to estrus duration in gilts. Theriogenology 2000, 53, 1389–1396. [Google Scholar] [CrossRef] [PubMed]
- Esbenshade, K.L.; Ziecik, A.J.; Britt, J.H. Regulation and action of gonadotrophins in pigs. J. Reprod. Fertility. Suppl. 1990, 40, 19–32. [Google Scholar]
- Cassar, G.; Kirkwood, R.N.; Poljak, Z.; Bennett-Steward, K.; Friendship, R.M. Effect of single or double insemination on fertility of sows bred at an induced estrus and ovulation. J. Swine Health Prod. 2005, 13, 254–258. [Google Scholar] [CrossRef]
- Yilma, T.; Sobiraj, A. Study on the relationships of intravaginal electrical impedance and plasma level of progesterone and estradiol-17B in estrus synchronized sows in prediction of the optimal insemination time in pig. Indian J. Anim. Res. 2011, 45, 88–94. [Google Scholar]
- Soede, N.M.; Noordhuizen, J.P.T.M.; Kemp, B. The duration of ovulation in pigs, studied by transrectal ultrasonography, is not related to early embryonic diversity. Theriogenology 1992, 38, 653–666. [Google Scholar] [CrossRef]
- Kemp, B.; Soede, N.M. Relationship of Weaning-to-Estrus Interval to Timing of Ovulation and Fertilization in Sows. J. Anim. Sci. 1996, 74, 944–949. [Google Scholar] [CrossRef] [PubMed]
- Yilma, T.; Sobiraj, A. Relationships between intra vaginal electrical impedance, estrus behavior, plasma levels of ovarian steroids and the preovulatory luteinizing hormone surge in the prediction of the optimal insemination time in normal cycling pigs. Indian J. Anim. Res. 2012, 46, 114–120. [Google Scholar]
- Rozeboom, K.J.; Reicks, D.L.; Wilson, M.E. The reproductive performance and factors affecting on-farm application of low-dose intrauterine deposit of semen in sows. J. Anim. Sci. 2004, 82, 2164–2168. [Google Scholar] [CrossRef]
- Steverink, D.W.B.; Soede, N.M.; Bouwman, E.G.; Kemp, B. Influence of insemination-ovulation interval and sperm cell dose on fertilization in sows. J. Reprod. Fertil. 1997, 111, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Tantasuparuk, W.; Lundeheim, N.; Dalin, A.M.; Kunavongkrit, A.; Einarsson, S. Reproductive performance of purebred landrace and yorkshire sows in Thailand with special reference to seasonal influence and parity number. Theriogenology 2000, 54, 481–496. [Google Scholar] [CrossRef] [PubMed]
- Belstra, B.A.; Flowers, W.L.; See, M.T. Factors affecting temporal relationships between estrus and ovulation in commercial sow farms. Anim. Reprod. Sci. 2004, 84, 377–394. [Google Scholar] [CrossRef] [PubMed]
- Gesing, L. Effect of the Timing of OvuGel Administration on Reproductive Performance in Gilts Sycnhronized for Estrus. Ph.D. Thesis, University of Illinois, Urbana-Champaign, IL, USA, 2015. [Google Scholar]
- Love, R.J.; Evans, G.; Klupiec, C. Seasonal effects on fertility in gilts and sows. J. Reprod. Fertility. Suppl. 1993, 48, 191–206. [Google Scholar] [CrossRef]
- Rydhmer, L. Genetics of sow reproduction, including puberty, oestrus, pregnancy, farrowing and lactation. Livest. Prod. Sci. 2000, 66, 1–12. [Google Scholar] [CrossRef]
- Andersson, A.M.; Einarsson, S.; Edqvist, L.E.; Lundeheim, N. Endocrine pattern and external oestrous symptoms at second and fourth oestrus in gilts. Anim. Reprod. Sci. 1984, 6, 301–310. [Google Scholar] [CrossRef]
- Soede, N.M.; Helmond, F.A.; Kemp, B. Periovulatory profiles of oestradiol, LH and progesterone in relation to oestrus and embryo mortality in multiparous sows using transrectal ultrasonography to detect ovulation. J. Reprod. Fertil. 1994, 101, 633–641. [Google Scholar] [CrossRef] [PubMed]
- Ježková, A.; Stádník, L.; Vacek, M.; Louda, F. Factors affecting the cervical mucus crystallization, the sperm survival in cervical mucus, and pregnancy rates of Holstein cows. J. Cent. Eur. Agric. 2008, 9, 377–384. [Google Scholar]
- Foxcroft, G.R.; Hunter, M.G. Basic physiology of follicular maturation in the pig. J. Reprod. Fertility. Suppl. 1985, 33, 1–19. [Google Scholar]
- Betteridge, K.J.; Raeside, J.I. Investigation of cervical mucus as an indicator of ovarian activity in pigs. J. Reprod. Fertil. 1962, 3, 410–421. [Google Scholar] [CrossRef] [PubMed]
- Luño, V.; Gil, L.; Jerez, R.A.; Malo, C.; Galé, I.; De Blas, I. Crystallisation pattern of vestibular mucus and its relation to vestibular electrical resistance in cycling sow. Vet. Rec. 2012, 171, 298. [Google Scholar] [CrossRef]
- McSweeney, D.J.; Sbarra, A.J. Pregnancy test using cervical mucus. Fertil. Steril. 1967, 18, 866–869. [Google Scholar] [CrossRef]
- Yamauchi, S.; Nakamura, S.; Yoshimoto, T.; Nakada, T.; Ashizawa, K.; Tatemoto, H. Prediction of the estrous cycle and optimal insemination time by monitoring vaginal electrical resistance (VER) in order to improve the reproductive efficiency of the Okinawan native Agu pig. Anim. Reprod. Sci. 2009, 113, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Bortolozzo, F.P.; Uemoto, D.A.; Bennemann, P.E.; Pozzobon, M.C.; Castagna, C.D.; Peixoto, C.H.; Barioni, W., Jr.; Wentz, I. Influence of time of insemination relative to ovulation and frequency of insemination on gilt fertility. Theriogenology 2005, 64, 1956–1962. [Google Scholar] [CrossRef]
- Ringwelski, J.M.; Beever, J.E.; Knox, R.V. Effect of interval between inseminations when using frozen-thawed boar sperm on fertility and fetal paternity in mature gilts. Anim. Reprod. Sci. 2013, 137, 197–204. [Google Scholar] [CrossRef]
- Soede, N.M.; Helmond, F.A.; Schouten, W.G.P.; Kemp, B. Oestrus, ovulation and peri-ovulatory hormone profiles in tethered and loose-housed sows. Anim. Reprod. Sci. 1997, 46, 133–148. [Google Scholar] [CrossRef] [PubMed]
- Hemsworth, P.H. Sexual behaviour of gilts. J. Anim. Sci. 1985, 61, 75–85. [Google Scholar] [CrossRef]
- Hemsworth, P.H.; Tilbrook, A.J. Sexual behavior of male pigs. Horm. Behav. 2007, 52, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Beach, F.A. Sexual attractivity, proceptivity, and receptivity in female mammals. Horm. Behav. 1976, 7, 105–138. [Google Scholar] [CrossRef] [PubMed]
- Blair, R.M.; Nichols, D.A.; Davis, D.L. Electronic animal identification for controlling feed delivery and detecting estrus in gilts and sows in outside pens. J. Anim. Sci. 1994, 72, 891–898. [Google Scholar] [CrossRef] [PubMed]
- Langendijk, P.; Bouwman, E.G.; Schams, D.; Soede, N.M.; Kemp, B. Effects of different sexual stimuli on oxytocin release, uterine activity and receptive behavior in estrous sows. Theriogenology 2003, 59, 849–861. [Google Scholar] [CrossRef] [PubMed]
- Špinka, M. Behaviour of pigs. In The Ethology of Domestic Animals: An Introductory Text; Jensen, P., Ed.; IFM Biology: Linköping, Sweden, 2009; pp. 177–191. [Google Scholar] [CrossRef]
- Bressers, H.P.M.; Te Brake, J.H.A.; Noordhuizen, J.P.T.M. Oestrus detection in group-housed sows by analysis of data on visits to the boar. Appl. Anim. Behav. Sci. 1991, 31, 183–193. [Google Scholar] [CrossRef]
- Rodrigues, L.F. Investigation of Single, Fixed-Time Artificial Insemination in Sows and Gilts. Masters Thesis, The University of Guelph, Ontario, Canada, 2018. [Google Scholar]
- Hunter, R.H. Physiological factors influencing ovulation, fertilization, early embryonic development and establishment of pregnancy in pigs. Br. Vet. J. 1977, 133, 461–464. [Google Scholar] [CrossRef]
- Casas, I.; Sancho, S.; Briz, M.; Pinart, E.; Bussalleu, E.; Yeste, M.; Bonet, S. Fertility after post-cervical artificial insemination with cryopreserved sperm from boar ejaculates of good and poor freezability. Anim. Reprod. Sci. 2010, 118, 69–76. [Google Scholar] [CrossRef]
- Didion, B.A.; Braun, G.D.; Duggan, M.V. Field fertility of frozen boar semen: A retrospective report comprising over 2600 AI services spanning a four year period. Anim. Reprod. Sci. 2013, 137, 189–196. [Google Scholar] [CrossRef]
- Kemp, B.; Soede, N.; Langendijk, P. Effects of boar contact and housing conditions on estrus expression in sows. Theriogenology 2005, 63, 643–656. [Google Scholar] [CrossRef]
- Langendijk, P.; Soede, N.M.; Kemp, B. Uterine activity, sperm transport, and the role of boar stimuli around insemination in sows. Theriogenology 2005, 63, 500–513. [Google Scholar] [CrossRef] [PubMed]
- Spoolder, H.A.M.; Geudeke, M.J.; Van der Peet-Schwering, C.M.C.; Soede, N.M. Group housing of sows in early pregnancy: A review of success and risk factors. Livest. Sci. 2009, 125, 1–14. [Google Scholar] [CrossRef]
- Freson, L.; Godrie, S.; Bos, N.; Jourquin, J.; Geers, R. Validation of an infra-red sensor for oestrus detection of individually housed sows. Comput. Electron. Agric. 1998, 20, 21–29. [Google Scholar] [CrossRef]
- Soede, N.M.; Hazeleger, W.; Broos, J.; Kemp, B. Vaginal temperature is not related to the time of ovulation in sows. Anim. Reprod. Sci. 1997, 47, 245–252. [Google Scholar] [CrossRef]
- Hemsworth, P.H.; Mellor, D.J.; Cronin, G.M.; Tilbrook, A.J. Scientific assessment of animal welfare. N. Z. Vet. J. 2015, 63, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Tilton, J.E.; Foxcroft, G.R.; Ziecik, A.J.; Coombs, S.L.; Williams, G.L. Time of the preovulatory LH surge in the gilt and sow relative to the onset of behavioral estrus. Theriogenology 1982, 18, 227–236. [Google Scholar] [CrossRef]
- Glencorse, D.; Grupen, C.G.; Bathgate, R. Predicting oestrus and ovulation in sows using the vulva, cervical mucus and body temperature. Anim. Prod. Sci. 2017, 57, 2473. [Google Scholar] [CrossRef]
- Ash, R.W.; Heap, R.B. Oestrogen, progesterone and corticosteroid concentrations in peripheral plasma of sows during pregnancy, parturition, lactation and after weaning. J. Endocrinol. 1975, 64, 141–154. [Google Scholar] [CrossRef] [PubMed]
- Sterning, M.; Rydhmer, L.; Einarsson, S.; Andersson, K. Oestrous symptoms in primiparous sows. 1. Duration and intensity of external oestrous symptoms. Anim. Reprod. Sci. 1994, 36, 305–314. [Google Scholar] [CrossRef]
- Sterning, M. Oestrous symptoms in primiparous sows. 2. Factors influencing the duration and intensity of external oestrous symptoms. Anim. Reprod. Sci. 1995, 40, 165–174. [Google Scholar] [CrossRef]
- Scolari, S.C.; Clark, S.G.; Knox, R.V.; Tamassia, M.A. Vulvar skin temperature changes significantly during estrus in swine as determined by digital infrared thermography. J. Swine Health Prod. 2011, 19, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Miedema, H. Investigating the Use of Behavioural, Accelerometer and Heart Rate Measurements To Predict Calving in Dairy Cows. Ph.D. Thesis, Univeristy of Edinburgh, Edinburgh, UK, 2009. [Google Scholar]
- Willemse, A.H.; Boender, J. A quantitative and qualitative analysis of oestrus in gilts. Tijdschr. Voor Diergeneeskd. 1966, 91, 349–363. [Google Scholar]
- Schmidt, M.; Lahrmann, K.H.; Ammon, C.; Berg, W.; Schön, P.; Hoffmann, G. Assessment of body temperature in sows by two infrared thermography methods at various body surface locations. J. Swine Health Prod. 2013, 21, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, L.J.; Jensen, K.H. The influence of housing-systems for pregnant sows on the reproductive behaviour at oestrus. Acta Agric. Scand. 1989, 39, 331–343. [Google Scholar] [CrossRef]
- Bolarín, A.; Roca, J.; Rodríguez-Martínez, H.; Hernández, M.; Vázquez, J.M.; Martínez, E.A. Dissimilarities in sows’ ovarian status at the insemination time could explain differences in fertility between farms when frozen-thawed semen is used. Theriogenology 2006, 65, 669–680. [Google Scholar] [CrossRef]
- Steverink, D.W.B.; Soede, N.M.; Groenland, G.J.R.; Van Schie, F.W.; Noordhuizen, J.P.T.M.; Kemp, B. Duration of estrus in relation to reproduction results in pigs on commercial farms. J. Anim. Sci. 1999, 77, 801–809. [Google Scholar] [CrossRef] [PubMed]
- Spencer, K.W.; Purdy, P.H.; Blackburn, H.D.; Spiller, S.F.; Stewart, T.S.; Knox, R.V. Effect of number of motile, frozen-thawed boar sperm and number of fixed-time inseminations on fertility in estrous-synchronized gilts. Anim. Reprod. Sci. 2010, 121, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Roca, J.; Parrilla, I.; Rodriguez-Martinez, H.; Gil, M.A.; Cuello, C.; Vazquez, J.M.; Martinez, E.A. Approaches towards efficient use of boar semen in the pig industry. Reprod. Domest. Anim. 2011, 46, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Broekhuijse, M.L.W.J.; Feitsma, H.; Gadella, B.M. Field data analysis of boar semen quality. Reprod. Domest. Anim. 2011, 46, 59–63. [Google Scholar] [CrossRef]
- Kemp, B.; Steverink, D.W.D.; Soede, N.M. Herd Management in Sows: Optimising Insemination Strategies. Reprod. Domest. Anim. 1998, 33, 159–164. [Google Scholar] [CrossRef]
- Hockey, C.D.; Morton, J.M.; Norman, S.T.; McGowan, M.R. Evaluation of a neck mounted 2-hourly activity meter system for detecting cows about to ovulate in two paddock-based Australian dairy herds. Reprod. Domest. Anim. 2010, 45, e107–e117. [Google Scholar] [CrossRef] [PubMed]
- Řezáč, P.; Olic, L. A relationship between the impedance pattern of the vaginal mucous membrane after weaning and the conception of sows inseminated according to the detection of the standing reflex. Sci. Agric. Bohemoslov. 1988, 20, 111–118. [Google Scholar]
- Aboul-Ela, M.B.; Topps, J.H.; Macdonald, D.C. Relationships between intravaginal electrical resistance, cervicovaginal mucus characteristics and blood progesterone and LH. Anim. Reprod. Sci. 1983, 5, 259–273. [Google Scholar] [CrossRef]
- Fisher, A.D.; Morton, R.; Dempsey, J.M.A.; Henshall, J.M.; Hill, J.R. Evaluation of a new approach for the estimation of the time of the LH surge in dairy cows using vaginal temperature and electrodeless conductivity measurements. Theriogenology 2008, 70, 1065–1074. [Google Scholar] [CrossRef]
- Rutten, C.J.; Velthuis, A.G.J.; Steeneveld, W.; Hogeveen, H. Invited review: Sensors to support health management on dairy farms. J. Dairy Sci. 2013, 96, 1928–1952. [Google Scholar] [CrossRef] [PubMed]
- Cornou, C.; Lundbye-Christensen, S. Classifying sows’ activity types from acceleration patterns. An application of the Multi-Process Kalman Filter. Appl. Anim. Behav. Sci. 2008, 111, 262–273. [Google Scholar] [CrossRef]
- Goudet, G.; Liere, P.; Pianos, A.; Fernandez, N.; Cambourg, A.; Savoie, J.; Staub, C.; Venturi, E.; Douet, C.; Ferchaud, S.; et al. Evolution of steroid concentrations in saliva from immature to pubertal gilts for the identification of biomarkers of gilts receptivity to boar effect. Livest. Sci. 2019, 228, 5–17. [Google Scholar] [CrossRef]
- Li, C.; Song, C.; Qi, K.; Liu, Y.; Dou, Y.; Li, X.; Qiao, R.; Wang, K.; Han, X.; Li, X. Identification of Estrus in Sows Based on Salivary Proteomics. Animals 2022, 12, 1656. [Google Scholar] [CrossRef]
- Lee, W.Y.; Chai, S.Y.; Lee, K.H.; Park, H.J.; Kim, J.H.; Kim, B.; Kim, N.H.; Jeon, H.S.; Kim, I.C.; Choi, H.S.; et al. Identification of the DDAH2 Protein in Pig Reproductive Tract Mucus: A Putative Oestrus Detection Marker. Reprod. Domest. Anim. 2012, 48, e13–e16. [Google Scholar] [CrossRef] [PubMed]
- Zink, M.F.; Diehl, J.R. Efficacy of using vaginal conductivity as an indicator of the optimum time to breed in swine. J. Anim. Sci. 1984, 59, 869–874. [Google Scholar] [CrossRef]
- Simões, V.G.; Lyazrhi, F.; Picard-Hagen, N.; Gayrard, V.; Martineau, G.P.; Waret-Szkuta, A. Variations in the vulvar temperature of sows during proestrus and estrus as determined by infrared thermography and its relation to ovulation. Theriogenology 2014, 82, 1080–1085. [Google Scholar] [CrossRef]
- Busnel, A. How to Automatically Predict Sow Ovulation? Dilepix. 2021, Volume 2024. Available online: https://www.dilepix.com/en/blog/gwiz-automatic-prediction-sow-ovulation (accessed on 15 December 2024).
- Song, S.; Kang, T.; Lim, K.; Kim, K.; Yi, H. Sow posture analysis and estrus prediction using closed-circuit television cameras. IEEE Access 2024, 12, 17460–17466. [Google Scholar] [CrossRef]
- Verhoeven, S.; Chantziaras, I.; Bernaerdt, E.; Loicq, M.; Verhoeven, L.; Maes, D. The evaluation of an artificial intelligence system for estrus detection in sows. Porc. Health Manag. 2023, 9, 9. [Google Scholar] [CrossRef] [PubMed]
- Lei, K.; Zong, C.; Du, X.; Teng, G.; Feng, F. Oestrus analysis of sows based on bionic boars and machine vision technology. Animals 2021, 11, 1485. [Google Scholar] [CrossRef]
- Cornou, C.; Lundbye-Christensen, S. Classification of sows’ activity types from acceleration patterns using univariate and multivariate models. Comput. Electron. Agric. 2010, 72, 53–60. [Google Scholar] [CrossRef]
- Escalante, H.J.; Rodriguez, S.V.; Cordero, J.; Kristensen, A.R.; Cornou, C. Sow-activity classification from acceleration patterns: A machine learning approach. Comput. Electron. Agric. 2013, 93, 17–26. [Google Scholar] [CrossRef]
- Pan, W.; Li, H.; Zhou, X.; Jiao, J.; Zhu, C.; Zhang, Q. Research on pig sound recognition based on deep neural network and hidden markov models. Sensors 2024, 24, 1269. [Google Scholar] [CrossRef] [PubMed]
- Cerón, J.J.; Contreras-Aguilar, M.D.; Escribano, D.; Martínez-Miró, S.; López-Martínez, M.J.; Ortín-Bustillo, A.; Franco-Martínez, L.; Rubio, C.P.; Muñoz-Prieto, A.; Tvarijonaviciute, A.; et al. Basics for the potential use of saliva to evaluate stress, inflammation, immune system, and redox homeostasis in pigs. BMC Vet. J. 2022, 18, 81. [Google Scholar] [CrossRef]
- Aydına, E.B.; Aydına, M.; Sezginturk, M.K. Biosensors for saliva biomarkers. Adv. Clin. Chem. 2023, 113, 1–41. [Google Scholar] [CrossRef]
- Lewis, J.G. Steroid analysis in saliva: An overview. Clin. Biochemist. Rev. 2006, 27, 139–146. [Google Scholar]
- Luño, V.; Gil, L.; Jereza, R.A.; Malo, C.; González, N.; Grandía, J.; De Blas, I. Determination of ovulation time in sows based on skin temperature and genital electrical resistance changes. Vet. Rec. 2013, 172, 579. [Google Scholar] [CrossRef] [PubMed]
- Haynes, N.B. Changes in pig cervical mucus in relation to the oestrous cycle. J. Reprod. Fertil. 1971, 27, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Pluta, K.; McGettigan, P.A.; Reid, C.J.; Browne, J.A.; Irwin, J.A.; Tharmalingam, T.; Corfield, A.; Baird, A.; Loftus, B.J.; Evans, A.C.O.; et al. Molecular aspects of mucin biosynthesis and mucus formation in the bovine cervix during the periestrous period. Physiol. Genom. 2012, 44, 1165–1178. [Google Scholar] [CrossRef] [PubMed]
- Rath, D.; Schuberth, H.J.; Coy, P.; Taylor, U. Sperm interactions from insemination to fertilization. Reprod. Domest. Anim. 2008, 43, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Lai, S.K.; Wang, Y.Y.; Wirtz, D.; Hanes, J. Micro- and macrorheology of mucus. Adv. Drug Deliv. Rev. 2009, 61, 86–100. [Google Scholar] [CrossRef]
- Branscheid, W.; Holtz, W. Histochemical Examination of the Vaginal Epithelium of Sows at Various Stages of the Estrus Cycle. Anat. Histol. Embryol. 1988, 17, 12–26. [Google Scholar] [CrossRef]
- Chretien, F.C.; Gernigon, C.; David, G.; Psychoyos, A. The ultrastructure of human cervical mucus under scanning electron microscopy. Fertil. Steril. 1973, 24, 746–757. [Google Scholar] [CrossRef] [PubMed]
- Řezáč, P.; Vašíčová, D.; Pöschl, M. Changes of electrical impedance in vaginal vestibule in cyclic sows. Anim. Reprod. Sci. 2003, 79, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Abusineina, M. A study of the fern-like crystalline patterns of the cervical and vaginal mucus of cattle. Vet. Rec. 1962, 74, 619–621. [Google Scholar]
- Gruberova, J.; Bikova, S.; Ulcova-Gallova, Z.; Reischig, J.; Rokyta, Z. Ovulatory mucus and its pH, arborization and sperm agglutination antibodies in women with fertility disorders. Ceska Gynekol. 2006, 71, 36–40. [Google Scholar] [PubMed]
- Pardo-Carmona, B.; Moyano, M.R.; Fernández-Palacios, R.; Pérez-Marín, C.C. Saliva crystallisation as a means of determining optimal mating time in bitches. J. Small Anim. Pract. 2010, 51, 437–442. [Google Scholar] [CrossRef]
- Wei, S.; Zou, W.; Zhang, T.; Zhang, Y.; Gong, Z.; Li, Y. Effects of GnRH agonist immunization on vaginal electrical resistance, FSH, LH, and ovaries in prepubertal female sheep. Czech J. Anim. Sci. 2013, 58, 420–428. [Google Scholar] [CrossRef]
- Wearing, M.P. The crystallization of cervical mucus; a critical analysis based on clinical research. Can. Med. Assoc. J. 1959, 81, 82–87. [Google Scholar] [PubMed]
- Cassar, G.; Amezcua, R.; Friendship, R.M. New tool for determining estrus and ovulation in weaned sows. In Proceedings of the 30th Annual Centralia Swine Research Update, Kirkton, ON, Canada, 26 January 2011; pp. 7–8. [Google Scholar]
- Ko, J.C.H.; Evans, L.E.; Hopkins, S.M. Vaginal conductivity as an indicator for optimum breeding time in the sow after weaning. Theriogenology 1989, 32, 961–968. [Google Scholar] [CrossRef]
- Dusza, L.; Opałka, M.; Kamińska, B.; Kamiński, T.; Ciereszko, R.E. The relationship between electrical resistance of vaginal mucus and plasma hormonal parameters during periestrus in sows. Theriogenology 1996, 45, 1491–1503. [Google Scholar] [CrossRef]
- Hidalgo, D.M.; Cassar, G.; Manjarin, R.; Dominguez, J.C.; Friendship, R.M.; Kirkwood, R.N. Relationship between vaginal mucus conductivity and time of ovulation in weaned sows. Can. J. Vet. Res. 2015, 79, 151–154. [Google Scholar] [PubMed]
- Gupta, K.A.; Purohit, G.N. Use of vaginal electrical resistance (VER) to predict estrus and ovarian activity, its relationship with plasma progesterone and its use for insemination in buffaloes. Theriogenology 2001, 56, 235–245. [Google Scholar] [CrossRef]
- Glencorse, D.; Grupen, C.G.; Bathgate, R. Vaginal and vestibular electrical resistance as an alternative marker for optimum timing of artificial insemination with liquid-stored and frozen-thawed spermatozoa in sows. Sci. Rep. 2023, 13, 12103. [Google Scholar] [CrossRef] [PubMed]
- Řezáč, P.; Křivánek, I.; Urban, T.; Borkovcová, M.; Pöschl, M. Relationship of vaginal impedance with speed of return to oestrus after weaning, oestrous behaviour, parity and lactation length in cyclic sows. Anim. Reprod. Sci. 2009, 114, 238–248. [Google Scholar] [CrossRef]
- Řezáč, P. Potential applications of electrical impedance techniques in female mammalian reproduction. Theriogenology 2008, 70, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Řezáč, P.; Pöschl, M.; Křivánek, I. Effect of probe location on changes in vaginal electrical impedance during the porcine estrous cycle. Theriogenology 2003, 59, 1325–1334. [Google Scholar] [CrossRef]
- Leidl, W.; Stolla, R. Measurement of electric resistance of the vaginal mucus as an aid for heat detection. Theriogenology 1976, 6, 237–249. [Google Scholar] [CrossRef] [PubMed]
- Dybala, J.; Zmudzinska, A.; Wisniewska, J.; Biegniewska, M.; Jelinska, A. Relationship between some morphometric traits of reproductive system of primiparous sows and their fertility. Res. Pig Breed. 2008, 2, 9–13. [Google Scholar]
- Gama, L.L.; Johnson, R.K. Changes in ovulation rate, uterine capacity, uterine dimensions, and parity effects with selection for litter size in swine. J. Anim. Sci. 1993, 71, 608–617. [Google Scholar] [CrossRef] [PubMed]
- Bono, C.; Cornou, C.; Lundbye-Christensen, S.; Ringgaard Kristensen, A. Dynamic production monitoring in pig herds II. Modeling and monitoring farrowing rate at herd level. Livest. Sci. 2013, 155, 92–102. [Google Scholar] [CrossRef]
- Xu, Z.; Sullivan, R.; Zhou, J.; Bromfield, C.; Lim, T.T.; Safranski, T.J.; Yan, Z. Detecting sow vulva size change around estrus using machine vision technology. Smart Agric. Technol. 2023, 3, 100090. [Google Scholar] [CrossRef]
- Xu, Z.; Zhou, J.; Bromfield, C.; Lim, T.T.; Safranski, T.J.; Calyam, P.P. Developing a sow vulva volume estimation pipeline based on LiDAR imagery and deep learning. J. Am. Soc. Agric. Biol. Eng. 2024, 67, 649–661. [Google Scholar] [CrossRef]
- Almadani, I.; Abuhussein, M.; Robinson, A.L. YOLOv8-based estimation of estrus in sows through reproductive organ swelling analysis using a single camera. Digital 2024, 4, 898–913. [Google Scholar] [CrossRef]
- Bressers, H.P.M.; Te Brake, J.H.A.; Jansen, M.B.; Nijenhuis, P.J.; Noordhuizen, J.P.T.M. Monitoring individual sows: Radiotelemetrically recorded ear base temperature changes around farrowing. Livest. Prod. Sci. 1994, 37, 353–361. [Google Scholar] [CrossRef]
- Hahn, G.L.; Eigenberg, R.A.; Nienaber, J.A.; Littledike, E.T. Measuring physiological responses of animals to environmental stressors using a microcomputer-based portable datalogger. J. Anim. Sci. 1990, 68, 2658–2665. [Google Scholar] [CrossRef] [PubMed]
- Osawa, T.; Tanaka, M.; Morimatsu, M.; Hashizume, K.; Syuto, B. Use of infrared thermography to detect the change in the body surface temperature with estrus in the cow. In Proceedings of the Society for Theriogenology Annual Conference and Symposium, Lexington, KY, USA, 4–7 August 2004. [Google Scholar]
- Sykes, D.J.; Couvillion, J.S.; Cromiak, A.; Bowers, S.; Schenck, E.; Crenshaw, M.; Ryan, P.L. The use of digital infrared thermal imaging to detect estrus in gilts. Theriogenology 2012, 78, 147–152. [Google Scholar] [CrossRef]
- Talukder, S.; Kerrisk, K.L.; Ingenhoff, L.; Thomson, P.C.; Garcia, S.C.; Celi, P. Infrared technology for estrus detection and as a predictor of time of ovulation in dairy cows in a pasture-based system. Theriogenology 2014, 81, 925–935. [Google Scholar] [CrossRef] [PubMed]
- Soerensen, D.D.; Pedersen, L.J. Infrared skin temperature measurements for monitoring health in pigs: A review. Acta Vet. Scand. 2015, 57, 5. [Google Scholar] [CrossRef]
- Talukder, S.; Thomson, P.C.; Kerrisk, K.L.; Clark, C.E.F.; Celi, P. Evaluation of infrared thermography body temperature and collar-mounted accelerometer and acoustic technology for predicting time of ovulation of cows in a pasture-based system. Theriogenology 2015, 83, 739–748. [Google Scholar] [CrossRef]
- Simoes, V.J.G. Variations in the Vulvar Temperature of Sows as Determined by Infrared Thermography and Its Relation to Ovulation. Ph.D. Thesis, University of Lisbon, Lisbon, Portugal, 2012. [Google Scholar]
- Green, A.R.; Gates, R.S.; Lawrence, L.M.; Wheeler, E.F. Continuous recording reliability analysis of three monitoring systems for horse core body temperature. Comput. Electron. Agric. 2008, 61, 88–95. [Google Scholar] [CrossRef]
- Kashiha, M.; Bahr, C.; Ott, S.; Moons, C.P.H.; Niewold, T.A.; Ödberg, F.O.; Berckmans, D. Automatic identification of marked pigs in a pen using image pattern recognition. Comput. Electron. Agric. 2013, 93, 111–120. [Google Scholar] [CrossRef]
- Saint-Dizier, M.; Chastant-Maillard, S. Towards an Automated Detection of Oestrus in Dairy Cattle. Reprod. Domest. Anim. 2012, 47, 1056–1061. [Google Scholar] [CrossRef]
- Aoki, M.; Kimura, K.; Suzuki, O. Predicting time of parturition from changing vaginal temperature measured by data-logging apparatus in beef cows with twin fetuses. Anim. Reprod. Sci. 2005, 86, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Fujomoto, Y.; Kimura, E.; Sawada, T.; Ishikawa, M.; Matsunaga, H.; Mori, J. Change in rectal temperature, and heart and respiration rate of dairy cows before parturition. Jpn. J. Zootech. Sci. 1988, 59, 301–305. [Google Scholar]
- Czaja, J.A.; Butera, P.C. Body temperature and temperature gradients: Changes during the estrous cycle and in response to ovarian steroids. Physiol. Behav. 1986, 36, 591–596. [Google Scholar] [CrossRef]
- Andrews, C.J.; Potter, M.A.; Thomas, D.G. Quantification of activity in domestic cats (Felis catus) by accelerometry. Appl. Anim. Behav. Sci. 2015, 173, 17–21. [Google Scholar] [CrossRef]
- Jensen, P. Nest building in domestic sows: The role of external stimuli. Anim. Behav. 1993, 45, 351–358. [Google Scholar] [CrossRef]
- De Mol, R.M.; Keen, A.; Kroeze, G.H.; Achten, J.M.F.H. Description of a detection model for oestrus and diseases in dairy cattle based on time series analysis combined with a Kalman filter. Comput. Electron. Agric. 1999, 22, 171–185. [Google Scholar] [CrossRef]
- Forbes, J.M. Voluntary Food Intake and Diet Selection in Farm Animals, 2nd ed.; CAB International: Wallingford, UK, 1995. [Google Scholar]
- Sharifuzzaman, M.; Mun, H.-S.; Ampode, K.M.B.; Lagua, E.B.; Park, H.-R.; Kim, Y.-H.; Hasan, M.K.; Yang, C.-J. Technological Tools and Artificial Intelligence in Estrus Detection of Sows—A Comprehensive Review. Animals 2024, 14, 471. [Google Scholar] [CrossRef] [PubMed]
- Papailiou, A.; Sullivan, E.; Cameron, J.L. Behaviors in rhesus monkeys (Macaca mulatta) associated with activity counts measured by accelerometer. Am. J. Primatol. 2008, 70, 185–190. [Google Scholar] [CrossRef]
- Härtel, S.; Gnam, J.P.; Löffler, S.; Bös, K. Estimation of energy expenditure using accelerometers and activity-based energy models-validation of a new device. Eur. Rev. Aging Phys. Act. 2011, 8, 109–114. [Google Scholar] [CrossRef]
- Cornou, C.; Lundbye-Christensen, S.; Kristensen, A.R. Modelling and monitoring sows’ activity types in farrowing house using acceleration data. Comput. Electron. Agric. 2011, 76, 316–324. [Google Scholar] [CrossRef]
- Marchesi, G.; Leonardi, S.; Tangorra, F.M.; Calcante, A.; Beretta, E.; Pofcher, E.; Lazzari, M. Evaluation of an electronic system for automatic calving detection on a dairy farm. Anim. Prod. Sci. 2013, 53, 1112–1114. [Google Scholar] [CrossRef]
- Cornou, C.; Heiskanen, T.; Kristensen, A.R.; Madsen, K.S.; Bonnet, P. Oestrus detection for group housed sows: Lessons from a sensor network based experiment. In Proceedings of the Conference on Design, Automation and Test in Europe, Munich, Germany, 6–10 March 2006. [Google Scholar]
- Alvarenga, F.A.P.; Borges, I.; Palkovič, L.; Rodina, J.; Oddy, V.H.; Dobos, R.C. Using a three-axis accelerometer to identify and classify sheep behaviour at pasture. Appl. Anim. Behav. Sci. 2016, 181, 91–99. [Google Scholar] [CrossRef]
- Ruiz-Garcia, L.; Lunadei, L.; Barreiro, P.; Robla, J.I. A review of wireless sensor technologies and applications in agriculture and food industry: State of the art and current trends. Sensors 2009, 9, 4728–4750. [Google Scholar] [CrossRef] [PubMed]
- Schön, P.C.; Puppe, B.; Manteuffel, G. Automated recording of stress vocalisations as a tool to document impaired welfare in pigs. Anim. Welf. 2004, 13, 105–110. [Google Scholar] [CrossRef]
- Chanvallon, A.; Coyral-Castel, S.; Gatien, J.; Lamy, J.M.; Ribaud, D.; Allain, C.; Clément, P.; Salvetti, P. Comparison of three devices for the automated detection of estrus in dairy cows. Theriogenology 2014, 82, 734–741. [Google Scholar] [CrossRef]
- Ostersen, T.; Cornou, C.; Kristensen, A.R. Detecting oestrus by monitoring sows’ visits to a boar. Comput. Electron. Agric. 2010, 74, 51–58. [Google Scholar] [CrossRef]
- Buré, R.G.; Houwers, H.W.J. Automation in group housing of sows. In Proceedings of the Eleventh International Congress on Agricultural Engineering, Dublin, Ireland, 4–8 September 1989. [Google Scholar]
- Paolucci, M.; Di Giambattista, A.; Sylla, L.; Menichelli, M.; Banchio, A.; Monaci, M. Predicting time of parturition in Holstein Friesian cows by using C6 Birth Control. Reprod. Domest. Anim. 2008, 43, 57–58. [Google Scholar]
- Korthals, R.L. The effectiveness of using electronic identification for the identification of estrus in swine. In Proceedings of the American Society of Agricultural Engineers Annual International Meeting, Toronto, ON, Canada, 18–21 July 1999; p. 994213. [Google Scholar]
- Nielsen, L.R.; Pedersen, A.R.; Herskin, M.S.; Munksgaard, L. Quantifying walking and standing behaviour of dairy cows using a moving average based on output from an accelerometer. Appl. Anim. Behav. Sci. 2010, 127, 12–19. [Google Scholar] [CrossRef]
- Brown, J.L.; Graham, L.H.; Wu, J.M.; Collins, D.; Swanson, W.F. Reproductive endocrine responses to photoperiod and exogenous gonadotropins in the Pallas’ cat (Otocolobus manul). Zoo Biol. 2002, 21, 347–364. [Google Scholar] [CrossRef]
- Henriksen, H.B.; Andersen, R.; Hewison, A.J.M.; Gaillard, J.M.; Bronndal, M.; Jonsson, S.; Linnell, J.D.C.; Odden, J. Reproductive biology of captive female Eurasian lynx, Lynx lynx. Eur. J. Wildl. Res. 2005, 51, 151–156. [Google Scholar] [CrossRef]
- Moreira, N.; Monteiro-Filho, E.L.A.; Moraes, W.; Swanson, W.F.; Graham, L.H.; Pasquali, O.L.; Gomes, M.L.F.; Morais, R.N.; Wildt, D.E.; Brown, J.L. Reproductive steroid hormones and ovarian activity in felids of the Leopardus genus. Zoo Biol. 2001, 20, 103–116. [Google Scholar] [CrossRef]
- Nalon, E.; Conte, S.; Maes, D.; Tuyttens, F.A.M.; Devillers, N. Assessment of lameness and claw lesions in sows. Livest. Sci. 2013, 156, 10–23. [Google Scholar] [CrossRef]
- Pastell, M.; Aisla, A.; Hautala, M.; Poikalainen, V.; Praks, J.; Ahokas, J. Measuring lameness in dairy cattle using force sensors. In Proceedings of the International Commission of Agricultural Engineering World Congress, Bonn, Germany, 3–7 September 2006. [Google Scholar]
- Tani, Y.; Yokota, Y.; Yayota, M.; Ohtani, S. Automatic recognition and classification of cattle chewing activity by an acoustic monitoring method with a single-axis acceleration sensor. Comput. Electron. Agric. 2013, 92, 54–65. [Google Scholar] [CrossRef]
- Thompson, R.; Matheson, S.M.; Plötz, T.; Edwards, S.A.; Kyriazakis, I. Porcine lie detectors: Automatic quantification of posture state and transitions in sows using inertial sensors. Comput. Electron. Agric. 2016, 127, 521–530. [Google Scholar] [CrossRef] [PubMed]
- Erez, B.; Hartsock, T.G. A microcomputer-photocell system to monitor periparturient activity of sows and transfer data to remote location. J. Anim. Sci. 1990, 68, 88–94. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Eggert, J.; Cheng, W.; Zhao, X.; Millspaugh, J.; Moll, R.; Beringer, J.; Sartwell, J. Energy-aware portable video communication system design for wildlife activity monitoring. IEEE Circuits Syst. Mag. 2008, 8, 25–37. [Google Scholar] [CrossRef]
- Esliger, D.W.; Tremblay, M.S. Physical activity and inactivity profiling: The next generation. Appl. Physiol. Nutr. Metab. 2007, 32, S195–S207. [Google Scholar] [CrossRef]
- Hendelman, D.; Miller, K.; Bagget, C.; Debold, E.; Freedson, P. Validity of accelerometery for the assessment of moderate intensity physical activity in the field. Med. Sci. Sports Exerc. 2000, 32, 442–449. [Google Scholar] [CrossRef]
- Staudenmayer, J.; Pober, D.; Crouter, S.; Bassett, D.; Freedson, P. An artificial neural network to estimate physical activity energy expenditure and identify physical activity type from an accelerometer. J. Appl. Physiol. 2009, 107, 1300–1307. [Google Scholar] [CrossRef]
- Trost, S.G.; Pate, R.R.; Freedson, P.S.; Sallis, J.F.; Taylor, W.C. Using objective physical activity measures with youth: How many days of monitoring are needed? Med. Sci. Sports Exerc. 2000, 32, 426–431. [Google Scholar] [CrossRef]
- McGowan, J.E.; Burke, C.R.; Jago, J.G. Validation of a technology for objectively measuring behaviour in dairy cows and its application for oestrous detection. In Proceedings of the New Zealand Society of Animal Production, Wanaka, New Zealand, 20–22 June 2007; pp. 136–142. [Google Scholar]
- Brown, D.C.; Boston, R.C.; Farrar, J.T. Use of an activity monitor to detect response to treatment in dogs with osteoarthritis. J. Am. Vet. Med. Assoc. 2010, 237, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, S.; Izawa, M.; Kato, A.; Ropert-Coudert, Y.; Naito, Y. A new technique for monitoring the detailed behaviour of terrestrial animals: A case study with the domestic cat. Appl. Anim. Behav. Sci. 2005, 94, 117–131. [Google Scholar] [CrossRef]
- Schneidewind, S.J.; Al Merestani, M.R.; Schmidt, S.; Schmidt, T.; Thöne-Reineke, C.; Wiegard, M. Rumination Detection in Sheep: A Systematic Review of Sensor-Based Approaches. Animals 2023, 13, 3756. [Google Scholar] [CrossRef]
- Oliviero, C.; Pastell, M.; Heinonen, M.; Heikkonen, J.; Valros, A.; Ahokas, J.; Vainio, O.; Peltoniemi, O.A.T. Using movement sensors to detect the onset of farrowing. Biosyst. Eng. 2008, 100, 281–285. [Google Scholar] [CrossRef]
- Martiskainen, P.; Järvinen, M.; Skön, J.P.; Tiirikainen, J.; Kolehmainen, M.; Mononen, J. Cow behaviour pattern recognition using a three-dimensional accelerometer and support vector machines. Appl. Anim. Behav. Sci. 2009, 119, 32–38. [Google Scholar] [CrossRef]
- Oliviero, C.; Heinonen, M.; Valros, A.; Hälli, O.; Peltoniemi, O.A.T. Effect of the environment on the physiology of the sow during late pregnancy, farrowing and early lactation. Anim. Reprod. Sci. 2008, 105, 365–377. [Google Scholar] [CrossRef]
- Preston, T.; Baltzer, W.; Trost, S. Accelerometer validity and placement for detection of changes in physical activity in dogs under controlled conditions on a treadmill. Res. Vet. Sci. 2012, 93, 412–416. [Google Scholar] [CrossRef]
- Dobos, R.C.; Dickson, S.; Bailey, D.W.; Trotter, M.G. The use of GNSS technology to identify lambing behaviour in pregnant grazing Merino ewes. Anim. Prod. Sci. 2014, 54, 1722–1727. [Google Scholar] [CrossRef]
- Vázquez Diosdado, J.A.; Barker, Z.E.; Hodges, H.R.; Amory, J.R.; Croft, D.P.; Bell, N.J.; Codling, E.A. Classification of behaviour in housed dairy cows using an accelerometer-based activity monitoring system. Anim. Biotelemetry 2015, 3, 15. [Google Scholar] [CrossRef]
- Lee, C.Y.; Lee, J.J. Estimation of walking behavior using accelerometers in gait rehabilitation. Int. J. Hum.-Friendly Welf. Robot. Syst. 2002, 3, 32–36. [Google Scholar]
- Brown, D.D.; Lapoint, S.; Kays, R.; Heidrich, W.; Kümeth, F.; Wikelski, M. Accelerometer-informed GPS telemetry: Reducing the trade-off between resolution and longevity. Wildl. Soc. Bull. 2012, 36, 139–146. [Google Scholar] [CrossRef]
- Artmann, R. Electronic identification systems: State of the art and their further development. Comput. Electron. Agric. 1999, 24, 5–26. [Google Scholar] [CrossRef]
- Scheel, C.; Traulsen, I.; Auer, W.; Müller, K.; Stamer, E.; Krieter, J. Detecting lameness in sows from ear tag-sampled acceleration data using wavelets. Animal 2017, 11, 2076–2083. [Google Scholar] [CrossRef] [PubMed]
- Oczak, M.; Maschat, K.; Baumgartner, J. Dynamics of Sows’ Activity Housed in Farrowing Pens with Possibility of Temporary Crating might Indicate the Time When Sows Should be Confined in a Crate before the Onset of Farrowing. Animals 2019, 10, 6. [Google Scholar] [CrossRef]
- Vu, T.; Lin, F.; Alshurafa, N.; Xu, W. Wearable food intake monitoring technologies: A comprehensive review. Computers 2017, 6, 4. [Google Scholar] [CrossRef]
- Watanabe, N.; Sakanoue, S.; Kawamura, K.; Kozakai, T. Development of an automatic classification system for eating, ruminating and resting behavior of cattle using an accelerometer. Grassl. Sci. 2008, 54, 231–237. [Google Scholar] [CrossRef]
- Edwards, S.A.; Armsby, A.W.; Large, J.W. An electronic individual feeding system for group-housed dry sows. Farm Build. Eng. 1984, 1, 25. [Google Scholar]
- Rotecna. New Heat Detector for Sows by Rotecna. 2022, Volume 2024. Available online: https://www.rotecna.com/en/blog/rotecna-develops-a-new-heat-detector-for-sows/ (accessed on 15 December 2024).
- BigDutchman. BioTag+ The Intelligent Ear Tag for Sows with Integrated Temperature and Motion Sensor . Available online: https://www.bigdutchman.com/en/products/pig-production/sow-management/biotag/ (accessed on 15 December 2024).
Technology | Benefits | Disadvantages | References |
---|---|---|---|
Biomarkers in saliva | Minimally invasive | Not currently possible in real time | [83,84] |
Biomarkers in cervical mucus | Minimally invasive | Can be difficult to collect samples; not currently possible in real time | [85] |
Mucus crystallisation | Minimally invasive, low tech | Currently subjective and time-consuming | [37,38] |
Electrical resistance | Already commercially available, non-invasive | Variable success rates, potential biosecurity threat | [25,86] |
Body temperature | Can be performed remotely; low cost | Currently not suitable for group-housed sows | [87,88] |
Behavioural analysis—video | Can be performed remotely; incorporation with machine learning would remove labour requirements | Technology not yet developed to be sufficiently accurate; high setup costs | [89,90] |
Behavioural analysis—electronic detection | Can be performed remotely | High setup costs; variable accuracy reported in some systems | [47,91] |
Behavioural analysis—pedometers and accelerometers | Can be performed remotely, already commercially available | High setup costs; ear tag attachment not always secure | [92,93] |
Auditory analysis | Can be performed remotely | Managing background interference in a noisy environment; not suitable for group-housed sows | [94] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Glencorse, D.; Grupen, C.G.; Bathgate, R. A Review of the Monitoring Techniques Used to Detect Oestrus in Sows. Animals 2025, 15, 331. https://doi.org/10.3390/ani15030331
Glencorse D, Grupen CG, Bathgate R. A Review of the Monitoring Techniques Used to Detect Oestrus in Sows. Animals. 2025; 15(3):331. https://doi.org/10.3390/ani15030331
Chicago/Turabian StyleGlencorse, Dannielle, Christopher G. Grupen, and Roslyn Bathgate. 2025. "A Review of the Monitoring Techniques Used to Detect Oestrus in Sows" Animals 15, no. 3: 331. https://doi.org/10.3390/ani15030331
APA StyleGlencorse, D., Grupen, C. G., & Bathgate, R. (2025). A Review of the Monitoring Techniques Used to Detect Oestrus in Sows. Animals, 15(3), 331. https://doi.org/10.3390/ani15030331