Development and Progression of Bovine Respiratory Disease Measured Using Clinical Respiratory Scoring and Thoracic Ultrasonography in Preweaned Calves on Dairy Farms in the United Kingdom: A Prospective Cohort Study
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Farm Selection and Calf Enrolment
2.2. Collection of Health and Morphometric Data
2.3. Disease Definitions
2.4. Measures of Disease Frequency
2.5. Data Analysis
3. Results
3.1. Study Population
3.2. Disease Frequency
3.2.1. Prevalence and Incidence
3.2.2. New, Repeat, and Chronic Cases
3.2.3. BRD Subtype
3.3. Inferential Statistics
3.3.1. Chronic and Repeat Cases
3.3.2. BRD Subtype
3.3.3. TUS Score
3.3.4. Consolidation Depth
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Clinical Sign | California Respiratory Score 1 | Wisconsin Respiratory Score 2 | ||||||
---|---|---|---|---|---|---|---|---|
Weighting | Criteria 3 | Weighting | Criteria 3 | |||||
Normal | Abnormal | Normal | Abnormal | |||||
Mi 3 | Mo 3 | Sev 3 | ||||||
Ocular discharge | 0 | 2 | N = Normal Ab = Spontaneous cough | 0 | 1 | 2 | 3 | N = Normal Mi = Small amount of ocular discharge Mo = Moderate amount of bilateral discharge S = Heavy ocular discharge |
Nasal discharge | 0 | 4 | N = Normal Ab = Any discharge | 0 | 1 | 2 | 3 | N = Serous discharge Mi = Unilateral cloudy discharge Mo = Bilateral, cloudy, or excessive discharge S = Copious mucopurulent discharge |
Ear droop or head tilt | 0 | 5 | N = Normal, an ear flick, or head shake Ab = Ear droop or head tilt | 0 | 1 | 2 | 3 | N = Normal Mi = Ear flick or head shake Mo = Slight unilateral droop S = Head tilt or bilateral droop |
Cough | 0 | 2 | N = None Ab = Any | 0 | 1 | 2 | 3 | N = Absent Mi = Inducible single cough Mo = Inducible repeated or occasional spontaneous cough S = Repeated spontaneous cough |
Breathing | 0 | 2 | N = Normal respiration Ab = Abnormal respiration | NA | NA | NA | NA | |
Temperature | 0 | 2 | N = <39.2 °C Ab = ≥39.2 °C | 0 | 1 | 2 | 3 | N = 37.8–38.2 °C Mi = 38.3–38.8 °C Mo = 38.9−39.3 °C S = ≥39.4 °C |
Thoracic Ultrasound Score 1 | TUS2 | TUS3 | Defininition |
---|---|---|---|
0 | − | − | Normal aerated lung |
1 | − | − | Diffuse comet tails |
2 | + | − | Lobular pneumonia: discrete areas of consolidation ≥ 1 cm2 within an otherwise aerated lung |
3 | + | + | Lobar pneumonia: consolidation of 1 entire lung lobe |
4 | + | + | Lobar pneumonia: consolidation of 2 entire lung lobes |
5 | + | + | Lobar pneumonia: consolidation of ≥3 entire lung lobes |
Days | No. of Calves | TUS: Score ≥ 2 | TUS: Score ≥ 3 | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
New 1 | Chronic 2 | Repeat 3 | New 1 | Chronic 2 | Repeat 3 | ||||||||||||||
No. | % | %t | No. | % | %t | No. | % | %t | No. | % | %t | No. | % | %t | No. | % | %t | ||
1–21 | 398 | 90 | 22.6 | 93.8 | 1 | 0.3 | 1.0 | 5 | 1.3 | 5.2 | 20 | 5.0 | 100 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 |
7–28 | 383 | 114 | 29.8 | 77.6 | 14 | 3.7 | 9.5 | 19 | 5.0 | 12.9 | 37 | 9.7 | 100 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 |
14–36 | 355 | 110 | 31.0 | 66.7 | 27 | 7.6 | 16.4 | 28 | 7.9 | 17.0 | 46 | 13.0 | 73 | 6 | 1.7 | 9.5 | 11 | 3.1 | 17.5 |
21–42 | 331 | 112 | 33.8 | 62.9 | 38 | 11.5 | 21.3 | 28 | 8.5 | 15.7 | 57 | 17.2 | 60 | 13 | 3.9 | 13.7 | 25 | 7.6 | 26.3 |
28–49 | 312 | 99 | 31.7 | 74.4 | 9 | 2.9 | 6.8 | 25 | 8.0 | 18.8 | 52 | 16.7 | 59.1 | 3 | 1.0 | 3.4 | 33 | 10.6 | 37.5 |
35–56 | 298 | 97 | 32.6 | 68.8 | 16 | 5.4 | 11.3 | 28 | 9.4 | 19.9 | 60 | 20.1 | 50.8 | 8 | 2.7 | 6.8 | 50 | 16.8 | 42.4 |
Days | No. of Calves | Wisconsin Respiratory Score: ≥5 | California Respiratory Score: ≥5 | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
New 1 | Chronic 2 | Repeat 3 | New 1 | Chronic 2 | Repeat 3 | ||||||||||||||
No. | % | %t | No. | % | %t | No. | % | %t | No. | % | %t | No. | % | %t | No. | % | %t | ||
1–21 | 398 | 30 | 7.5 | 100.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 30 | 33 | 8.3 | 100.0 | 0 | 0.0 | 0.0 | 0 | 0.0 | 0.0 |
7–28 | 383 | 48 | 12.5 | 87.3 | 2 | 0.5 | 3.6 | 5 | 1.3 | 48 | 46 | 12.0 | 88.5 | 2 | 0.5 | 3.9 | 4 | 1.0 | 7.7 |
14–36 | 355 | 49 | 13.8 | 86.0 | 1 | 0.3 | 1.8 | 7 | 2.0 | 49 | 51 | 14.4 | 86.4 | 1 | 0.3 | 1.7 | 7 | 2.0 | 11.9 |
21–42 | 331 | 52 | 15.7 | 78.8 | 3 | 0.9 | 4.6 | 11 | 3.3 | 52 | 63 | 19.0 | 82.9 | 0 | 0.0 | 0.0 | 13 | 3.9 | 17.1 |
28–49 | 312 | 43 | 13.8 | 71.7 | 2 | 0.6 | 3.3 | 15 | 4.8 | 43 | 61 | 19.6 | 74.4 | 2 | 0.6 | 2.4 | 19 | 6.1 | 23.2 |
35–56 | 298 | 42 | 14.1 | 64.6 | 3 | 1.0 | 4.6 | 20 | 6.7 | 42 | 49 | 16.4 | 63.6 | 1 | 0.3 | 1.3 | 27 | 9.1 | 35.1 |
Days | No. of Calves | TUS: Score ≥ 2, California Respiratory Score ≥ 5 | TUS: Score ≥ 3, California Respiratory Score ≥ 5 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Healthy | Upper Respiratory Tract | Subclinical Pneumonia | Clinical Pneumonia | Healthy | Upper Respiratory Tract | Subclinical Pneumonia | Clinical Pneumonia | ||||||||||
No | % | No | % | No | % | No | % | No | % | No | % | No | % | No | % | ||
1–7 | 470 | 439 | 93.4 | 16 | 3.4 | 15 | 3.2 | 0 | 0.0 | 453 | 96.4 | 16 | 3.4 | 1 | 0.2 | 0 | 0.0 |
8–14 | 461 | 388 | 84.2 | 26 | 5.6 | 40 | 8.7 | 7 | 1.5 | 417 | 90.5 | 38 | 8.2 | 6 | 1.3 | 0 | 0.0 |
15–21 | 443 | 351 | 79.2 | 27 | 6.1 | 53 | 12.0 | 12 | 2.7 | 385 | 86.9 | 40 | 9.0 | 13 | 2.9 | 5 | 1.1 |
22–28 | 436 | 331 | 75.9 | 23 | 5.3 | 65 | 14.9 | 17 | 3.9 | 367 | 84.2 | 39 | 8.9 | 19 | 4.4 | 11 | 2.5 |
29–35 | 409 | 287 | 70.2 | 27 | 6.6 | 77 | 18.8 | 18 | 4.4 | 326 | 79.7 | 46 | 11.2 | 29 | 7.1 | 8 | 2.0 |
36–42 | 378 | 230 | 60.8 | 35 | 9.3 | 89 | 23.5 | 24 | 6.3 | 279 | 73.8 | 51 | 13.5 | 30 | 7.9 | 18 | 4.8 |
43–49 | 375 | 246 | 65.6 | 24 | 6.4 | 84 | 22.4 | 21 | 5.6 | 290 | 77.3 | 39 | 10.4 | 30 | 8.0 | 16 | 4.3 |
50–56 | 349 | 216 | 61.9 | 16 | 4.6 | 103 | 29.5 | 14 | 4.0 | 265 | 75.9 | 31 | 8.9 | 48 | 13.8 | 5 | 1.4 |
References
- Dubrovsky, S.A.; Van Eenennaam, A.L.; Karle, B.M.; Rossitto, P.V.; Lehenbauer, T.W.; Aly, S.S. Bovine respiratory disease (BRD) cause-specific and overall mortality in preweaned calves on California dairies: The BRD 10K study. J. Dairy Sci. 2019, 102, 7320–7328. [Google Scholar] [CrossRef] [PubMed]
- Donlon, J.D.; Mee, J.F.; McAloon, C.G. Prevalence of respiratory disease in Irish preweaned dairy calves using hierarchical Bayesian latent class analysis. Front. Vet. Sci. 2023, 10, 1149929. [Google Scholar] [CrossRef] [PubMed]
- Baxter-Smith, K.; More, J.; Hyde, R. Use of thoracic ultrasound on Scottish dairy cattle farms to support the diagnosis and treatment of bovine respiratory disease in calves. Vet. Rec. 2022, 190, e939. [Google Scholar] [CrossRef] [PubMed]
- van Leenen, K.; Jouret, J.; Demeyer, P.; Van Driessche, L.; De Cremer, L.; Masmeijer, C.; Boyen, F.; Deprez, P.; Pardon, B. Associations of barn air quality parameters with ultrasonographic lung lesions, airway inflammation and infection in group-housed calves. Prev. Vet. Med. 2020, 181, 105056. [Google Scholar] [CrossRef]
- Lago, A.; McGuirk, S.; Bennett, T.; Cook, N.; Nordlund, K. Calf respiratory disease and pen microenvironments in naturally ventilated calf barns in winter. J. Dairy Sci. 2006, 89, 4014–4025. [Google Scholar] [CrossRef]
- Dubrovsky, S.; Van Eenennaam, A.; Karle, B.; Rossitto, P.; Lehenbauer, T.; Aly, S. Epidemiology of bovine respiratory disease (BRD) in preweaned calves on California dairies: The BRD 10K study. J. Dairy Sci. 2019, 102, 7306–7319. [Google Scholar] [CrossRef]
- Johnson, K.F.; Chancellor, N.; Burn, C.C.; Wathes, D.C. Prospective cohort study to assess rates of contagious disease in pre-weaned UK dairy heifers: Management practices, passive transfer of immunity and associated calf health. Vet. Rec. Open. 2017, 4, e000226. [Google Scholar] [CrossRef]
- Johnson, K.F.; Chancellor, N.; Wathes, D.C. A cohort study risk factor analysis for endemic disease in pre-weaned dairy heifer calves. Animals 2021, 11, 378. [Google Scholar] [CrossRef]
- Hinnant, H.; Elder, L.; Claus-Walker, R.; Mandella, C.; Slanzon, G.; Parrish, L.; Trombetta, S.; McConnel, C. Comparative diagnoses of respiratory disease in preweaned dairy calves using sequential thoracic ultrasonography and clinical respiratory scoring. Aust. Vet. J. 2024, 102, 187–199. [Google Scholar] [CrossRef]
- Berman, J. Literature review of the principal diagnostic tests to detect bovine respiratory disease in pre-weaned dairy and veal calves. Animals 2024, 14, 329. [Google Scholar] [CrossRef]
- Buczinski, S.; Ollivett, T.L.; Dendukuri, N. Bayesian estimation of the accuracy of the calf respiratory scoring chart and ultrasonography for the diagnosis of bovine respiratory disease in pre-weaned dairy calves. Prev. Vet. Med. 2015, 119, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Baruch, J.; Cernicchiaro, N.; Cull, C.A.; Lechtenberg, K.F.; Nickell, J.S.; Renter, D.G. Performance of multiple diagnostic methods in assessing the progression of bovine respiratory disease in calves challenged with infectious bovine rhinotracheitis virus and Mannheimia haemolytica. J. Anim. Sci. 2019, 97, 2357–2367. [Google Scholar] [CrossRef] [PubMed]
- Love, W.J.; Lehenbauer, T.W.; Kass, P.H.; Van Eenennaam, A.L.; Aly, S.S. Development of a novel clinical scoring system for on-farm diagnosis of bovine respiratory disease in pre-weaned dairy calves. PeerJ 2014, 2, e238. [Google Scholar] [CrossRef] [PubMed]
- McGuirk, S.M.; Peek, S.F. Timely diagnosis of dairy calf respiratory disease using a standardized scoring system. Anim. Health Res. Rev. 2014, 15, 145–147. [Google Scholar] [CrossRef]
- Donlon, J.D.; McAloon, C.G.; Mee, J.F. Performance of various interpretations of clinical scoring systems for diagnosis of respiratory disease in dairy calves in a temperate climate using Bayesian latent class analysis. J. Dairy Sci. 2024, 107, 7138–7152. [Google Scholar] [CrossRef]
- Decaris, N.; Buczinski, S.; Tárdon, D.I.C.; Camargo, L.; Schllemer, N.R.; Hagen, S.C.F.; Woolums, A.R.; Gomes, V. Diagnostic accuracy of Wisconsin and California scoring systems to detect bovine respiratory disease in preweaning dairy calves under subtropical environmental conditions. J. Dairy Sci. 2022, 105, 7750–7763. [Google Scholar] [CrossRef]
- Holschbach, C.; Raabis, S.; Ollivett, T. Effect of antibiotic treatment in preweaned Holstein calves after experimental bacterial challenge with Pasteurella multocida. J. Dairy Sci. 2019, 102, 11359–11369. [Google Scholar] [CrossRef]
- Buczinski, S.; Forté, G.; Francoz, D.; Bélanger, A.M. Comparison of thoracic auscultation, clinical score, and ultrasonography as indicators of bovine respiratory disease in preweaned dairy calves. J. Dairy Sci. 2014, 28, 234–242. [Google Scholar] [CrossRef]
- Apley, M.D. Treatment of calves with bovine respiratory disease. Vet. Clin. N. Am. Food Anim. Pract. 2016, 31, 441–453. [Google Scholar] [CrossRef]
- Lappin, M.; Blondeau, J.; Boothe, D.; Breitschwerdt, E.; Guardabassi, L.; Lloyd, D.; Papich, M.; Rankin, S.; Sykes, J.; Turnidge, J.; et al. Antimicrobial use guidelines for treatment of respiratory tract disease in dogs and cats: Antimicrobial Guidelines Working Group of the International Society for Companion Animal Infectious Diseases. J. Vet. Intern. Med. 2017, 31, 279–294. [Google Scholar] [CrossRef]
- Cuevas-Gomez, I.; McGee, M.; Sanchez, J.M.; O’Riordan, E.; Byrne, N.; McDaneld, T.; Earley, B. Association between clinical respiratory signs, lung lesions detected by thoracic ultrasonography and growth performance in pre-weaned dairy calves. Ir. Vet. J. 2021, 74, 7. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, A.G.V.; McArt, J.A.A.; Bicalho, R.C. Thoracic ultrasound assessment of lung consolidation at weaning in Holstein dairy heifers: Reproductive performance and survival. J. Dairy Sci. 2017, 100, 2985–2991. [Google Scholar] [CrossRef] [PubMed]
- Dunn, T.; Ollivett, T.; Renaud, D.; Leslie, K.; LeBlanc, S.; Duffield, T.; Kelton, D. The effect of lung consolidation, as determined by ultrasonography, on first-lactation milk production in Holstein dairy calves. J. Dairy Sci. 2018, 101, 5404–5410. [Google Scholar] [CrossRef] [PubMed]
- Adams, E.A.; Buczinski, S. Ultrasonographic assessment of lung consolidation postweaning and survival to the first lactation in dairy heifers. J. Dairy Sci. 2016, 99, 1465–1470. [Google Scholar] [CrossRef] [PubMed]
- Cramer, M.C.; Ollivett, T.L. Growth of preweaned, group-housed dairy calves diagnosed with respiratory disease using clinical respiratory scoring and thoracic ultrasound—A cohort study. J. Dairy Sci. 2019, 102, 4322–4331. [Google Scholar] [CrossRef]
- Bach, A. Associations between several aspects of heifer development and dairy cow survivability to second lactation. J. Dairy Sci. 2011, 94, 1052–1057. [Google Scholar] [CrossRef]
- Schaffer, A.P.; Larson, R.L.; Cernicchiaro, N.; Hanzlicek, G.A.; Bartle, S.J.; Thomson, D.U. The association between calfhood bovine respiratory disease complex and subsequent departure from the herd, milk production, and reproduction in dairy cattle. J. Am. Vet. Med. Assoc. 2016, 248, 1157–1164. [Google Scholar] [CrossRef]
- Tejero, C.; Bach, A. The hidden cost of a hidden disease: Growth performance of calves as affected by bovine respiratory disease diagnosed using ultrasonography. J. Anim. Sci. 2016, 94, 48. [Google Scholar] [CrossRef]
- Jourquin, S.; Lowie, T.; Debruyne, F.; Chantillon, L.; Vereecke, N.; Boyen, F.; Boone, R.; Bokma, J.; Pardon, B. Dynamics of subclinical pneumonia in male dairy calves in relation to antimicrobial therapy and production outcomes. J. Dairy Sci. 2023, 106, 676–689. [Google Scholar] [CrossRef]
- Binversie, E.; Ruegg, P.; Combs, D.; Ollivett, T. Randomized clinical trial to assess the effect of antibiotic therapy on health and growth of preweaned dairy calves diagnosed with respiratory disease using respiratory scoring and lung ultrasound. J. Dairy Sci. 2020, 103, 11723–11735. [Google Scholar] [CrossRef]
- Lowie, T.; Van Leenen, K.; Jourquin, S.; Pas, M.L.; Bokma, J.; Pardon, B. Differences in the association of cough and other clinical signs with ultrasonographic lung consolidation in dairy, veal, and beef calves. J. Dairy Sci. 2022, 105, 6111–6124. [Google Scholar] [CrossRef] [PubMed]
- Anteveli, G.; Andrade, J.; Alves, B.; Matiello, J.; Lemos, G.; Oliveira, C.; Cruz, D.; Nicolino, R.; Facury Filho, E.; Meneses, R. Choosing the optimal combination of lungs lobe evaluation during focused pulmonary ultrasonography in calves. J. Dairy Sci. 2025, 108, 750–759. [Google Scholar] [CrossRef] [PubMed]
- Grissett, G.; White, B.; Larson, R. Structured literature review of responses of cattle to viral and bacterial pathogens causing bovine respiratory disease complex. J. Vet. Intern. Med. 2015, 29, 770–780. [Google Scholar] [CrossRef] [PubMed]
- Sergeant, E.S.G. Epitools Epidemiological Calculators. Available online: https://epitools.ausvet.com.au/ (accessed on 10 August 2024).
- Bland, J.M. The tyranny of power: Is there a better way to calculate sample size? BMJ 2009, 339, b3985. [Google Scholar] [CrossRef]
- Rothman, K.J.; Greenland, S. Planning study size based on precision rather than power. Epidemiology 2018, 29, 599–603. [Google Scholar] [CrossRef]
- Jourquin, S.; Bokma, J.; De Cremer, L.; van Leenen, K.; Vereecke, N.; Pardon, B. Randomized field trial comparing the efficacy of florfenicol and oxytetracycline in a natural outbreak of calf pneumonia using lung reaeration as a cure criterion. J. Vet. Intern. Med. 2022, 36, 820–828. [Google Scholar] [CrossRef]
- Ollivett, T.L.; Caswell, J.L.; Nydam, D.V.; Duffield, T.; Leslie, K.E.; Hewson, J.; Kelton, D. Thoracic Ultrasonography and Bronchoalveolar Lavage Fluid Analysis in Holstein Calves with Subclinical Lung Lesions. J. Vet. Intern. Med. 2015, 29, 1728–1734. [Google Scholar] [CrossRef]
- Kellermann, L.; Rieger, A.; Knubben-Schweizer, G.; Metzner, M. Design and validation of a hygiene score for calves. J. Dairy Sci. 2020, 103, 3622–3627. [Google Scholar] [CrossRef]
- Johnson, K.; Chancellor, N.; Burn, C.; Wathes, D. Analysis of pre-weaning feeding policies and other risk factors influencing growth rates in calves on 11 commercial dairy farms. Animal 2018, 12, 1413–1423. [Google Scholar] [CrossRef]
- Ollivett, T.L.; Buczinski, S. On-farm use of ultrasonography for bovine respiratory disease. Vet. Clin. N. Am. Food. Anim. Pract. 2016, 32, 19–35. [Google Scholar] [CrossRef]
- Buczinski, S.; Pardon, B. Bovine respiratory disease diagnosis: What progress has been made in clinical diagnosis? Vet. Clin. N. Am. Food. Anim. Pract. 2020, 36, 399–423. [Google Scholar] [CrossRef] [PubMed]
- Dohoo, I.R.; Martin, W.; Stryhn, H.E. Measures of disease frequency. In Veterinary Epidemiologic Research, 3rd ed.; McPike, M.S., Ed.; VER Inc.: Charlottetown, PE, Canada, 2014. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing, version 4.4.1; R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- Heinrichs, A.; Heinrichs, B.; Jones, C.; Erickson, P.S.; Kalscheur, K.; Nennich, T.; Heins, B.J.; Cardoso, F. Verifying Holstein heifer heart girth to body weight prediction equations. J. Dairy Sci. 2017, 100, 8451–8454. [Google Scholar] [CrossRef]
- Daly, L.E. Confidence limits made easy: Interval estimation using a substitution method. Am. J. Epidemiol. 1998, 147, 783–790. [Google Scholar] [CrossRef] [PubMed]
- Touloumis, A. R package multgee: A generalized estimating equations solver for multinomial responses. J. Stat. Softw. 2015, 64, 1–14. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Lombard, J.; Urie, N.; Garry, F.; Godden, S.; Quigley, J.; Earleywine, T.; McGuirk, S.; Moore, D.; Branan, M.; Chamorro, M.; et al. Consensus recommendations on calf- and herd-level passive immunity in dairy calves in the United States. J. Dairy Sci. 2020, 103, 7611–7624. [Google Scholar] [CrossRef]
- Ollivett, T.; Burton, A.; Bicalho, R.; Nydam, D. Use of rapid thoracic ultrasonography for detection of subclinical and clinical pneumonia in dairy calves. In Proceedings of the Forty-Fourth Annual Conference, St. Louis, MO, USA, 22–24 September 2011; p. 148. [Google Scholar]
- Kamel, M.S.; Davidson, J.L.; Verma, M.S. Strategies for Bovine Respiratory Disease (BRD) Diagnosis and Prognosis: A Comprehensive Overview. Animals 2024, 14, 627. [Google Scholar] [CrossRef]
- Urie, N.; Lombard, J.; Shivley, C.; Kopral, C.; Adams, A.; Earleywine, T.; Olson, J.; Garry, F. Preweaned heifer management on US dairy operations: Part V: Factors associated with morbidity and mortality in preweaned dairy heifer calves. J. Dairy Sci. 2018, 101, 9229–9244. [Google Scholar] [CrossRef]
- Rademacher, R.D.; Buczinski, S.; Holt, M.; Tripp, H.M.; Edmonds, M.D.; Johnson, G. Systematic thoracic ultrasonography in acute bovine respiratory disease of feedlot steers: Impact of lung consolidation on diagnosis and prognosis in a case-control study. Bov. Pract. 2013, 48, 1–10. [Google Scholar] [CrossRef]
- Nickell, J.S.; White, B.J. Metaphylactic antimicrobial therapy for bovine respiratory disease in stocker and feedlot cattle. Vet. Clin. N. Am. Food. Anim. Pract. 2010, 26, 285–301. [Google Scholar] [CrossRef]
- Ollivett, T. BRD treatment failure: Clinical and pathologic considerations. Anim. Health Res. Rev. 2020, 21, 175–176. [Google Scholar] [CrossRef] [PubMed]
- Ollivett, T.; Hewson, J.; Shubotz, R.; Caswell, J. Ultrasonographic progression of lung consolidation after experimental infection with Mannheimia haemolytica in Holstein bull calves. In Proceedings of the Forty-Sixth Annual Conference, Milwaulkee, WI, USA, 19–21 September 2013; p. 147. [Google Scholar]
- Gaudino, M.; Nagamine, B.; Ducatez, M.F.; Meyer, G. Understanding the mechanisms of viral and bacterial coinfections in bovine respiratory disease: A comprehensive literature review of experimental evidence. Vet. Res. 2022, 53, 70. [Google Scholar] [CrossRef] [PubMed]
- Jourquin, S.; Debruyne, F.; Chantillon, L.; Lowie, T.; Boone, R.; Bokma, J.; Pardon, B. Non-inferiority trial in veal calves on the efficacy of oxytetracycline and florfenicol treatment for pneumonia guided by quick thoracic ultrasound. J. Dairy Sci. 2025, 108, 1896–1913. [Google Scholar] [CrossRef] [PubMed]
- Lowie, T.; Jourquin, S.; Debruyne, F.; Chantillon, L.; Hoflack, G.; Boone, R.; Vertenten, G.; Sustronck, B.; Pardon, B.; Bokma, J. Associations of serostatus upon arrival with clinical respiratory disease, lung consolidation, and growth in veal calves. J. Dairy Sci. 2024, 107, 3836–3846. [Google Scholar] [CrossRef] [PubMed]
- Masmeijer, C.; Deprez, P.; van Leenen, K.; De Cremer, L.; Cox, E.; Devriendt, B.; Pardon, B. Arrival cortisol measurement in veal calves and its association with body weight, protein fractions, animal health and performance. Prev. Vet. Med. 2021, 187, 105251. [Google Scholar] [CrossRef]
- Mahendran, S.A.; Blackie, N.; Wathes, D.C.; Booth, R.E. Comparison of environment quality measurements between 3 types of calf housing in the United Kingdom. J. Dairy Sci. 2023, 106, 2461–2474. [Google Scholar] [CrossRef]
- Caswell, J. Failure of respiratory defenses in the pathogenesis of bacterial pneumonia of cattle. Vet. Pathol. 2014, 51, 393–409. [Google Scholar] [CrossRef]
- Ferree, L.A.; Edwards-Callaway, L.N.; Roman-Muniz, I.N.; Coetzee, J.H.F.; Applegate, T.J.; Ollivett, T.L.; Cramer, M.C. Oral meloxicam given as an ancillary treatment at respiratory disease diagnosis was not associated with growth, clinical scores, or ultrasound scores in preweaned dairy calves. J. Am. Vet. Med. Assoc. 2023, 261, 1716–1723. [Google Scholar] [CrossRef]
- Cramer, C.; Proudfoot, K.; Ollivett, T. Automated feeding behaviors associated with subclinical respiratory disease in preweaned dairy calves. Animals 2020, 10, 988. [Google Scholar] [CrossRef]
- Sáadatnia, A.; Mohammadi, G.R.; Azizzadeh, M.; Mirshahi, A.; Mohieddini, A.A.; Buczinski, S. Effect of ultrasonographic lung consolidation on health and growth in dairy calves: A longitudinal study. J. Dairy Sci. 2023, 106, 8047–8059. [Google Scholar] [CrossRef]
- Abdallah, A.A.; Abdelaal, A.M.; El-Sheikh, A.R.; Selim, H.; Buczinski, S. Determination of the dynamics of respiratory diseases using thoracic ultrasonographic examination in preweaned dairy calves. Can. Vet. J. 2019, 60, 859–863. [Google Scholar]
- Rhodes, V.; Ryan, E.G.; Hayes, C.J.; McAloon, C.; O’Grady, L.; Hoey, S.; Mee, J.F.; Pardon, B.; Earley, B.; McAloon, C.G. Diagnosis of respiratory disease in preweaned dairy calves using sequential thoracic ultrasonography and clinical respiratory scoring: Temporal transitions and association with growth rates. J. Dairy Sci. 2021, 104, 11165–11175. [Google Scholar] [CrossRef]
Wisconsin or California Respiratory Score | Thoracic Ultrasound Score | Disease Subtype |
---|---|---|
<5 | <2 (TUS2) | Healthy |
<3 (TUS3) | ||
≥5 | <2 (TUS2) | Upper respiratory tract |
<3 (TUS3) | ||
<5 | ≥2 (TUS2) | Lower respiratory tract/subclinical pneumonia |
≥3 (TUS3) | ||
≥5 | ≥2 (TUS2) | Clinical pneumonia |
≥3 (TUS3) |
Farm | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
No. enrolled | 29 | 23 | 30 | 30 | 31 | 33 | 25 | 37 | 31 | 30 | 41 | 27 | 23 | 30 | 37 | 19 |
Calving pattern 1 | AYR | AYR | S & A | Spring | AYR | AYR | AYR | AYR | AYR | AYR | AYR | AYR | AYR | AYR | A | A |
Predominant breed 2 | H | H | HF X | HF X | H | HF | H | HF | H | H | HF | HF | H | HF | XB | H |
Total no. milking cows | 600 | 300 | 600 | 264 | 338 | 247 | 104 | 550 | 834 | 230 | 1350 | 200 | 255 | 189 | 210 | 200 |
Average herd 305 d yield | 10,000 | 10,403 | 5900 | 5500 | 12,200 | 13,810 | 12,200 | 9000 | 11,331 | 11,079 | 11,888 | 9100 | 10,683 | 8500 | 7568 | 9800 |
Main colostrum feeding route | Suckle | Suckle | Suckle | Suckle | Bottle | Bottle | Bottle | Tube | Tube | Tube | Tube | Bottle | Suckle | Bottle | Suckle | Suckle |
First colostrum feed volume | 4 | 4 | 3 | 2.5–4 | 3 | 4.5 | 2.5 | 3 | 2.5 | 4 | ||||||
Calf housing 3 | GI | GI | GI | GI/GO | IO | IO | GI | GI/GO | GI | GI | II | GI | GI | GI/GO | GI | GI |
Milk feeding method 4 | Teat (A, B) | Teat (A, B) | Teat (G) | Teat (G) | Bottle/Teat (A) | Teat (B) | Teat (B) | Teat (B) | Teat (B) | Teat (B) | Teat (B) | Teat (G) | Teat (A, B) | Teat (B) | Teat (B) | Teat (G) |
Milk source 5 | ||||||||||||||||
Replacements | MR | MR | MR | MR | MR | MR | WM | MR | MR | WM | MR | WM | MR | MR | MR | MR |
Non-replacements | WM | WM | MR | MR | MR | WM | WM | MR | WM | WM | WM | WM | WM | MR | MR | WM |
Peak daily milk DM (g) 6 | ||||||||||||||||
Replacements | 750 | 1200 | 798 | 450 | 810 | 1080 | 900 | 1200 | 900 | 975 | 900 | 900 | 750 | |||
Non-replacements | 750 | 399 | 450 | 1080 | 900 | 900 | 900 | 750 |
Exam No. | Age Range in Days | No. of Calves | Gender | Breed 1 | Losses to Follow Up | Treatments 3 | ||||
---|---|---|---|---|---|---|---|---|---|---|
Male | Female | Dairy | Beef | Death | Total 2 | NSAID | Antibiotic | |||
1 | 1–7 | 476 | 23.3 (111) | 76.7 (365) | 56.9 (271) | 43.1 (205) | 0.4 (2) | 2.3 (10) | 1.5 (7) | 2.7 (13) |
2 | 8–14 | 464 | 23.1 (107) | 76.9 (357) | 57.5 (267) | 42.5 (197) | 0.9 (4) | 2.6 (12) | 0.6 (3) | 1.7 (8) |
3 | 15–21 | 448 | 97 (21.7) | 78.3 (351) | 59.4 (266) | 40.6 (182) | 0.7 (3) | 2.9 (13) | 0.7 (3) | 0.7 (3) |
4 | 22–28 | 441 | 20.4 (90) | 79.6 (351) | 60.3 (266) | 39.7 (175) | 0.2 (1) | 1.4 (6) | 1.3 (6) | 0 (0) |
5 | 29–35 | 411 | 19.7 (81) | 80.3 (330) | 64.5 (265) | 35.5 (146) | 0.7 (3) | 6.6 (27) | 1.4 (6) | 1.6 (7) |
6 | 36–42 | 378 | 18.8 (71) | 81.2 (307) | 66.4 (251) | 33.6 (127) | 0.5 (2) | 8.2 (31) | 3.5 (13) | 1.3 (5) |
7 | 43–49 | 377 | 19.4 (73) | 80.6 (304) | 68.4 (258) | 31.6 (119) | 0.3 (1) | 0 (0) | 1.3 (5) | 0.2 (1) |
8 | 50–56 | 349 | 19.5 (68) | 80.5 (281) | 67.9 (237) | 32.1 (112) | 0 0 | 8.0 (28) | 1.7 (6) | 1.1 (4) |
Days | No. of Calves | TUS2: TUS Score ≥ 2 | TUS3: TUS Score ≥ 3 | ||||
---|---|---|---|---|---|---|---|
Prevalence (95% CI) 3 | Incidence Rate 1 (95% CI) 4 | % Incidence Risk 2 (95% CI) 4 | Prevalence (95% CI) 3 | Incidence Rate 1 (95% CI) 4 | % Incidence Risk 2 (95% CI) 4 | ||
1–7 | 469 | 3.2 (1.6–4.8) | 0.78 (0.44–1.30) | 3.2 (1.8–5.3) | 0.2 (0.0–0.6) | 0.05 (0.00–0.29) | 0.2 (0.0–1.2) |
8–14 | 460 | 10.2 (7.5–13.0) | 1.23 (0.87–1.7) | 8.0 (5.7–8.1) | 1.3 (0.3–2.3) | 0.13 (0.04–0.34) | 0.9 (0.2–2.2) |
15–21 | 443 | 13.5 (10.4–16.7) | 1.37 (0.96–1.86) | 8.6 (6.1–11.8) | 4.1 (2.2–5.9) | 0.54 (0.30–0.88) | 3.4 (1.9–5.6) |
22–28 | 436 | 17.2 (13.7–20.7) | 1.46 (1.00–2.00) | 8.9 (6.4–12.2) | 6.2 (3.9–8.5) | 0.67 (0.40–1.05) | 4.1 (2.4–6.5) |
29–35 | 411 | 20.2 (16.3–24.1) | 1.33 (0.91–1.90) | 8.0 (5.5–11.3) | 7.5 (5.0–10.1) | 0.52 (0.28–0.89) | 7.9 (0.02–0.06) |
36–42 | 378 | 27.5 (23.0–32.0) | 1.78 (1.30–2.48) | 10.6 (7.6–14.4) | 12.4 (9.1–15.8) | 1.16 (0.77–1.73) | 6.9 (4.5–10.1) |
43–49 | 375 | 28.3 (23.7–32.8) | 1.19 (0.77–1.73) | 6.9 (4.5–10.2) | 10.9 (7.7–14.1) | 0.60 (0.31–1.01) | 3.5 (1.8–5.9) |
50–56 | 346 | 29.2 (24.4–34.0) | 1.51 (1.00–2.10) | 9.0 (6.1–12.7) | 14.2 (10.5–17.8) | 1.02 (0.62–1.53) | 6.0 (3.8–9.3) |
Days | No. of Calves | TUS Score ≥ 2, Wisconsin Respiratory Score ≥ 5 | TUS Score ≥ 3, Wisconsin Respiratory Score ≥ 5 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Healthy | Upper Respiratory Tract | Subclinical Pneumonia | Clinical Pneumonia | Healthy | Upper Respiratory Tract | Subclinical Pneumonia | Clinical Pneumonia | ||||||||||
No | % | No | % | No | % | No | % | No | % | No | % | No | % | No | % | ||
1–7 | 470 | 445 | 94.7 | 10 | 2.1 | 15 | 3.2 | 0 | 0.0 | 459 | 97.7 | 10 | 2.1 | 1 | 0.2 | 0 | 0.0 |
8–14 | 461 | 391 | 84.8 | 23 | 5.0 | 41 | 8.9 | 6 | 1.3 | 423 | 91.8 | 32 | 6.9 | 5 | 1.1 | 1 | 0.2 |
15–21 | 443 | 356 | 80.4 | 22 | 5.0 | 54 | 12.2 | 11 | 2.5 | 390 | 88.0 | 35 | 7.9 | 12 | 2.7 | 6 | 1.4 |
22–28 | 436 | 333 | 76.4 | 21 | 4.8 | 63 | 14.4 | 19 | 4.4 | 372 | 85.3 | 34 | 7.8 | 15 | 3.4 | 15 | 3.4 |
29–35 | 409 | 297 | 72.6 | 17 | 4.2 | 78 | 19.1 | 17 | 4.2 | 341 | 83.4 | 31 | 7.6 | 31 | 7.6 | 6 | 1.5 |
36–42 | 378 | 259 | 68.5 | 6 | 1.6 | 90 | 23.8 | 23 | 6.1 | 311 | 82.3 | 19 | 5.0 | 31 | 8.2 | 17 | 4.5 |
43–49 | 375 | 260 | 69.3 | 10 | 2.7 | 86 | 22.9 | 19 | 5.1 | 306 | 81.6 | 23 | 6.1 | 32 | 8.5 | 14 | 3.7 |
50–56 | 349 | 226 | 64.8 | 6 | 1.7 | 100 | 28.7 | 17 | 4.9 | 279 | 79.9 | 17 | 4.9 | 42 | 12.0 | 11 | 3.2 |
Variable | Estimate (SE) | 95% CI | Odds Ratio 2 | 95% CI | p-Value 3 | |
---|---|---|---|---|---|---|
Intercept | −0.44 (0.64) | −1.69–0.82 | 1.55 | 0.44–5.44 | 0.49 | |
Farm | 1 | Reference | ||||
2 | 1.61 (0.46) | 0.7–2.52 | 0.20 | 0.08–0.50 | <0.001 ** | |
3 | 3.54 (0.54) | 2.48–4.6 | 0.03 | 0.01–0.08 | <0.001 ** | |
4 | 2.99 (0.47) | 2.06–3.91 | 0.05 | 0.02–0.13 | <0.001 ** | |
5 | 3.02 (0.49) | 2.06–3.98 | 0.05 | 0.02–0.13 | <0.001 ** | |
6 | 3.55 (0.49) | 2.59–4.51 | 0.03 | 0.01–0.08 | <0.001 ** | |
7 | 4.22 (0.49) | 3.27–5.18 | 0.01 | 0.01–0.04 | <0.001 ** | |
8 | 0.95 (0.33) | 0.3–1.61 | 0.38 | 0.2–0.74 | <0.001 ** | |
9 | −0.19 (0.29) | −0.76–0.39 | 1.21 | 0.68–2.14 | 0.52 | |
10 | 2.43 (0.37) | 1.7–3.16 | 0.09 | 0.04–0.18 | <0.001 ** | |
11 | 1.04 (0.3) | 0.45–1.62 | 0.35 | 0.2–0.64 | <0.001 ** | |
12 | 0.56 (0.37) | −0.18–1.29 | 0.57 | 0.28–1.20 | 0.14 | |
13 | 2.79 (0.53) | 1.75–3.84 | 0.06 | 0.02–0.17 | <0.001 ** | |
14 | 1.66 (0.38) | 0.92–2.41 | 0.19 | 0.09–0.40 | <0.001 ** | |
15 | 3.02 (0.5) | 2.04–4.01 | 0.05 | 0.02–0.13 | <0.001 ** | |
16 | 3.5 (0.53) | 2.47–4.54 | 0.03 | 0.01–0.09 | <0.001 ** | |
Age | −0.05 (0) | −0.05–−0.04 | 1.05 | 1.04–1.06 | <0.001 ** | |
Serum total protein | 0.03 (0.01) | 0.01–0.04 | 0.97 | 0.96–0.99 | 0.01 * | |
Fecal score | 0 | Reference | ||||
1 | −0.38 (0.14) | −0.66–−0.11 | 1.47 | 1.11–1.93 | 0.01 * | |
2 | −0.58 (0.23) | −1.02–−0.14 | 1.78 | 1.14–2.77 | 0.01 * | |
3 | −0.22 (0.23) | −0.68–0.24 | 1.24 | 0.79–1.97 | 0.35 |
Variable | Estimate (SE) | 95% CI | Odds Ratio 2 | 95% CI | p-Value 3 | |
---|---|---|---|---|---|---|
Intercept | −3.94 (1.08) | −6.06–−1.82 | 51.26 | 6.15–427.63 | <0.001 ** | |
Farm | 1 | Reference | −1.74–1.15 | |||
2 | −0.3 (0.74) | −0.09–3.1 | 1.35 | 0.32–5.71 | 0.69 | |
3 | 1.5 (0.81) | −1.74–1.84 | 0.22 | 0.05–1.09 | 0.06 # | |
4 | 0.05 (0.91) | −1.09–2.29 | 0.95 | 0.16–5.71 | 0.96 | |
5 | 0.6 (0.86) | −0.97–2.4 | 0.55 | 0.1–2.98 | 0.49 | |
6 | 0.72 (0.86) | 0.17–3.34 | 0.49 | 0.09–2.64 | 0.40 | |
7 | 1.76 (0.81) | −0.46–1.73 | 0.17 | 0.04–0.84 | 0.03 * | |
8 | 0.63 (0.56) | −1.58–0.56 | 0.53 | 0.18–1.58 | 0.26 | |
9 | −0.51 (0.55) | −3.1–1.34 | 1.67 | 0.57–4.86 | 0.35 | |
10 | −0.88 (1.13) | −2.13–0.53 | 2.41 | 0.26–22.26 | 0.44 | |
11 | −0.8 (0.68) | −0.27–1.73 | 2.23 | 0.59–8.44 | 0.24 | |
12 | 0.73 (0.51) | 0.96–3.67 | 0.48 | 0.18–1.30 | 0.15 | |
13 | 2.31 (0.69) | −1.09–1.38 | 0.10 | 0.03–0.38 | <0.001 ** | |
14 | 0.14 (0.63) | −1.01–2.17 | 0.87 | 0.25–2.99 | 0.82 | |
15 | 0.58 (0.81) | 1.66–4.1 | 0.56 | 0.11–2.76 | 0.48 | |
16 | 2.88 (0.62) | −0.05–−0.03 | 0.06 | 0.02–0.19 | <0.001 ** | |
Age | −0.04 (0.01) | 0.02–0.08 | 1.04 | 1.03–1.05 | <0.001 ** | |
Serum total protein | 0.05 (0.02) | −1.74–1.15 | 0.95 | 0.92–0.98 | <0.001 ** | |
Fecal score | 0 | Reference | ||||
1 | 0.13 (0.31) | −0.49–0.75 | 0.88 | 0.47–1.63 | 0.68 | |
2 | −0.18 (0.42) | 0.63–0.83 | 1.52 | 0.53–2.72 | 0.66 | |
3 | 0.55 (0.39) | 1.32–1.74 | 6.40 | 0.27–1.24 | 0.16 |
Variable | Estimate (SE) | 95% CI | Odds Ratio 2 | 95% CI | p-Value 3 | |
---|---|---|---|---|---|---|
Intercept | 1 | −0.61 (0.77) | −2.13–0.9 | 1.85 | 0.41–8.39 | 0.43 |
2 | 1.02 (0.77) | −0.49–2.52 | 0.36 | 0.08–1.62 | 0.18 | |
Farm | 1 | Reference | ||||
2 | 1.07 (0.52) | 0.05–2.09 | 0.34 | 0.12–0.96 | 0.04 * | |
3 | 3.69 (0.7) | 2.32–5.06 | 0.03 | 0.01–0.10 | <0.001 ** | |
4 | 2.76 (0.52) | 1.74–3.77 | 0.06 | 0.02–0.17 | <0.001 ** | |
5 | 2.63 (0.88) | 0.91–4.34 | 0.07 | 0.01–0.4 | <0.001 ** | |
6 | 2.23 (0.61) | 1.03–3.43 | 0.11 | 0.03–0.36 | <0.001 ** | |
7 | 3.55 (0.65) | 2.28–4.82 | 0.03 | 0.01–0.10 | <0.001 ** | |
8 | 0 (0.43) | −0.84–0.84 | 1.00 | 0.43–2.32 | 1.00 | |
9 | −1.15 (0.41) | −1.94–−0.36 | 3.16 | 1.43–6.98 | <0.001 ** | |
10 | 1.79 (0.51) | 0.79–2.79 | 0.17 | 0.06–0.46 | <0.001 ** | |
11 | 0.42 (0.35) | −0.27–1.11 | 0.66 | 0.33–1.31 | 0.23 | |
12 | 0.77 (0.45) | −0.11–1.65 | 0.46 | 0.19–1.12 | 0.09 # | |
13 | 2.94 (0.58) | 1.81–4.06 | 0.05 | 0.02–0.16 | <0.001 ** | |
14 | 1.3 (0.42) | 0.48–2.12 | 0.27 | 0.12–0.62 | <0.001 ** | |
15 | 2.44 (0.7) | 1.07–3.81 | 0.09 | 0.02–0.34 | <0.001 ** | |
16 | 0.3 (1.06) | −1.78–2.37 | 0.74 | 0.09–5.93 | 0.78 | |
Age | −0.07 (0.01) | −0.09–−0.06 | 1.08 | 1.06–1.09 | <0.001 ** | |
Weight | 0.04 (0.01) | 0.01–0.06 | 0.96 | 0.94–0.99 | <0.001 ** | |
Gender | F | Reference | ||||
M | −0.53 (0.26) | −1.04–−0.01 | 1.69 | 1.01–2.84 | 0.05 * | |
Wisconsin respiratory score | <5 | Reference | ||||
≥5 | −1.72 (0.26) | −2.23–−1.22 | 5.61 | 3.38–9.30 | <0.001 ** | |
Serum total protein | 0.02 (0.01) | 0–0.05 | 0.98 | 0.95–1.00 | 0.03 * |
Variable | Estimate (SE) | 95% CI | p-Value 2 | |
---|---|---|---|---|
Intercept | 0.74 (0.32) | −0.02–1.07 | 0.06 * | |
Exam age | 0.02 (0.00) | 0.02–0.02 | <0.001 ** | |
Serum total protein (g/L) | −0.01 (0.00) | −0.01–0.00 | 0.04 * | |
Wisconsin respiratory score | <5 | Baseline | ||
≥5 | 1.58 (0.09) | 1.40–1.77 | <0.001 ** | |
Fecal score | 0 | Baseline | ||
1 | 0.14 (0.07) | 0.01–0.28 | 0.03 * | |
2 | 0.18 (0.10) | −0.02–0.38 | 0.08 # | |
3 | −0.12 (0.12) | −0.35–0.11 | 0.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lindley, G.; Blackie, N.; Wathes, D.C.; Booth, R.E. Development and Progression of Bovine Respiratory Disease Measured Using Clinical Respiratory Scoring and Thoracic Ultrasonography in Preweaned Calves on Dairy Farms in the United Kingdom: A Prospective Cohort Study. Animals 2025, 15, 360. https://doi.org/10.3390/ani15030360
Lindley G, Blackie N, Wathes DC, Booth RE. Development and Progression of Bovine Respiratory Disease Measured Using Clinical Respiratory Scoring and Thoracic Ultrasonography in Preweaned Calves on Dairy Farms in the United Kingdom: A Prospective Cohort Study. Animals. 2025; 15(3):360. https://doi.org/10.3390/ani15030360
Chicago/Turabian StyleLindley, George, Nicola Blackie, D. Claire Wathes, and Richard E. Booth. 2025. "Development and Progression of Bovine Respiratory Disease Measured Using Clinical Respiratory Scoring and Thoracic Ultrasonography in Preweaned Calves on Dairy Farms in the United Kingdom: A Prospective Cohort Study" Animals 15, no. 3: 360. https://doi.org/10.3390/ani15030360
APA StyleLindley, G., Blackie, N., Wathes, D. C., & Booth, R. E. (2025). Development and Progression of Bovine Respiratory Disease Measured Using Clinical Respiratory Scoring and Thoracic Ultrasonography in Preweaned Calves on Dairy Farms in the United Kingdom: A Prospective Cohort Study. Animals, 15(3), 360. https://doi.org/10.3390/ani15030360